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In general, adding a stochastic perturbation to a dierential equation possessing an invariant manifold destroys the invariance as far as the Itô formalism is used. In this article, we propose an invariantization method for perturbations in the Itô case which can be used to restore invariance. We then apply our results to develop a stochastic version of the Landau-Lifshitz equation. We discuss in particular previous results obtained by Étoré and al. in [6].

Introduction

We consider a deterministic ordinary dierential equation of the form (1)

dx dt = f (x), x ∈ R n , n ∈ N * .
A stochastic perturbation is taken into account by adding a "noise" term to the classical deterministic equation as follows:

(2)

dx dt = f (x) + "noise".
and to replace the "noise" term by a stochastic one as (3)

dX t = f (X t )dt + σ(X t , t)dW t ,
where W t is the standard Wiener process. This procedure is for example well discussed in ([10]).

Of course, the main problem is in this case to nd the form of the stochastic perturbation. We do not discuss this problem which is very complicated. We restrict our attention to the selection problem which is concerned with the characterization of the set of admissible stochastic models for a given phenomenon. By admissible we mean that the stochastic model satises some known constraints like positivity of some variables, conservation law, etc. This selection of a good candidate for a stochastic model of the phenomenon can be done in many ways. However, in our particular setting, dealing with the stochastic extension of a known deterministic model, this selection is related to preserving some specic constraints of the phenomenon. For example, part of the Hodgkin-Huxley model describes the dynamical behavior of concentrations which are typically variables which belongs to the interval [0, 1]. This property is independent of the particular dynamics of the variables but is related to their intrinsic nature. The same is true for the total energy of a mechanical system. This quantity must be preserved independently of the dynamics. We formulate the stochastic persistence problem following our approach given in [5] in a dierent setting: Stochastic persistence problem : Assume that a classical ODE of the form (1) satises a set of properties P. Under which conditions does a stochastic perturbation of the form (3) satisfy also properties P ?

The previous problem lead to characterize the set of σ preserving the considered properties P. classical properties are: Invariance of a given submanifold of R n , number of equilibrium points, stability properties of the equilibrium points, etc.

The literature on invariance of manifolds for stochastic dierential equations is huge and most of the time abstract in particular for what concerns the stochastic analogue of the Nagumo-Brezis theorem (see for example [2,8]). This explain perhaps why these results are not so well known in the applied community because the formulation of the conditions are not transparent for a given concrete system. In this article, we give a direct and simple derivation of a necessary and sucient condition on the diusion part in order that a submanifold globally dened as the preimage of a smooth function is preserved under a stochastic perturbation. The result depends drastically on the stochastic dierential framework that one uses. In the Stratonovich case, the condition on the diusion is the same as the one on the drift part. However, in the Itô case, which covers most of the applications, the constraints for invariance are so strong that in many cases, one is unable to nd a large class of admissible stochastic models. All these problems are discussed in Section 3.

What to do if the framework for the model has to be the Itô one ? An idea is then to develop a systematic and algorithmic invariantization method in order to restore invariance in the Itô case. This is done in Section 4 following an idea initiated by Étoré and al [6]. In order to illustrate our method, we apply it to an Itô version of the Kubo stochastic Hamiltonian system and in Section 5.2 to construct a stochastic version of the Landau-Lifshitz equation. We nally discuss the limitations and problems posed by the invariantization method.

Reminder about Itô stochastic dierential equations

In this article, we consider a parameterized dierential equation of the form (DE)

dX t = f (t, X t , b)dt, x ∈ R n where b ∈ R k is a set of parameters, f : R n × R k -→ R n
is a Lipschitz continuous function with respect to x for all b. We remind basic properties and denition of stochastic dierential equations in the sense of Itô. We refer to the book [10] for more details.

A stochastic dierential equation is formally written (see [10],Chap.V) in dierential form as (IE)

dX t = f (t, X t )dt + σ(t, X t )dW t ,
which corresponds to the stochastic integral equation (4)

X t = X 0 + t 0 f (s, X s ) ds + t 0 σ(s, X s ) dW s ,
where the second integral is an Itô integral (see [10],Chap.III) and W t is the classical Wiener process (see [10],Chap.II,.

An important tool to study solutions to stochastic dierential equations is the multidimensional Itô formula (see [10],Chap.III,Theorem 4.6) which is stated as follows :

We denote a vector of Itô processes by X T t = (X t,1 , X t,2 , . . . , X t,n ) and we put W T t = (W t,1 , W t,2 , . . . , W t,l )to be a l-dimensional Wiener process (see [7],Denition 5.1,p.72), dW T t = (dW t,1 , dW t,2 , . . . , dW t,l ). We consider the multi-dimensional stochastic dierential equation dened by (IE). Let F be a C 2 (R + × R, R)-function and X t a solution of the stochastic dierential equation (IE). We have ( 5)

dF (t, X t ) = ∂F ∂t dt + (∇ T X F )dX t + 1 2 (dX T t )(∇ 2 X F )dX t ,
where

∇ X F = ∂F/∂X is the gradient of F w.r.t. X, ∇ 2 X F = ∇ X ∇ T
X F is the Hessian matrix of F w.r.t. X, δ is the Kronecker symbol and the following rules of computation are used : dtdt = 0, dtdW t,i = 0, dW t,i dW t,j = δ ij dt.

Stochastic invariance of submanifolds

In this section, we derive an invariance criterion for a submanifold denoted by M of codimension 1 of R n which correspond to the zero set of a given function F : R n → R of class C 2 , i.e. ( 6)

M = {x ∈ R n \ F (x) = 0},
under the ow of a stochastic dierential equation in the Itô sense. This result is by itself not new and many general results are known in particular a stochastic Naguno-Brezis Theorem as proved by Aubin-Da Prato in [2] or A. Milian in [8]. However, most of these results are dicult to read for a non-specialist in the eld of stochastic calculus. The main interest of the following computations are precisely that our criterion can be easily derived using basic results in stochastic calculus.

3.1. Geometric denition of invariance. We consider an ordinary dierential equation of the form (ODE)

ẋt = f (t, x t ), x(0) = x 0 where f : R + × R n -→ R is a function of class C 1 and x 0 ∈ R n is the initial condition.
Denition 3.1. A given submanifold M ⊂ R n is said to be invariant under the ow of the dierential equation (ODE) if for all x 0 ∈ M, the maximal solution x t (x 0 ) starting in x 0 when t = 0 satised x t (x 0 ) ∈ M for all t ∈ R + .

We denote by T x M the tangent plane of M at x, we can write the invariance condition as follows (7) f (t, x) ∈ T x M, for all (t, x) ∈ R + × M. As M is of codimension 1, for all x ∈ M we can dene the normal vector N (x) to the tangent hyperplane T x M in x, such that

T x M = {y ∈ R d , y.N (x) = 0},
then the invariance condition can be written as ( 8)

N (x) • f (t, x) = 0, for all (t, x) ∈ R + × M. When M is of the form (6), the normal vector to M at x is equal to ∇F (x). Then the invariance condition reads as (IF) ∇F (x) • f (t, x) = 0, for all (t, x) ∈ R + × M.
In the stochastic case, the trajectories are continuous but nowhere dierentiable. As a consequence the previous geometric condition can not be used. In the following we discuss two natural generalization of the notion of invariance in the stochastic setting.

3.2. Strong stochastic invariance. Let us consider a stochastic dierential equation of the form (IE). The stochastic character of the ow allows us to dened two natural notions of invariance. Denition 3.2 (Strong persistence). A submanifold M is invariant in the strong sense for the stochastic system (IE) if for every initial data x 0 ∈ M almost surely, the corresponding solution x(t), satises

P{F (x(t)) = 0, t ∈ [t 0 , +∞)} = 1,
i.e., the solution almost surely takes its values within the submanifold M.

A direct computation gives the following criterion for stochastic invariance: Theorem 3.3 (Itô 's strong invariance). Let M be a submanifold dened by a function F invariant under the deterministic ow associated to (DE), i.e.,

∇F (x) • f (t, x) = 0, for all x ∈ M, t ≥ 0
The submanifold M is strongly invariant under the ow of the stochastic system (IE), if and

only if, ∇F (x) • σ(t, x) = 0, for all x ∈ M, t ≥ 0 and (9) i,j ∂ 2 F ∂x i ∂x j (x t ) l k=1 σ i,k (t, x t )σ j,k (t, x t ) = 0.
Proof. The essential tool in this case is the Itô formula that will help us to formulate the invariance condition. Indeed, a process x t leaves the submanifold M invariant if and only if for all initial condition x 0 ∈ M a.s, the stochastic process associated to x t satises F (x t ) = 0 for all t almost surely where it is dened.

The multidimensional Itô formula reads as

d[F (x t )] = ∇F (x t )dx t + 1 2 i,j ∂ 2 F ∂x i ∂x j (x t )dx i (t)dx j (t).
So we obtain

d[F (x t ] = ∇F (x t )f (t, x t )dt + ∇F (x t )σ(t, x t )dW t + 1 2 i,j ∂ 2 F ∂x i ∂x j (x t ) l k=1 σ i,k (t, x t )σ j,k (t, x t )dt.
The gradient of F being always normal to the tangent space of M , we have

∇F (x t )•f (t, x t ) = 0
since the manifold M is assumed to be invariant in the deterministic case. It remains (10

) d[F (x t ] = ∇F (x t )σ(t, x t )dW t + 1 2 i,j ∂ 2 F ∂x i ∂x j (x t ) l k=1 σ i,k (t, x t )σ j,k (t, x t )dt.
The only contribution to the stochastic part is given by ∇F (x t )σ(t, x t ) and is equal to zero if and only if the perturbation σ satises the invariance condition (IF). Then the previous expression reduces to: (11)

d[F (x t ] = 1 2 i,j ∂ 2 F ∂x i ∂x j (x t ) k l=1 σ i,l (t, x t )σ j,l (t, x t )dt.
that gives us the third condition.

The previous Theorem indicates that unless a very specic form for σ and F , there is no hope to recover invariance of a given manifold using a direct stochastic perturbation of a deterministic equation in the Itô case.

As an example, we can specialize this result in the case of the sphere S 2 which will be important to study the invariance property of Landau-Lifshitz equation. Corollary 3.4. The sphere S is invariant under the ow of the stochastic system (IE) if and only if the stochastic perturbation is null on the sphere i.e., σ i,i (t, x) = 0, i = 1, ..., n for all t ∈ R + and x ∈ S n-1 .

Proof. The proof follows from the fact that

F (x) = n i=1
x 2 i so that condition 9 reduces to (12

) n i=1 [σ i,i (t, x t )] 2 = 0, ∀(t, x) ∈ R + × S.
This concludes the proof.

As a consequence, trying to impose the invariance of S in the Itô case "annihilates" the perturbation that is intended to be produced by the diusion term.

The stochastic invariantization method

In this section, we develop a procedure to restore invariance of manifold following a procedure initiated by Etoré and al [6] in a particular case. The basic idea is that in some cases, it is possible to project a ow which does not leave the manifold invariant on the manifold. 4.1. First idea: projection procedure. Consider submanifolds of codimention 1 of R n , that is dened by a homogeneous function of degree q ∈ N;

F : R n -→ R of class C 2 , i.e., M = {x ∈ R n /F (x) = 1} and F (λx) = λ q F (x), for all x ∈ R n , λ ∈ R + .
Let us assume that the coecients of the system (IE) satisfy the invariance condition (IF), i.e., ∇F (x) • f (t, x) = ∇F (x) • σ(t, x) = 0, for all x ∈ M, t ≥ 0, where σ is a vector of R n and W t is a scalaire Brownian motion, and assume that n i,j

∂ 2 F ∂x i ∂x j (x t )σ i (t, x t )σ j (t, x t )dt = 0.
Then, by Theorem (3.3) we know that M is not invariant under the ow of (IE).

A very simple way to construct an invariant stochastic process is to project on the manifold. In general, a projection on a manifold is dicult to compute. In our case, it reduces simply to consider the stochastic process (13)

y t = x t F (x t ) 1 q
, called the projected process associated to the stochastic process x t and the function F . Although simple, the previous method is in general not interesting. Indeed, the projected process satises in general a very complicated equation.

Theorem 4.1. Let us assume that x t is the solution of Itô equation(IE) and M is dened by F of class C 2 as above. The projected process y t satisies the equation

dy k = F (x) -1 q f k (t, x) - 1 2q ∂F ∂x k (x).F (x) -1+q q σ 2 k (t, x) dt + 1 2 n i,j -1 q x k σ i (t, x)σ j (t, x) F (x) -1+q q ∂ 2 F ∂x i ∂x j (x) - 1 + q q F (x) -1+2q q ∂F ∂x i (x) ∂F ∂x j (x) dt + F (x) -1 q σ k (t, x) dW t ;
for each k = 1, ..., n.

We leave the proof to the reader as it follows easily from the Itô formula.

Even for a simple manifold as a sphere, the corresponding equation does not simplify.

Corollary 4.2. Let us assume that x t is the solution of Itô equation(IE). The projected

process y t = xt F (xt) 1 2
on the sphere S n-1 satises the equation ( 14)

dy k =   F (x) -1 2 f k (t, x) - 1 2 x k F (x) -3 2 σ 2 k (t, x) + 3 2 x k n i,j σ i (t, x)σ j (t, x)F (x) -5 2 x i x j   dt + F (x) -1 2 σ k (t, x) dW t ;
for each k = 1, ..., n.

We leave the proof to the reader.

The previous expression has many problems:

The resulting stochastic dierential is far from being simple and can not in general be written only with respect to y t .

The form of the deterministic part can not be seen as a perturbation of f. This induces diculties for the interpretation of the new equation. In the following, we follow a dierent strategy initiated by P.Étoré and al in [6].

4.2. The invariantization method. We rst introduce the notion of invariatized process.

Denition 4.3 (Invariantized process). Let x t be a diusion process dened by ( 15)

dx t = f (t, x t )dt + σ(t, x t )dW t .
The invariantized process associated to (15) and the submanifold M dened by F is dened by ( 16)

     dy t = f (t, x t )dt + σ(t, x t )dW t x t = yt (F (yt)) 1 q y 0 = y ∈ M
This terminology is justied by the fact that we have F (x t ) = 1, for all t ≥ 0. The method associating to a given process and a submanifold M its invariantized process is called the invariantization method.

The main property of the invariantization method is that the stochastic dierential equation satised by x t is simple in the contrary to the projection method.

Theorem 4.4 (Invariantization). Assume that F is homogeneous of degree q and that F (y t ) is a non random process, i.e. that there exists a function h(t) such that ( 17)

dF (y t ) = h(t)dt.
Let us denote by H(t) the function dened by ( 18)

H(t) = 1 + t 0 h(s) ds.
Let us assume that H(t) > 0 for t > 0, then the invariantized stochastic process associated to y t and F satises the stochastic dierential equation ( 19)

dx t = - 1 q Ḣ(t) H(t) x t + 1 (H(t)) 1 q f (t, x t ) dt + 1 (H(t)) 1 q σ(t, x t )dW t
where Ḣ denotes the derivative of H with respect to t.

Proof. This is a simple computation. As F (y t ) = H(t), the stochastic process x t = y t /H(t) 1/q satises (20)

dx t = - 1 q Ḣ(t) H(t) 1/q+1 y t + 1 H(t) 1/q dy t .
Replacing y t by x t H(t) 1/q and dy t by its expression, we obtain

dx t = -1 q Ḣ(t) H(t) x t + 1 (H(t)) 1 q f (t, x t ) dt + 1 (H(t)) 1 q σ(t, x t )dW t .
This concludes the proof. ) in the Itô case, which can be written as ( 21)

dX t = J a X t dt + J σ X t dW t , where X = X 1 X 2 ∈ R 2 , a, σ ∈ R, W t is a 1-dimensional Brownian motion and J k = 0 -k k 0 , ∀k ∈ R.

The Stratonovich version of the Kubo oscillator has any circle

X 2 1 + X 2 2 = r 2 , ∀r ∈ R + ,
invariant under the ow. However, the circles are not invariant under the ow of the Itô version of the Kubo oscillator. Indeed, we have using the Itô formula with F

(X 1 , X 2 ) = X 2 1 + X 2 2 , that (22) dF ((X 1 , X 2 ) = σ 2 (X 2 1 + X 2 2 )dt.
Assuming that F (X 1 , X 2 ) = r 2 , r = 0 is invariant under the ow gives ( 23)

dF ((X 1 , X 2 ) = σ 2 r 2 dt.
As a consequence, the condition dF = 0 is satised if and only if σ = 0. This means that in the Itô case, invariance can not be preserved while the ow is stochastic (i.e., σ = 0).

If we apply the last transformation such that X t = Yt |Yt| we nd that X t is the solution of the stochastic system ( 24)

dX t = Ja,σ,t X t dt + 1 √ σ 2 t + 1 J σ X t dW t ,
where

Ja,σ,t = -σ 2 2(σ 2 t+1) -a √ σ 2 t+1 a √ σ 2 t+1 -σ 2 2(σ 2 t+1)
, which preserve the invariance of S under the ow of the deterministic equation ( 25) dX t = J a X t dt, for all a ∈ R. 5.2. An Itô stochastic Landau-Lifshitz equations. In this Section, we derive a stochastic Landau-Lifshitz equation in the Itô setting. We rst remind the construction of the classical Landau-Lifshitz equation and then its main properties. We then review classical stochastic approach used by dierent authors and the diculties associated with these models. 5.2.1. The Landau-Lifshitz equation. The Landau-Lifshitz equation is a generalization of the classical Larmor equation. The Larmor equation is conservative. However, dissipative processes take place within dynamic magnetization processes. The microscopic nature of this dissipation is still not clear and is currently the focus of considerable research [1,3]. The approach followed by Landau and Lifshitz consists of introducing dissipation in a phenomenological way. They introduce an additional torque term that pushes magnetization in the direction of the eective eld. The Landau-Lifshitz equation becomes (LLg)

dµ dt = -µ × b -αµ × (µ × b),
where µ ∈ R 3 is the single magnetic moment, × is the cross product in R 3 , b is the eective eld and α > 0 is the damping eects.

As for the Larmor equation, this equation possess many particular properties which can be used to derive a stochastic analogue. We review some of them in the next Section. 5.2.2. Properties of the Landau-Lifshitz equation. In this Section, we give a selfcontained presentation of some classical features of the LL equation. Readers which are familiar with the LL equation can switch this Section. 5.2.3. Toward a stochastic Landau-Lifshitz equation. In this Section, we discuss the usual way of deriving a stochastic analogue of the Landau-Lifshitz equation by considering an external perturbation of the eective magnetic eld. We focus on the Stratonovich and the Itô interpretation and we explain the strategy used in Étoré and al. [6] to bypass the obstruction that the Itô version does not preserve the sphere S 2 using the invariantization method. 5.2.3.1. Classical approach to the stochastic Landau-Lifshitz equation. The main approach to deal with the stochastic behavior of the eective magnetic eld is to assume that the eective eld b is subject to a stochastic perturbation b + "noise". Due to the linearity with respect to the parameter b, we obtain an equation of the form (32

) dµ t = [-µ t × b -αµ t × (µ t × b)]dt + ε[-µ t × "noise" -αµ t × µ t × "noise"].
Interpreting the previous equation in the Itô formalism of stochastic dierential equation leads to the following stochastic model: (ELL)

dµ t = [-µ t × b -αµ t × (µ t × b)]dt + ε[-µ t × dW t -αµ t × µ t × dW t ],
where the term σ(t, x) = -x × . -αx × (x × .) can be written as ( 33)

σ(t, x) =   α(x 2 3 + x 2 2 ) x 3 -αx 1 x 2 -x 2 -αx 3 x 1 -x 3 -αx 1 x 2 α(x 2 3 + x 2 1 ) x 1 -αx 3 x 2 x 2 -αx 1 x 3 -x 1 -αx 3 x 2 α(x 2 2 + x 2 1 )   .
Most authors use the Stratonovich formalism in order to give a sense to the previous equation. The main reason is that in this case, the invariance of S 2 is ensured. However, as pointed out by Étoré and al. in [6], the Stratonovich version of the Landau-Lifshitz equation leads to several diculties, such as the fact that the stability of the equilibrium points of the deterministic LL equation is lost.

The previous point has motivated the work [6] in which the authors discuss the Itô case. However, the Itô approach lead to other diculties. Details are given in the next Section. 5.2.3.2. Stochastic Itô perturbation of the Landau-Lifshitz equation. The Itô version of the stochastic Landau-Lifchitz equation possesses many drawback and the main one follows directly from the invariance criterion that we derive in Corollary 3.4. Indeed, we have: Lemma 5.3. The sphere S 2 is not invariant under the ow of the Itô version of equation (ELL).

Proof. By Corollary 3.4, the diusion term must be zero on the sphere S 2 and all t ∈ R. The condition on σ on the diagonal terms implies that α = 0, i.e. that we can not have a dissipative term and we recover the Larmor equation in contradiction with our assumption that α = 0. This concludes the proof.

The previous result excludes the use of the Itô formalism for a direct stochastic generalization of the Landau-Lifshitz equation. However, we can use the invariantization method exposed in Section 4 in order to obtain an Itô model, related to the previous one, but which satises the invariance of the sphere S 2 . 5.2.3.3. Invariantization of the Landau-Lifshitz stochastic Itô model. Let us consider the stochastic LL equation (ELL). The sphere S 2 is dened by the homogeneous function

F (x 1 , x 2 , x 3 ) = 3 i=1
x 2 i of degree 2. Let us consider the invariantized process dened by ( 34)

dy t = [-µ t × b -αµ t × (µ t × b)]dt + ε[-µ t × dW t -αµ t × µ t × dW t ], µ t = y t y t .
A simple computation gives (see also ([6], Proposition 1)):

Lemma 5.4. The process F (y t ) is random. Precisely, we have dF (y t ) = 2 2 (α 2 + 1)dt.

As a consequence, Theorem 4.4 applies and we have:

Lemma 5.5. The invariantized stochastic dierential equation associated to

F (x) = 3 i=1
x 2 i and the Itô stochastic dierential equation (ELL) is given by ( 35)

dx t = - 1 2 2 2 (α 2 + 1) 2 2 (α 2 + 1)t + 1 x t + 1 2 2 (α 2 + 1)t + 1 f (t, x t ) dt+ 1 2 2 (α 2 + 1)t + 1 σ(t, x t )dW t ,
Proof. This is a simple computation. We recover the Étoré and al. version of the Stochastic Landau-Lifshitz equation proposed in [6]. 5.2.4. About equilibrium points. A natural question about the previous invariantized model is to up to which extent it answers to the reasonable constraints one waits for a stochastic version of the Landau-Lifshitz equation. For example, if one is interested in preserving equilibrium points of the initial system, the model is not satisfying. Indeed, we have:

Lemma 5.6. The points µ = ±b/ b are not equilibrium points of equation ( 35).

Proof. For µ = ±b/ b , we have for all v ∈ R 3 that (36)

σ(t, ±b/ b ).v = - b b × v -±α b b × (± b b × v).
The second term is always zero but the rst one is only zero when v is co-linear with b.

However, as v takes arbitrary values, we can not ensure this equality. As a consequence, the initial equilibrium points are destroyed under the stochastic perturbation.

It must be noted that the previous problem can be easily solved by modifying a little bit the modeling of the stochastic behavior of the eective magnetic eld. Indeed, let us consider instead of dW t the following vector (37

) bdW t ,
where W t is a one dimensional Brownian motion. This assumptions is equivalent to say that we consider only stochastic behavior in the direction of the initial eld b. This is of course very particular, but in this case the new model preserves the equilibrium points of the initial system: Lemma 5.7. Let us consider the modied Étoré and al. stochastic Landau-Lifshitz equation dened by ( 38)

dx t = - 1 2 2 2 (α 2 + 1) 2 2 (α 2 + 1)t + 1 x t + 1 2 2 (α 2 + 1)t + 1 f (t, x t ) dt+ 1 2 2 (α 2 + 1)t + 1 σ(t, x t ). [bdW t ] ,
where σ is dened by equation ( 33) and W t is a one dimensional Brownian motion. This equation possesses as equilibrium points ±b/ b .

Proof. This follows easily from the previous proof only saying that v is always co-linear to b.

6. The invariantization method as a stochastic perturbation

Although the invariantization method leads to a simpler equation than the projection procedure, it is not very easy to understand the procedure as a stochastic perturbation of the deterministic model. In this Section, assuming that the diusion is governed by a small parameter 0 < << 1, we write the invariantized equation as a perturbation. 6.1. Small perturbation and invariantization. In the following, we use the notations of Section 4. For σ = 0, the invariantized process reduces to the deterministic equation. Let us assume that σ is of the form (39)

σ(x) = σ 0 (x), 0 < << 1,
where σ 0 and f satisfy the invariance conditions.

Using the Itô formula, we obtain (40) dF (y t ) = ∇F (y t ).dy t + 1 2 ∂ 2 F ∂y 2 dy t .dy t .

As dy t .dy t = 2 σ 2 0 (x t )dt, and F and σ 0 satisfy the invariance relation, we nally obtain (41)

dF (y t ) = 2 1 2 ∂ 2 F ∂y 2 σ 2 0 (x t )dt.
Denoting by γ(t) the function ( 42)

γ(t) = 1 2 t 0 ∂ 2 F ∂y 2 σ 2 0 (x t )dt,
we then obtain using Theorem 4.4 a function h of the form ( 43)

h (t) = 2 γ(t),
and a function H of the form ( 44)

H (t) = 1 + 2 δ(t).
As a consequence, we can develop the drift part with respect to and we obtain for the invariantized process an equation of the form (45)

dx t = f + 1 q ( 2 ) 1/q + . . . dt + σ 0 + 1 q ( 2 ) 1/q ˜ + . . . dW t .
We do not search for explicit expression of the perturbation terms and ˜ .

6.2. Limitation of the method. From a modeling point of view, we believe that a stochastic model of a deterministic equation must satisfy the following constraints: First, the drift part must be relied early to the deterministic equation and moreover must be understandable as a perturbation of it, i.e. of the form (46) f (t, x(t)) + P (t, x(t))

where P (t, x(t)) is the perturbation term. Second, the new equation must be easy to interpret and must keep a sense with respect to the eld of applications. What can be said about the invariantization method ?

The rst modeling constraint is then satised by our invariantization method. However, the perturbation term obtained in equation ( 45) is very complicated and the role of each term in the dynamics is not easily recovered.

Conclusion and perspectives

For Itô stochastic perturbation of ordinary dierential equations, we have derived a general method allowing to preserve invariance of a given codimension one submanifold under the stochastic ow. This method has however some limitations and lead to diculties in the interpretation of the resulting model from a perturbative point of view. A natural question is then to nd other stochastization procedure which still use the Itô formalism for stochastic dierential equations but for which invariance can be ensured under reasonable constraints. We refer to [4] where this problem is discussed in general in the framework of random ordinary dierential equations and used to construct a new model of a stochastic Landau-Lifshitz equation.
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  5. Applications: an Itô Kubo oscillator and a stochastic Landau-Lifshitz equation 5.1. Example: Itô version of the Kubo oscillator model. Let us consider the Kubo oscillator (see for example [9]

5.2.2.1. Invariance. The following result is fundamental is all the stochastic generalization of the LL equation.

Lemma 5.1. Let µ(0) ∈ S 2 , then the solution µ t satises for all t ∈ R, µ t = 1, i.e. the sphere S 2 is invariant under the ow of the LL equation.

We give the proof for the convenience of the reader. Proof. Let µ t be a solution of the LL equation. We have (26)

By denition of the cross product, the vectors µ t × b and αµ t × (µ t × b) are orthogonal to µ t so that ( 27)

As a consequence, using the fact that µ 0 ∈ S 2 , we deduce that (28)

which concludes the proof.

As a consequence, a solution starting on the sphere S 2 will remains always on it. The sphere being a two dimensional compact manifold, we can use classical result to deduce the asymptotic behavior of the solutions. But rst, let us compute the equilibrium points. 5.2.2.2. Equilibrium points. The equilibrium points of the LL equation are easily obtained. We give the proof for the convenience of the reader.

Proof. An equilibrium point µ ∈ R 3 satises (29)

The vector µ must be orthogonal to µ × b and at the same time equal to -µ × b up to a factor α > 0. As µ 0 ∈ S 2 , we have µ = 0 and the only solution is (31)

We then obtain µ = λb, with λ ∈ R. By Lemma 5.1, we must have µ ∈ S 2 so that λ = ±1/ b . This concludes the proof.

We see that the equilibrium point of the LL equation coincide with those of the Larmor equation.

The stability of the previous equilibrium point can be easily studied using the Lyapunov theory.