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A STOCHASTIC INVARIANTIZATION METHOD FOR ITÔ

STOCHASTIC PERTURBATIONS OF DIFFERENTIAL EQUATIONS

by

Jacky Cresson, Yasmina Khelou� & Khadra Nachi

Abstract. � In general, adding a stochastic perturbation to a di�erential equation possessing
an invariant manifold destroys the invariance as far as the Itô formalism is used. In this article,
we propose an invariantization method for perturbations in the Itô case which can be used to
restore invariance. We then apply our results to develop a stochastic version of the Landau-
Lifshitz equation. We discuss in particular previous results obtained by Étoré and al. in [6].
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1. Introduction

We consider a deterministic ordinary di�erential equation of the form

(1)
dx

dt
= f(x), x ∈ Rn, n ∈ N∗.

A stochastic perturbation is taken into account by adding a "noise" term to the classical
deterministic equation as follows:

(2)
dx

dt
= f(x) + ”noise”.

and to replace the "noise" term by a stochastic one as

(3) dXt = f(Xt)dt+ σ(Xt, t)dWt,

where Wt is the standard Wiener process. This procedure is for example well discussed in
([10]).

Of course, the main problem is in this case to �nd the form of the stochastic perturba-
tion. We do not discuss this problem which is very complicated. We restrict our attention to
the selection problem which is concerned with the characterization of the set of admissible
stochastic models for a given phenomenon. By admissible we mean that the stochastic model
satis�es some known constraints like positivity of some variables, conservation law, etc. This
selection of a good candidate for a stochastic model of the phenomenon can be done in
many ways. However, in our particular setting, dealing with the stochastic extension of a
known deterministic model, this selection is related to preserving some speci�c constraints
of the phenomenon. For example, part of the Hodgkin-Huxley model describes the dynamical
behavior of concentrations which are typically variables which belongs to the interval [0, 1].
This property is independent of the particular dynamics of the variables but is related to
their intrinsic nature. The same is true for the total energy of a mechanical system. This
quantity must be preserved independently of the dynamics. We formulate the stochastic
persistence problem following our approach given in [5] in a di�erent setting:

Stochastic persistence problem : Assume that a classical ODE of the form (1) satis�es
a set of properties P. Under which conditions does a stochastic perturbation of the form (3)
satisfy also properties P ?

The previous problem lead to characterize the set of σ preserving the considered prop-
erties P. classical properties are: Invariance of a given submanifold of Rn, number of
equilibrium points, stability properties of the equilibrium points, etc.

The literature on invariance of manifolds for stochastic di�erential equations is huge and
most of the time abstract in particular for what concerns the stochastic analogue of the
Nagumo-Brezis theorem (see for example [2, 8]). This explain perhaps why these results
are not so well known in the applied community because the formulation of the conditions
are not transparent for a given concrete system. In this article, we give a direct and sim-
ple derivation of a necessary and su�cient condition on the di�usion part in order that
a submanifold globally de�ned as the preimage of a smooth function is preserved under
a stochastic perturbation. The result depends drastically on the stochastic di�erential
framework that one uses. In the Stratonovich case, the condition on the di�usion is the
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same as the one on the drift part. However, in the Itô case, which covers most of the
applications, the constraints for invariance are so strong that in many cases, one is unable to
�nd a large class of admissible stochastic models. All these problems are discussed in Section 3.

What to do if the framework for the model has to be the Itô one ? An idea is then to develop
a systematic and algorithmic invariantization method in order to restore invariance in the
Itô case. This is done in Section 4 following an idea initiated by Étoré and al [6]. In order to
illustrate our method, we apply it to an Itô version of the Kubo stochastic Hamiltonian system
and in Section 5.2 to construct a stochastic version of the Landau-Lifshitz equation. We
�nally discuss the limitations and problems posed by the invariantization method.

2. Reminder about Itô stochastic di�erential equations

In this article, we consider a parameterized di�erential equation of the form

(DE) dXt = f(t,Xt, b)dt, x ∈ Rn

where b ∈ Rk is a set of parameters, f : Rn × Rk −→ Rn is a Lipschitz continuous function
with respect to x for all b. We remind basic properties and de�nition of stochastic di�erential
equations in the sense of Itô. We refer to the book [10] for more details.

A stochastic di�erential equation is formally written (see [10],Chap.V) in di�erential form
as

(IE) dXt = f(t,Xt)dt+ σ(t,Xt)dWt,

which corresponds to the stochastic integral equation

(4) Xt = X0 +

∫ t

0
f(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs,

where the second integral is an Itô integral (see [10],Chap.III) and Wt is the classical Wiener
process (see [10],Chap.II,p.7-8).

An important tool to study solutions to stochastic di�erential equations is the multi-
dimensional Itô formula (see [10],Chap.III,Theorem 4.6) which is stated as follows :

We denote a vector of Itô processes by XT
t = (Xt,1, Xt,2, . . . , Xt,n) and we put WT

t =

(Wt,1,Wt,2, . . . ,Wt,l)to be a l-dimensional Wiener process (see [7],De�nition 5.1,p.72), dWT
t =

(dWt,1, dWt,2, . . . , dWt,l). We consider the multi-dimensional stochastic di�erential equation
de�ned by (IE). Let F be a C2(R+ × R,R)-function and Xt a solution of the stochastic
di�erential equation (IE). We have

(5) dF (t,Xt) =
∂F

∂t
dt+ (∇T

XF )dXt +
1

2
(dXT

t )(∇2
XF )dXt,

where ∇XF = ∂F/∂X is the gradient of F w.r.t. X, ∇2
XF = ∇X∇T

XF is the Hessian matrix
of F w.r.t. X, δ is the Kronecker symbol and the following rules of computation are used :
dtdt = 0, dtdWt,i = 0, dWt,idWt,j = δijdt.
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3. Stochastic invariance of submanifolds

In this section, we derive an invariance criterion for a submanifold denoted by M of
codimension 1 of Rn which correspond to the zero set of a given function F : Rn → R of class
C2, i.e.

(6) M = {x ∈ Rn \ F (x) = 0},

under the �ow of a stochastic di�erential equation in the Itô sense. This result is by itself
not new and many general results are known in particular a stochastic Naguno-Brezis
Theorem as proved by Aubin-Da Prato in [2] or A. Milian in [8]. However, most of these
results are di�cult to read for a non-specialist in the �eld of stochastic calculus. The main
interest of the following computations are precisely that our criterion can be easily derived
using basic results in stochastic calculus.

3.1. Geometric de�nition of invariance. � We consider an ordinary di�erential equa-
tion of the form

(ODE)

{
ẋt = f(t, xt),
x(0) = x0

where f : R+ × Rn −→ R is a function of class C1 and x0 ∈ Rn is the initial condition.

De�nition 3.1. � A given submanifold M ⊂ Rn is said to be invariant under the �ow of
the di�erential equation (ODE) if for all x0 ∈ M, the maximal solution xt(x0) starting in x0
when t = 0 satis�ed xt(x0) ∈M for all t ∈ R+.

We denote by TxM the tangent plane of M at x, we can write the invariance condition as
follows

(7) f(t, x) ∈ TxM, for all (t, x) ∈ R+ ×M.

As M is of codimension 1, for all x ∈M we can de�ne the normal vector N(x) to the tangent
hyperplane TxM in x, such that

TxM = {y ∈ Rd, y.N(x) = 0},

then the invariance condition can be written as

(8) N(x) · f(t, x) = 0, for all (t, x) ∈ R+ ×M.

WhenM is of the form (6), the normal vector toM at x is equal to∇F (x). Then the invariance
condition reads as

(IF) ∇F (x) · f(t, x) = 0, for all (t, x) ∈ R+ ×M.

In the stochastic case, the trajectories are continuous but nowhere di�erentiable. As a
consequence the previous geometric condition can not be used. In the following we discuss
two natural generalization of the notion of invariance in the stochastic setting.
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3.2. Strong stochastic invariance. � Let us consider a stochastic di�erential equation
of the form (IE). The stochastic character of the �ow allows us to de�ned two natural notions
of invariance.

De�nition 3.2 (Strong persistence). � A submanifoldM is invariant in the strong sense
for the stochastic system (IE) if for every initial data x0 ∈M almost surely, the corresponding
solution x(t), satis�es

P{F (x(t)) = 0, t ∈ [t0,+∞)} = 1,

i.e., the solution almost surely takes its values within the submanifold M.

A direct computation gives the following criterion for stochastic invariance:

Theorem 3.3 (Itô 's strong invariance). � Let M be a submanifold de�ned by a function
F invariant under the deterministic �ow associated to (DE), i.e.,

∇F (x) · f(t, x) = 0, for all x ∈M, t ≥ 0

The submanifold M is strongly invariant under the �ow of the stochastic system (IE), if and
only if,

∇F (x) · σ(t, x) = 0, for all x ∈M, t ≥ 0

and

(9)
∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt) = 0.

Proof. � The essential tool in this case is the Itô formula that will help us to formulate the
invariance condition. Indeed, a process xt leaves the submanifold M invariant if and only if
for all initial condition x0 ∈M a.s, the stochastic process associated to xt satis�es F (xt) = 0
for all t almost surely where it is de�ned.

The multidimensional Itô formula reads as

d[F (xt)] = ∇F (xt)dxt +
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)dxi(t)dxj(t).

So we obtain

d[F (xt] = ∇F (xt)f(t, xt)dt+∇F (xt)σ(t, xt)dWt+
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt)dt.

The gradient of F being always normal to the tangent space ofM , we have∇F (xt)·f(t, xt) = 0
since the manifold M is assumed to be invariant in the deterministic case. It remains

(10) d[F (xt] = ∇F (xt)σ(t, xt)dWt +
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt)dt.

The only contribution to the stochastic part is given by ∇F (xt)σ(t, xt) and is equal to zero
if and only if the perturbation σ satis�es the invariance condition (IF). Then the previous
expression reduces to:

(11) d[F (xt] =
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

k∑
l=1

σi,l(t, xt)σj,l(t, xt)dt.
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that gives us the third condition.

The previous Theorem indicates that unless a very speci�c form for σ and F , there is no
hope to recover invariance of a given manifold using a direct stochastic perturbation of a
deterministic equation in the Itô case.

As an example, we can specialize this result in the case of the sphere S2 which will be
important to study the invariance property of Landau-Lifshitz equation.

Corollary 3.4. � The sphere S is invariant under the �ow of the stochastic system (IE) if
and only if the stochastic perturbation is null on the sphere i.e.,

σi,i(t, x) = 0, i = 1, ..., n for all t ∈ R+ and x ∈ Sn−1.

Proof. � The proof follows from the fact that F (x) =
n∑
i=1

x2i so that condition 9 reduces to

(12)
n∑
i=1

[σi,i(t, xt)]
2 = 0, ∀(t, x) ∈ R+ × S.

This concludes the proof.

As a consequence, trying to impose the invariance of S in the Itô case "annihilates" the
perturbation that is intended to be produced by the di�usion term.

4. The stochastic invariantization method

In this section, we develop a procedure to restore invariance of manifold following a proce-
dure initiated by Etoré and al [6] in a particular case. The basic idea is that in some cases, it
is possible to project a �ow which does not leave the manifold invariant on the manifold.

4.1. First idea: projection procedure. � Consider submanifolds of codimention 1 of
Rn, that is de�ned by a homogeneous function of degree q ∈ N;F : Rn −→ R of class C2, i.e.,

M = {x ∈ Rn/F (x) = 1} and F (λx) = λqF (x), for all x ∈ Rn, λ ∈ R+.

Let us assume that the coe�cients of the system (IE) satisfy the invariance condition (IF),
i.e.,

∇F (x) · f(t, x) = ∇F (x) · σ(t, x) = 0, for all x ∈M, t ≥ 0,

where σ is a vector of Rn and Wt is a scalaire Brownian motion, and assume that

n∑
i,j

∂2F

∂xi∂xj
(xt)σi(t, xt)σj(t, xt)dt 6= 0.

Then, by Theorem (3.3) we know that M is not invariant under the �ow of (IE).

A very simple way to construct an invariant stochastic process is to project on the manifold.
In general, a projection on a manifold is di�cult to compute. In our case, it reduces simply
to consider the stochastic process

(13) yt =
xt

F (xt)
1
q

,
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called the �projected� process associated to the stochastic process xt and the function F .

Although simple, the previous method is in general not interesting. Indeed, the projected
process satis�es in general a very complicated equation.

Theorem 4.1. � Let us assume that xt is the solution of Itô equation(IE) and M is de�ned
by F of class C2 as above. The projected process yt satisi�es the equation

dyk =

[
F (x)

− 1
q fk(t, x)−

1

2q

∂F

∂xk
(x).F (x)

− 1+q
q σ2k(t, x)

]
dt

+
1

2

n∑
i,j

−1
q
xkσi(t, x)σj(t, x)

[
F (x)

− 1+q
q

∂2F

∂xi∂xj
(x)− 1 + q

q
F (x)

− 1+2q
q
∂F

∂xi
(x)

∂F

∂xj
(x)

]
dt

+
[
F (x)

− 1
q σk(t, x)

]
dWt; for each k = 1, ..., n.

We leave the proof to the reader as it follows easily from the Itô formula.

Even for a simple manifold as a sphere, the corresponding equation does not simplify.

Corollary 4.2. � Let us assume that xt is the solution of Itô equation(IE). The projected
process yt = xt

F (xt)
1
2
on the sphere Sn−1 satis�es the equation

(14)
dyk =

F (x)− 1
2 fk(t, x)−

1

2
xkF (x)

− 3
2σ2k(t, x) +

3

2
xk

n∑
i,j

σi(t, x)σj(t, x)F (x)
− 5

2xixj

 dt
+
[
F (x)−

1
2σk(t, x)

]
dWt; for each k = 1, ..., n.

We leave the proof to the reader.

The previous expression has many problems:

� The resulting stochastic di�erential is far from being simple and can not in general be
written only with respect to yt.

� The form of the deterministic part can not be seen as a perturbation of f. This induces
di�culties for the interpretation of the new equation.

In the following, we follow a di�erent strategy initiated by P.Étoré and al in [6].

4.2. The invariantization method. � We �rst introduce the notion of invariatized pro-
cess.

De�nition 4.3 (Invariantized process). � Let xt be a di�usion process de�ned by

(15) dxt = f(t, xt)dt+ σ(t, xt)dWt.

The invariantized process associated to (15) and the submanifold M de�ned by F is de�ned by

(16)


dyt = f(t, xt)dt+ σ(t, xt)dWt

xt =
yt

(F (yt))
1
q

y0 = y ∈M



8 JACKY CRESSON, YASMINA KHELOUFI & KHADRA NACHI

This terminology is justi�ed by the fact that we have

F (xt) = 1, for all t ≥ 0.

The method associating to a given process and a submanifold M its invariantized process
is called the invariantization method.

The main property of the invariantization method is that the stochastic di�erential equation
satis�ed by xt is simple in the contrary to the projection method.

Theorem 4.4 (Invariantization). � Assume that F is homogeneous of degree q and that
F (yt) is a non random process, i.e. that there exists a function h(t) such that

(17) dF (yt) = h(t)dt.

Let us denote by H(t) the function de�ned by

(18) H(t) = 1 +

∫ t

0
h(s) ds.

Let us assume that H(t) > 0 for t > 0, then the invariantized stochastic process associated to
yt and F satis�es the stochastic di�erential equation

(19) dxt =

[
−1

q

Ḣ(t)

H(t)
xt +

1

(H(t))
1
q

f(t, xt)

]
dt+

1

(H(t))
1
q

σ(t, xt)dWt

where Ḣ denotes the derivative of H with respect to t.

Proof. � This is a simple computation. As F (yt) = H(t), the stochastic process xt =

yt/H(t)1/q satis�es

(20) dxt = −
1

q

Ḣ(t)

H(t)1/q+1
yt +

1

H(t)1/q
dyt.

Replacing yt by xtH(t)1/q and dyt by its expression, we obtain

dxt =

[
−1
q
Ḣ(t)
H(t)xt +

1

(H(t))
1
q
f(t, xt)

]
dt

+ 1

(H(t))
1
q
σ(t, xt)dWt.

This concludes the proof.

5. Applications: an Itô Kubo oscillator and a stochastic Landau-Lifshitz
equation

5.1. Example: Itô version of the Kubo oscillator model. � Let us consider the Kubo
oscillator (see for example [9]) in the Itô case, which can be written as

(21) dXt = JaXtdt+ JσXtdWt,

where X =

(
X1

X2

)
∈ R2, a, σ ∈ R,Wt is a 1-dimensional Brownian motion and

Jk =

(
0 −k
k 0

)
, ∀k ∈ R.
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The Stratonovich version of the Kubo oscillator has any circle X2
1 + X2

2 = r2, ∀r ∈ R+,
invariant under the �ow. However, the circles are not invariant under the �ow of the Itô version
of the Kubo oscillator. Indeed, we have using the Itô formula with F (X1, X2) = X2

1 + X2
2 ,

that

(22) dF ((X1, X2) = σ2(X2
1 +X2

2 )dt.

Assuming that F (X1, X2) = r2, r 6= 0 is invariant under the �ow gives

(23) dF ((X1, X2) = σ2r2dt.

As a consequence, the condition dF = 0 is satis�ed if and only if σ = 0. This means that in
the Itô case, invariance can not be preserved while the �ow is stochastic (i.e., σ 6= 0).

If we apply the last transformation such that Xt =
Yt
|Yt| we �nd that Xt is the solution of

the stochastic system

(24) dXt = J̃a,σ,t Xtdt+
1√

σ2t+ 1
JσXtdWt,

where

J̃a,σ,t =

(
− σ2

2(σ2t+1)
− a√

σ2t+1
a√

σ2t+1
− σ2

2(σ2t+1)

)
,

which preserve the invariance of S under the �ow of the deterministic equation

(25) dXt = JaXtdt, for all a ∈ R.

5.2. An Itô stochastic Landau-Lifshitz equations. � In this Section, we derive a
stochastic Landau-Lifshitz equation in the Itô setting. We �rst remind the construction of
the classical Landau-Lifshitz equation and then its main properties. We then review classical
stochastic approach used by di�erent authors and the di�culties associated with these models.

5.2.1. The Landau-Lifshitz equation. � The Landau-Lifshitz equation is a generalization of
the classical Larmor equation. The Larmor equation is conservative. However, dissipative
processes take place within dynamic magnetization processes. The microscopic nature
of this dissipation is still not clear and is currently the focus of considerable research [1,
3]. The approach followed by Landau and Lifshitz consists of introducing dissipation in a
phenomenological way. They introduce an additional torque term that pushes magnetization
in the direction of the e�ective �eld. The Landau-Lifshitz equation becomes

(LLg)
dµ

dt
= −µ× b− αµ× (µ× b),

where µ ∈ R3 is the single magnetic moment, × is the cross product in R3, b is the e�ective
�eld and α > 0 is the damping e�ects.

As for the Larmor equation, this equation possess many particular properties which can be
used to derive a stochastic analogue. We review some of them in the next Section.

5.2.2. Properties of the Landau-Lifshitz equation. � In this Section, we give a self-
contained presentation of some classical features of the LL equation. Readers which are
familiar with the LL equation can switch this Section.



10 JACKY CRESSON, YASMINA KHELOUFI & KHADRA NACHI

5.2.2.1. Invariance. � The following result is fundamental is all the stochastic generalization
of the LL equation.

Lemma 5.1. � Let µ(0) ∈ S2, then the solution µt satis�es for all t ∈ R, ‖ µt ‖= 1, i.e.
the sphere S2 is invariant under the �ow of the LL equation.

We give the proof for the convenience of the reader.

Proof. � Let µt be a solution of the LL equation. We have

(26)
d

dt
[µt.µt] = 2µt.

dµt
dt
,

= µt. [−µt × b− αµt × (µt × b)] .

By de�nition of the cross product, the vectors µt × b and αµt × (µt × b) are orthogonal to µt
so that

(27)
d

dt
[µt.µt] = 0.

As a consequence, using the fact that µ0 ∈ S2, we deduce that

(28) ‖ µt ‖=‖ µ0 ‖= 1,

which concludes the proof.

As a consequence, a solution starting on the sphere S2 will remains always on it. The
sphere being a two dimensional compact manifold, we can use classical result to deduce the
asymptotic behavior of the solutions. But �rst, let us compute the equilibrium points.

5.2.2.2. Equilibrium points. � The equilibrium points of the LL equation are easily obtained.

Lemma 5.2. � The LL equation possesses as equilibrium points b/ ‖ b ‖ and −b/ ‖ b ‖.

We give the proof for the convenience of the reader.

Proof. � An equilibrium point µ ∈ R3 satis�es

(29) −µ× b− αµ× (µ× b) = 0,

which gives

(30) −µ× b = αµ× (µ× b).

The vector µ must be orthogonal to µ× b and at the same time equal to −µ× b up to a factor
α > 0. As µ0 ∈ S2, we have µ 6= 0 and the only solution is

(31) µ× b = 0.

We then obtain µ = λb, with λ ∈ R. By Lemma 5.1, we must have µ ∈ S2 so that λ = ±1/ ‖
b ‖. This concludes the proof.

We see that the equilibrium point of the LL equation coincide with those of the Larmor
equation.

The stability of the previous equilibrium point can be easily studied using the Lyapunov
theory.
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5.2.3. Toward a stochastic Landau-Lifshitz equation. � In this Section, we discuss the usual
way of deriving a stochastic analogue of the Landau-Lifshitz equation by considering an ex-
ternal perturbation of the e�ective magnetic �eld. We focus on the Stratonovich and the Itô
interpretation and we explain the strategy used in Étoré and al. [6] to bypass the obstruction
that the Itô version does not preserve the sphere S2 using the invariantization method.

5.2.3.1. Classical approach to the stochastic Landau-Lifshitz equation. � The main approach
to deal with the stochastic behavior of the e�ective magnetic �eld is to assume that the e�ective
�eld b is subject to a stochastic perturbation b+ ε”noise”. Due to the linearity with respect
to the parameter b, we obtain an equation of the form

(32) dµt = [−µt × b− αµt × (µt × b)]dt+ ε[−µt × ”noise”− αµt × µt × ”noise”].

Interpreting the previous equation in the Itô formalism of stochastic di�erential equation leads
to the following stochastic model:

(ELL) dµt = [−µt × b− αµt × (µt × b)]dt+ ε[−µt × dWt − αµt × µt × dWt],

where the term σ(t, x) = −x× .− αx× (x× .) can be written as

(33) σ(t, x) =

 α(x23 + x22) x3 − αx1x2 −x2 − αx3x1
−x3 − αx1x2 α(x23 + x21) x1 − αx3x2
x2 − αx1x3 −x1 − αx3x2 α(x22 + x21)

 .

Most authors use the Stratonovich formalism in order to give a sense to the previous
equation. The main reason is that in this case, the invariance of S2 is ensured. However, as
pointed out by Étoré and al. in [6], the Stratonovich version of the Landau-Lifshitz equation
leads to several di�culties, such as the fact that the stability of the equilibrium points of the
deterministic LL equation is lost.

The previous point has motivated the work [6] in which the authors discuss the Itô case.
However, the Itô approach lead to other di�culties. Details are given in the next Section.

5.2.3.2. Stochastic Itô perturbation of the Landau-Lifshitz equation. � The Itô version of
the stochastic Landau-Lifchitz equation possesses many drawback and the main one follows
directly from the invariance criterion that we derive in Corollary 3.4. Indeed, we have:

Lemma 5.3. � The sphere S2 is not invariant under the �ow of the Itô version of equation
(ELL).

Proof. � By Corollary 3.4, the di�usion term must be zero on the sphere S2 and all t ∈ R.
The condition on σ on the diagonal terms implies that α = 0, i.e. that we can not have a
dissipative term and we recover the Larmor equation in contradiction with our assumption
that α 6= 0. This concludes the proof.

The previous result excludes the use of the Itô formalism for a direct stochastic general-
ization of the Landau-Lifshitz equation. However, we can use the invariantization method
exposed in Section 4 in order to obtain an Itô model, related to the previous one, but which
satis�es the invariance of the sphere S2.
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5.2.3.3. Invariantization of the Landau-Lifshitz stochastic Itô model. � Let us consider
the stochastic LL equation (ELL). The sphere S2 is de�ned by the homogeneous function

F (x1, x2, x3) =
3∑
i=1

x2i of degree 2. Let us consider the invariantized process de�ned by

(34)

{
dyt = [−µt × b− αµt × (µt × b)]dt+ ε[−µt × dWt − αµt × µt × dWt],

µt =
yt
‖ yt ‖

.

A simple computation gives (see also ([6], Proposition 1)):

Lemma 5.4. � The process F (yt) is random. Precisely, we have dF (yt) = 2ε2(α2 + 1)dt.

As a consequence, Theorem 4.4 applies and we have:

Lemma 5.5. � The invariantized stochastic di�erential equation associated to F (x) =
3∑
i=1

x2i

and the Itô stochastic di�erential equation (ELL) is given by
(35)

dxt =

[
−1

2

2ε2(α2 + 1)

2ε2(α2 + 1)t+ 1
xt +

1√
2ε2(α2 + 1)t+ 1

f(t, xt)

]
dt+

1√
2ε2(α2 + 1)t+ 1

σ(t, xt)dWt,

Proof. � This is a simple computation.

We recover the Étoré and al. version of the Stochastic Landau-Lifshitz equation
proposed in [6].

5.2.4. About equilibrium points. � A natural question about the previous invariantized
model is to up to which extent it answers to the reasonable constraints one waits for a
stochastic version of the Landau-Lifshitz equation. For example, if one is interested in
preserving equilibrium points of the initial system, the model is not satisfying. Indeed, we
have:

Lemma 5.6. � The points µ = ±b/ ‖ b ‖ are not equilibrium points of equation (35).

Proof. � For µ = ±b/ ‖ b ‖, we have for all v ∈ R3 that

(36) σ(t,±b/ ‖ b ‖).v = − b

‖ b ‖
× v −±α b

‖ b ‖
× (± b

‖ b ‖
× v).

The second term is always zero but the �rst one is only zero when v is co-linear with b.
However, as v takes arbitrary values, we can not ensure this equality. As a consequence, the
initial equilibrium points are destroyed under the stochastic perturbation.

It must be noted that the previous problem can be easily solved by modifying a little bit
the modeling of the stochastic behavior of the e�ective magnetic �eld. Indeed, let us consider
instead of dWt the following vector

(37) bdWt,

where Wt is a one dimensional Brownian motion. This assumptions is equivalent to say that
we consider only stochastic behavior in the direction of the initial �eld b. This is of course
very particular, but in this case the new model preserves the equilibrium points of the initial
system:
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Lemma 5.7. � Let us consider the modi�ed Étoré and al. stochastic Landau-Lifshitz equa-
tion de�ned by
(38)

dxt =

[
−1

2

2ε2(α2 + 1)

2ε2(α2 + 1)t+ 1
xt +

1√
2ε2(α2 + 1)t+ 1

f(t, xt)

]
dt+

1√
2ε2(α2 + 1)t+ 1

σ(t, xt). [bdWt] ,

where σ is de�ned by equation (33) and Wt is a one dimensional Brownian motion. This
equation possesses as equilibrium points ±b/ ‖ b ‖.

Proof. � This follows easily from the previous proof only saying that v is always co-linear to
b.

6. The invariantization method as a stochastic perturbation

Although the invariantization method leads to a simpler equation than the projection pro-
cedure, it is not very easy to understand the procedure as a stochastic perturbation of the
deterministic model. In this Section, assuming that the di�usion is governed by a small pa-
rameter 0 < ε << 1, we write the invariantized equation as a perturbation.

6.1. Small perturbation and invariantization. � In the following, we use the notations
of Section 4. For σ = 0, the invariantized process reduces to the deterministic equation. Let
us assume that σ is of the form

(39) σ(x) = εσ0(x), 0 < ε << 1,

where σ0 and f satisfy the invariance conditions.

Using the Itô formula, we obtain

(40) dF (yt) = ∇F (yt).dyt +
1

2
∂2F∂y2dyt.dyt.

As dyt.dyt = ε2σ20(xt)dt, and F and σ0 satisfy the invariance relation, we �nally obtain

(41) dF (yt) = ε2
1

2

∂2F

∂y2
σ20(xt)dt.

Denoting by γ(t) the function

(42) γ(t) =
1

2

∫ t

0

∂2F

∂y2
σ20(xt)dt,

we then obtain using Theorem 4.4 a function hε of the form

(43) hε(t) = ε2γ(t),

and a function Hε of the form

(44) Hε(t) = 1 + ε2δ(t).

As a consequence, we can develop the drift part with respect to ε and we obtain for the
invariantized process an equation of the form

(45) dxt =

(
f +

1

q
(ε2)1/q ?+ . . .

)
dt+

(
εσ0 +

1

q
(ε2)1/q?̃+ . . .

)
dWt.

We do not search for explicit expression of the perturbation terms ? and ?̃.
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6.2. Limitation of the method. � From a modeling point of view, we believe that a
stochastic model of a deterministic equation must satisfy the following constraints:

� First, the drift part must be relied early to the deterministic equation and moreover must
be understandable as a perturbation of it, i.e. of the form

(46) f(t, x(t)) + P (t, x(t))

where P (t, x(t)) is the perturbation term.
� Second, the new equation must be easy to interpret and must keep a sense with respect
to the �eld of applications.

What can be said about the invariantization method ?

The �rst modeling constraint is then satis�ed by our invariantization method. However,
the perturbation term obtained in equation (45) is very complicated and the role of each term
in the dynamics is not easily recovered.

7. Conclusion and perspectives

For Itô stochastic perturbation of ordinary di�erential equations, we have derived a general
method allowing to preserve invariance of a given codimension one submanifold under the
stochastic �ow. This method has however some limitations and lead to di�culties in the
interpretation of the resulting model from a perturbative point of view. A natural question
is then to �nd other stochastization procedure which still use the Itô formalism for stochastic
di�erential equations but for which invariance can be ensured under reasonable constraints. We
refer to [4] where this problem is discussed in general in the framework of random ordinary
di�erential equations and used to construct a new model of a stochastic Landau-Lifshitz
equation.
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