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ABOUT THE NOETHER’S THEOREM FOR FRACTIONAL

LAGRANGIAN SYSTEMS AND A GENERALIZATION OF

THE CLASSICAL JOST METHOD OF PROOF

Jacky Cresson 1, Anna Szafrańska 2

Abstract
Recently, the fractional Noether’s theorem derived by G. Frederico and
D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B.
Malinowska in (see [7]) using a counterexample and doubts are stated about
the validity of other Noether’s type Theorem, in particular ([9],Theorem
32). However, the counterexample does not explain why and where the
proof given in [10] does not work. In this paper, we make a detailed analysis
of the proof proposed by G. Frederico and D.F.M. Torres in [9] which is
based on a fractional generalization of a method proposed by J. Jost and
X.Li-Jost in the classical case. This method is also used in [10]. We first
detail this method and then its fractional version. Several points leading
to difficulties are put in evidence, in particular the definition of variational
symmetries and some properties of local group of transformations in the
fractional case. These difficulties arise in several generalization of the Jost’s
method, in particular in the discrete setting. We then derive a fractional
Noether’s Theorem following this strategy, correcting the initial statement
of Frederico and Torres in [9] and obtaining an alternative proof of the main
result of Atanackovic and al. [3].

MSC 2010 : Primary 26A33; Secondary 34A08, 70H03.

Key Words and Phrases: Euler-Lagrange equations, Noether’s theorem,
fractional calculus, symmetries.

1. Introduction

In ([9],[10]), G. Frederico and D.F.M. Torres have formulated a Noether’s
Theorem for fractional Lagrangian systems. In [7], R.A.C. Ferreira and
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A.B. Malinowska give a counterexample to the main result of [10] indi-
cating that they have doubt about ([9],Theorem 32). The counterexample
does not explain why the result is wrong and where the proof is not correct.
In this paper, we answer these questions and moreover we give a corrected
statement for the fractional Noether’s theorem adapting the Frederico and
Torres strategy of proof. Our discussion is made with respect to the frac-
tional Noether’s Theorem formulated in [9] but all our remarks and results
applies also to [10]. We refer to [8] for the analogue of Frederico-Torres
approach in the context of the Caputo fractional calculus of variations.

As we will see, these questions lead to many difficulties which are not
only interesting with respect to the fractional Noether theorem, but for
all the generalizations proved by some authors using the same method, in
particular in the discrete case (see [4] and [2]). Precisely, Frederico and
Torres generalize a method proposed by J.Jost and X. Li-Jost in [12] in
the classical case. The idea is simple. The Noether’s theorem is simple
to prove in the case of transformations which do not depends on time. In
order to cover the case of time dependent transformation, one introduces
an extended Lagrangian taking the time as a new variable and then using
the Noether’s theorem in the autonomous case. The scheme of proof given
in [12] is not very detailed and some points are omitted. These difficul-
ties can be easily solved in the classical case and are related to standard
results. However, trying to generalize this approach in the fractional case
lead to serious difficulties. Forgetting for a moment the invariance condi-
tion and only concentrating on the proof given by Frederico and Torres,
several points invalidate parts of the computations made in [9]. These dif-
ficulties arise in all the generalizations of the Jost’s method. However, the
fractional setting is probably the worth one in solving these problems.

The plan of the paper is as follows. In Section 2, first we give some
preliminary information about fractional operators and then we remind the
cases of fractional Noether’s theorem for Lagrangian systems invariant un-
der the action of one parameter group without time transformation. In
Section 3 we remind the definition of fractional Lagrangian systems and
the definition of invariance by a special class of symmetry group of trans-
formations used. Already in this part, we discuss particular difficulties
related with the definition of invariance used in [9]. Section 4 is devoted to
the method of J. and L. Jost to prove Noether’s theorem. First we briefly
describe the method in the classical case and explain the points which are
not given in [12] and are sources of ambiguities. Finally, in Subsection 4.3,
we explain how the Jost’s method can be generalized in order to cover the
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fractional case and in Subsection 4.5 we state the fractional Noether’s the-
orem that one obtain in this case. In Section 5.1, we give some numerical
simulations supporting our results.

2. Reminder about fractional Lagrangian systems and invariance

We denote by C k, k ∈ N∪{∞}, the class of regularity of functions and
let C k([a, b],Rn) denotes the set of all functions of class C k defined on [a, b]
with values in Rn and a, b are two real numbers such that a < b.

2.1. Preliminaries on fractional operators. Before presenting the main
idea of the paper, we introduce preliminary information about fractional
operators. For a function f : [a, b]→ R we define :

Definition 2.1. The left (respectively right) Riemann-Liouville frac-
tional integral operator of order α > 0 is defined by

Iαa+f(t) =
1

Γ(α)

∫ t

a

f(s)

(t− s)1−α
ds, (2.1)

respectively

Iαb−f(t) =
1

Γ(α)

∫ b

t

f(s)

(s− t)1−α
ds, (2.2)

for t ∈ [a, b], where Γ(·) is the gamma function.

The fractional derivative is defined by composing the above fractional
integrals and the classical derivative of integer order :

Definition 2.2. Let t ∈ [a, b] and α ∈ (0, 1] then we define

• the left and right Riemann-Liouville fractional derivative of order
α :

Dα
a+f(t) =

(
d

dt
◦ I1−αa+

)
f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(s)

(t− s)α
ds, (2.3)

Dα
b−f(t) =

(
− d

dt
◦ I1−αb−

)
f(t) =

1

Γ(1− α)

d

dt

∫ b

t

f(s)

(s− t)α
ds, (2.4)

• the left and right Caputo fractional derivative of order α :

cD
α
a+f(t) =

(
I1−αa+ ◦ d

dt

)
f(t) =

1

Γ(1− α)

∫ t

a

1

(t− s)α
f ′(s)ds, (2.5)

cD
α
b−f(t) =

(
I1−αb− ◦ d

dt

)
f(t) =

1

Γ(1− α)

∫ t

a

1

(s− t)α
f ′(s)ds. (2.6)
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Note that, for every 0 < α < 1 and x ∈ AC([a, b],Rn) the above
derivatives are defined almost everywhere on the interval [a, b]. Moreover
we have the following relations between Caputo and Riemann-Liouville
definitions :

Dα
a+x = cD

α
a+ +

(t− a)−α

Γ(1− α)
x(a),

Dα
b−x = cD

α
b− +

(b− t)−α

Γ(1− α)
x(b).

(2.7)

2.2. Fractional Lagrangian and Euler-Lagrange equations. The func-
tion L

L : [a, b]× Rn × Rn −→ R
(t, x, v) −→ L(t, x, v)

is said to be a Lagrangian function if L is of class C 2 with respect to all
its arguments. The Lagrangian function L defines a fractional Lagrangian
L for x ∈ C 1

Lα,[a,b](x) =

∫ b

a
L
(
t, x(t), cD

α
a+x(t)

)
dt. (2.8)

Let us denote by C 1
0 ([a, b]) the set of all functions of class C 1 vanishing

at the ends of the interval [a, b]. We define E ∈ C1([a, b],Rn) as a nonempty
subset open in the C 1

0 ([a, b])-direction.

Theorem 2.1. [5] Let 0 < α < 1, then x ∈ E is a critical point of L
if and only if x is a solution of the fractional Euler-Lagrange equation:

Dα
b−

(∂L
∂v

(t, x(t), cD
α
a+x(t)

)
+
∂L

∂x
(t, x(t), cD

α
a+x(t)) = 0, (2.9)

for every t ∈ [a, b].

2.3. The classical fractional Noether’s theorem. First, we remind the
classical Noether’s theorem providing a conservation law for Lagrangian
systems invariant under the action of one parameter group of diffeomor-
phisms with no transformation in time.

Precisely, let us consider the local group of transformations φs : Rn 7→
Rn, s ∈ R such that the functional L is invariant, i.e.∫ tb

ta

L
(
t, x(t), cD

α
a+x(t)

)
dt =

∫ tb

ta

L
(
t, φs(x)(t), cD

α
a+(φs(x))(t)

)
dt,

(2.10)
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where [ta, tb] ∈ [a, b]. In this case we have the following well known result
(see [3],[9],[11]):

Theorem 2.2. Let L be a fractional Lagrangian functional given
by (2.8) invariant under the local transformation group {φs}s∈R, then the
following equality holds for every solution of (2.9):

∂L

∂v
(?) · cDα

a+

(
d

ds
(φs(x)) |s=0

)
−Dα

b−

(
∂L

∂v
(?)

)
· d
ds

(φs(x)) |s=0= 0,

(2.11)
where (?) =

(
t, x(t), cD

α
a+x(t)

)
.

Even if there exists no Leibniz relation for fractional derivatives, one
can deduce from the previous equality a first integral (see [11]). With α = 1
Theorem 2.2 covers the classical Noether’s theorem :

Theorem 2.3. Let L be a fractional Lagrangian functional given by
(2.8) invariant under the local transformation group {φs}s∈R. Then for
every solution of Euler-Lagrange equation :

∂L

∂x
(t, x(t), ẋ(t)) =

d

dt

(
∂L

∂v
(t, x(t), ẋ(t))

)
, (2.12)

the following equality

d

dt

(
∂L

∂v
(t, x(t), ẋ(t)) · d

ds
φs(x)|s=0

)
= 0 (2.13)

holds, where ẋ means the classical derivative of x.

2.4. The Noether’s theorem for Lagrangian mixing classical and
fractional derivatives. In order to generalize the Jost’s method we need
an extension of the previous results in the case where the Lagrangian de-
pends both on the classical derivative and the fractional one. This extension
is already done in [1] in the context of the Riemann-Liouville calculus of
variation but extends without difficulties to the Caputo fractional calculus
of variations (see [8]).

Let us consider a Lagrangian L : [a, b] × Rn × Rn → Rn, L(t, x, w, v),
and the fractional functional

Lα,[a,b](x) =

∫ b

a
L
(
t, x(t), ẋ(t), cD

α
a+x(t)

)
dt. (2.14)
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Then the critical points of L are given by the solution of the following
mixed fractional Euler-Lagrange equation :

d

dt

(∂L
∂w

(?)
)

= Dα
b−

(∂L
∂v

(?)
)

+
∂L

∂x
(?), (2.15)

where (?) =
(
t, x(t), ẋ, cD

α
a+x(t)

)
.

We consider the local group of transformations φs : Rn 7→ Rn, s ∈ R
such that the functional L given by (2.14) is invariant, i.e.∫ tb

ta

L
(
t, x(t), ẋ(t), cD

α
a+x(t)

)
dt =

∫ tb

ta

L
(
t, φs(x)(t),

d

dt
φs(x)(t), cD

α
a+(φs(x))(t)

)
dt,

(2.16)
where [ta, tb] ∈ [a, b].

Theorem 2.4. Let L defined by (2.14) be a fractional Lagrangian
functional invariant under the local transforation group {φs}s∈R, then the
following relation

∂L

∂x
(?)·dφs(x)

ds
|s=0+

∂L

∂v
(?)·cDα

a+

(
dφs(x)

ds
|s=0

)
+
∂L

∂w
(?)

d

dt

(
dφs(x)

ds
|s=0

)
= 0,

(2.17)
where (?) =

(
t, x(t), ẋ(t), cD

α
a+x(t)

)
, holds for every solution of the Euler-

Lagrange equation (2.15).

3. Invariance of functionals and variational symmetries

3.1. Variational symmetries. We refer to the classical book of P.J.Olver
[13] for more details in particular Chapter 4. In the following, we consider a
special class of symmetry groups of differential equations called projectable
or fiber-preserving (see [13],p.93) and given by

φs : [a, b]× Rn −→ R× Rn
(t, x) −→ (ϕ0

s(t), ϕ
1
s(x)),

(3.1)

where {φs}s∈R is a one parameter group of diffeomorphisms satisfying φ0 =
1, where 1 is the identity function. The associated infinitesimal (or local)
group action (see [13],p.51) or transformations is obtained by making a
Taylor expansion of φs around s = 0:

φs(t, x) = φ0(t, x) + s
∂φs(t, x)

∂s
|s=0 + o(s). (3.2)

The transform (see [13],p.90) of a given function x(t) identified with its
graph Γx = {(t, x(t)), t ∈ [a, b]} by φs is easily obtained introducing a new
variable τ defined by τ = ϕ0

s(t). The transform of x denoted by x̃ is then
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given by

τ −→ (τ, ϕ1
s ◦ x ◦ (ϕ0

s)
−1(τ)).

Remark 3.1. In general, the transform of a given function is not so
easy to determine explicitely (see [13], Example 2.21, p.90-91) and one must
use the implicit function theorem in order to recover the transform of x.
This is precisely the reason why we restrict our attention to projectable or
fiber-preserving symmetry groups.

We have the following fractional generalization of the definition of a
variational symmetry group of a functional (see [13], Definition 4.10 p.253):

Definition 3.1 (Variational symmetries). The local group of trans-
formation φs is a variational symmetry group of the functional (2.8) if
whenever I = [ta, tb] is a subinterval of [a, b] and x is a smooth function
defined over I such that its transform under φs denoted by x̃ is defined over
Ĩ = [µa, µb] which is a subset of φ0s([a, b]) = [τa, τb], then

Lα,a,I(x) = Lα,τ(a),Ĩ(x̃). (3.3)

It is interesting to give an explicit formulation of this definition. Indeed,
according to definition (2.8) we can write (3.3) as∫ tb

ta

L
(
t, x(t), cD

α
a+x(t)

)
dt =∫ µb

µa

L
(
τ, ϕ1

s ◦ x ◦ (ϕ0
s)
−1(τ), cD

α
τa+

(
ϕ1
s ◦ x ◦ (ϕ0

s)
−1(τ)

))
dτ.

(3.4)

The main point is that the explicit form of the integrand of the functional
Lα,a,[ta,tb](x) depends on a via the base point chosen for the fractional deriv-
ative. As a consequence, one must change the base point of the fractional
derivative under the infinitesimal group action. This explain the change
from the fractional derivative cD

α
a+ to cD

α
τa+ in the previous expression.

Remark 3.2. The previous definition is in accordance with the one
given by Atanackovic et al. in ([3], Definition 10,p.1511).

Remark 3.3. The fractional case with time transformation is very
different from the classical case but also from the autonomous fractional
case. Indeed, in the classical case, the integrand does not depend on the
interval due to the local character of the classical derivative. Moreover,
in the autonomous fractional case, the base point is not changed and as a
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consequence, if x ∈ Fa,α is such that cD
α
a+x is well defined then ϕ1

s◦x ∈ Fa,α
and the fractional derivative is also well defined with the same base point.

3.2. The Frederico-Torres definition of invariance. In [9], Frederico
and Torres use a different definition. Indeed, in this case the authors do
not change the base point for the fractional derivative in the definition they
use for invariance of a functional (see Definition 31 p.842 in the context of
the fractional Riemann-Liouville calculus of variation in [9] and (Definition
9 in [8]) in the context of the Caputo fractional calculus of variations):

∫ tb

ta

L
(
t, x(t), cD

α
a+x(t)

)
dt =∫ τb

τa

L
(
τ, ϕ1

s ◦ x ◦ (ϕ0
s)
−1(τ), cD

α
a+

(
ϕ1
s ◦ x ◦ (ϕ0

s)
−1(τ)

))
dτ.

(3.5)

This means that their result is restricted to the case where φ0s(a) = a
for all s ∈ R. This case was studied in ([3],Section 2.1 p.1507) and leads to
a definition which is similar to [9] (see [3], Definition 4,p.1509).

Lemma 3.1 (localization). Let {φ0s}s∈R be a one parameter group of
diffeomorphisms satisfying φ0s(a) = a for all s ∈ R, then we have

φ0s(t) = a+ (t− a)γs(t), (3.6)

with γs satisfying

γs+s′(t) = γs′(t)γs((t− a)γs′(t) + a), (3.7)

for all s, s′ ∈ R.

P r o o f. The first part follows from the Hadamard Lemma and the
second one from the group property. 2

As we will see, these conditions implies strong constraints on the type
of symmetries that one can consider.

4. The Noether theorem and the Jost method in the fractional
case

4.1. A fractional Noether theorem. Our aim in this Section is to give
a new proof of the following fractional version of the Noether theorem:

Theorem 4.1 (Fractional Noether theorem). Suppose G = {φs(t, x) =
(φ0s(t), φ

1
s(x))}s∈R is a one parameter group of symmetries of the variational
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problem

Lα,[a,b](x) =

∫ b

a
L
(
t, x(t), cD

α
a+x(t)

)
dt

such that

dφ0s
dt

= K(s), (4.1)

where K(s) is a function satisfying K(0) = 1. Let

X = ζ(t)
∂

∂t
+ ξ(x)

∂

∂x
, (4.2)

be the infinitesimal generator of G. Then, the function

I(x) = L(?) · ζ

+

∫ t

a

[
Dα
b− [∂vL(?)] . (ẋζ − ξ)− ∂vL(?).

(
ζ ·Dα

a+[ẋ] + ζ̇ ·Dα
a+[x]−Dα

a+(ξ)
)]
dt,

(4.3)
is a constant of motion on the solution of the fractional Euler-Lagrange
equation (2.9).

One can of course directly prove this Theorem by differentiating the
invariance relation with respect to s and taking s = 0 in the expression.
Interested people will find such computations in the work of Atanakovic
and al. [3]. Here, we follow a different strategy first proposed by Frederico
and Torres in [9].

Using the Euler-Lagrange equation (2.9), one can write the conservation
law (4.3) as follows:

I(x) = L(?) · ζ

+

∫ t

a

[
− [∂xL(?)] . (ẋζ − ξ)− ∂vL(?).

(
ζ ·Dα

a+[ẋ] + ζ̇ ·Dα
a+[x]−Dα

a+(ξ)
)]
dt,

(4.4)
which is more useful from the computational point of view.

The condition concerning the symmetry group is of course restrictive
but it covers already many interesting examples like the translation in time
group given by φ0s(t) = t + s or a more complicated one given by φ0s(t) =
te−cs = t − cts + o(s), where c is a constant and used in ([9],Example
34,p.845). In the important case of the translation group in time, we obtain:



10 J. Cresson, A. Szafrańska

Corollary 4.1. Assume that the Lagrangian is independent of the
time variable, then the quantity

I(x) = L(?) +

∫ t

a

[
Dα
b− [∂vL(?)] .ẋ− ∂vL(?). ·Dα

a+[ẋ]
]
dt, (4.5)

is a constant of motion on the solution of the fractional Euler-Lagrange
equation (2.9).

We will use this result to test our theorem using numerical simulations.

4.2. Reminder about the classical case. In this Section, we consider
the case α = 1. As recalled in the introduction, the basic idea behind the
Jost method is to recover the Noether theorem for general transformations
from the easier one corresponding to transformations without time. In the
following, we indicate some steps in this method which lead to difficulties
in the fractional case.

A first step is to reduce the invariance condition of the functional to an
equality which can be understood as an invariance formula for transforma-
tions without transforming time, i.e. without changing the boundaries of
integration. This is easily done using a change of variables. Indeed, posing

τ = ϕ0
s(t), (4.6)

in the right hand side of the invariance formula (3.4), one easily gets∫ b

a
L

(
t, x(t),

dx(t)

dt

)
dt =∫ b

a
L

(
ϕ0
s(t), (ϕ

1
s ◦ x)(t),

d

dt

(
ϕ1
s ◦ x

)
(t)

1
dϕ0

s(t)
dt

)
dϕ0

s(t)

dt
dt.

(4.7)

During the derivation of this equality, one uses a particular feature of the
classical derivative which is the chain rule property, precisely we use the
relation

d

dτ

(
ϕ1
s ◦ x ◦ (ϕ0

s)
−1(τ)

)
=

d

dt

(
ϕ1
s ◦ x

)
(t)

1
dϕ0

s(t)
dt

. (4.8)

However, in the fractional calculus case this property of chain rule is known
to be false and more difficult formula must be considered (we refer to [6]
for a general discussion about the algebraic relations that one can wait
generalizing the notion of derivative to continuous functions).

Introducing the extended Lagrangian defined by

L̃(τ, (t, x), (w, v)) := L
(
t, x,

v

w

)
· w, (4.9)
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equation (4.7) can be interpreted as the invariance of L̃ under the group of
transformations without transforming time given by

φs(t, x) =
(
ϕ0
s(t), ϕ

1
s(x)

)
, (4.10)

over the set of solutions of the Euler-Lagrange equations associated to L̃
which satisfy the condition

t(τ) := τ, (4.11)

denoted by U in the following. Indeed, over U we have

L̃(τ, t(τ), x(τ), ṫ(τ), ẋ(τ)) = L(τ, x(τ), ẋ(τ)). (4.12)

As a consequence, we can rewrite equation (4.7) as∫ b

a
L̃(τ, t(τ), x(τ), ṫ(τ), ẋ(τ))dτ =∫ b

a
L

(
τ, φs(t(τ), x(τ)),

d

dt
(φs(t(τ), x(τ)))

)
dτ.

(4.13)

The proof of the Noether theorem then follows easily from the case of
transformations without changing time, which ensures that the following
quantity

I(τ, (t, x), (w, v)) =
∂L̃

∂v
(t, x, w, v) · dϕ

1
s(x)

ds

∣∣∣∣
s=0

+
∂L̃

∂w
(t, x, w, v) · dϕ

0
s(x)

ds

∣∣∣∣
s=0

(4.14)

is a first integral over U .
A simple computation leads to the classical form of the first integral for

general transformations

I(τ, (t, x), (w, v)) =
∂L

∂v
(t, x, v) · dϕ

1
s(x)

ds

∣∣∣∣
s=0

+
(
L (t, x, v)− v ∂L∂v (t, x, v)

) ϕ0
s(x)

ds

∣∣∣∣
s=0

.

(4.15)

In order to be complete, one needs to check if the solutions x(t) of the
Euler-Lagrange equations associated to L produce solutions of the form
(t(τ) = τ, x(τ)) of the Euler-Lagrange equations associated to L̃. Indeed,
this was implicitly assumed in the previous derivation. The Euler-Lagrange
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equations associated to L̃ are given by

d

dτ

[
∂L̃

∂v
(?̃τ )

]
=
∂L̃

∂x
(?̃τ ),

d

dτ

[
∂L̃

∂w
(?̃τ )

]
=
∂L̃

∂t
(?̃τ ),

(4.16)

where (?̃τ ) =
(
t(τ), x(t(τ)), dt(τ)dτ , dx(t(τ))dτ

)
.

A simple computation leads to

∂L̃

∂t
(?̃τ ) =

∂L

∂t
(?τ )

dt(τ)

dτ
,

∂L̃

∂w
(?̃τ ) = L (?τ )− dx(t(τ))

dτ

1
dt(τ)
dτ

∂L

∂v
(?τ ),

(4.17)

∂L̃

∂x
(?̃τ ) =

∂L

∂x
(?τ )

dt(τ)

dτ
,

∂L̃

∂v
(?̃τ ) =

∂L

∂v
(?τ ), (4.18)

where (?τ ) =

(
t(τ), x(t(τ)), dx(t(τ))dτ

1
dt(τ)
dτ

)
.

As a consequence, a path (t(τ) = τ, x(τ)) is a solution of the Euler-

Lagrange equations associated to L̃ if and only if

d

dτ

[
∂L

∂v
(?τ )

]
=
∂L

∂x
(?τ ) (4.19)

and
d

dτ
L(?τ ) =

∂L

∂t
(?τ ) +

d

dτ

(
dx(τ)

dτ

∂L

∂v
(?τ )

)
, (4.20)

where (?τ ) = (τ, x(τ), ẋ(τ)).

The first equation is exactly the Euler-Lagrange equation associated to
L for a path x(τ). Then, if we consider the restriction of L̃ over U , this
first equation is always satisfied.

For the second equation, we develop the left hand side which gives(
d

dτ

[
∂L

∂v
(?τ )

]
− ∂L

∂x
(?τ )

)
dx(τ)

dτ
= 0 (4.21)

which is also always satisfied over U .

Remark 4.1. The main point is that this property comes from the
specific expression of the total derivative of L(?τ ). Here again, we need to
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use the chain rule. The same computation in the fractional case will lead
some difficulties.

4.3. The fractional case. In this Section, we extend the previous con-
struction to the fractional case. We have divided the construction in several
steps in order to discuss separately each of the difficulties involved.

4.3.1. Step 1 - Construction of the extended Lagrangian. As re-
minded in Section 4.2, the extended Lagrangian is obtained by rewriting
the second term of equation (3.4) as an integral over the same interval
[ta, tb].

The problem is to be able to give an explicit expression for cD
α
τa+(ϕ1

s ◦
x ◦ (ϕ0

s)
−1)(τ) as an expression of cD

α
τa+(ϕ1

s ◦ x)(t).

Let y = ϕ1
s ◦ x, then

cD
α
τa+(y ◦ (ϕ0

s)
−1)(τ) =

1

Γ(1− α)

d

dτ

∫ τ

τa

1

(τ − p)α
(y ◦ (ϕ0

s)
−1)(p)dp.

We perform the change of variables v = (ϕ0
s)
−1(p) denoting t = (ϕ0

s)
−1(τ).

We then obtain:

cD
α
τa+(y ◦ (ϕ0

s)
−1)(τ) =

1

Γ(1− α)

d

dt

(∫ t

a

1

(ϕ0
s(t)− ϕ0

s(v))α
y(v)

dϕ0
s(v)

dv
dv

)
1

dϕ0
s(t)

dt

. (4.22)

We have here an illustration of the difficulties which come into play
by adapting the Jost method. Indeed, without any assumptions, there ex-
ists no simple relations between the quantities cD

α
τa+(y ◦ (ϕ0

s)
−1)(τ) and

cD
α
a+(y)(t) contrary to the classical case. This is the classical chain rule

problem with fractional derivatives. In order to solve this problem, we in-
troduce a special class of symmetry groups.

First, we see that a relation between cD
α
τa+(y◦(ϕ0

s)
−1)(τ) and cD

α
a+(y)(t)

can be obtained if one consider one parameter group of diffeomorphisms
{φ0s} satisfying

φ0s(t)− φ0s(v) = α(s)(t− v), (4.23)

for all t, v ∈ [a, b] and all s ∈ R. Specializing v to a given value, we deduce
that for all s ∈ R, we have

φ0s(t) = α(s)t+ β(s), (4.24)
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i.e. that φ0s is an affine function for all s ∈ R. Of course, the group property
induces some constraints on the functions α and β. In particular, they must
satisfy

α(s+ s′) = α(s) + α(s′), and β(s+ s′) = α(s)β(s′) + β(s), (4.25)

with α(0) = 1 and β(0) = 0.

The first condition of (4.25) implies that α must be an exponential
function, i.e. that

α(s) = eλs, (4.26)

for a certain λ ∈ R. We then are leaded to the following class of symmetries
groups:

Definition 4.1 (Admissible groups). A local group of transformations
{φs = (φ0s, φ

1
s)}s∈R is said to be admissible, if for all s ∈ R, φ0s is an affine

function of t of the form

φ0s(t) = eλst+ β(s), (4.27)

with β(s) satisfying β(s+s′) = eλsβ(s′)+β(s) for all s, s′ ∈ R and β(0) = 0.

Examples of admissible groups are given for example by the translation
group ϕ0

s(t) = t + s or a scaling group defined by φ0s(t) = ecst where c is a
constant.

The main property of admissible groups is that a version of the chain
rule property can be proved. Precisely, we have:

Lemma 4.1. Let {φs = (φ0s, φ
1
s)}s∈R be an admissible group. Then, we

have for 0 < α ≤ 1 and for all y ∈ AC([a, b],Rn):

cD
α
φ0s(a)+

(y ◦ (φ0s)
−1)(τ) = cD

α
a+(y)(t)

1(
dφ0s
dt

)α . (CRα)

Remark 4.2. The admissibility condition coupled with the localiza-
tion assumptions (3.6) and (3.7) imply strong constraints. Precisely, we
have:

Lemma 4.2. A one parameter group of diffeomorphisms {φ0s} acting
on [a, b] is admissible and satisfies the localization assumptions (3.6) and
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(3.7) if and only if it is of the form

Sa,λ = {φ0s(t) = eλs(t− a) + a}s∈R (4.28)

for some λ ∈ R.

P r o o f. This is a simple computation. 2

Many examples deal with the case a = 0. In this case, the set of
admissible groups satisfying the localization assumptions is reduced to the
group of dilatations.

Under this assumption, one can easily rewrite the invariance condition
as follows:

Lemma 4.3. Let {φs}s∈R be an admissible local group of transforma-
tions. If the Lagrangian functional L is invariant under the action of the
one parameter group of diffeomorphisms {φs}s∈R, then for any subinterval
I = [ta, tb] of [a, b] and x a smooth function defined over I we have∫ tb

ta

L
(
t, x(t), cD

α
a+x(t)

)
dt =

∫ tb

ta

L

ϕ0
s(t), ϕ

1
s ◦ x(t), cD

α
a+(ϕ1

s ◦ x)(t)
1(

dϕ0
s

dt

)α
 dϕ0

s(t)

dt
dt.

(4.29)

P r o o f. We perform the change of variable t =
(
φ0s
)−1

(τ) in the in-
tegral ∫ µb

µa

L
(
τ, ϕ1

s ◦ x ◦ (ϕ0
s)
−1(τ), cD

α
τa+

(
ϕ1
s ◦ x ◦ (ϕ0

s)
−1(τ)

))
dτ.

Using formula (4.22) and the assumption (CRα), we deduce that∫ µb

µa

L
(
τ, ϕ1

s ◦ x ◦ (ϕ0
s)
−1(τ), cD

α
τa+(ϕ1

s ◦ x ◦ (ϕ0
s)
−1(τ))

)
dτ

=

∫ tb

ta

L

ϕ0
s(t), ϕ

1
s ◦ x(t), cD

α
a+(ϕ1

s ◦ x)(t)
1(

dϕ0
s(t)
dt

)α
 dϕ0

s(t)

dt
dt.

(4.30)

The invariance condition (3.4) in Definition 3.1 then reduces to (4.29). 2

A useful consequence of the previous Lemma is the following classical
but important result :
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Lemma 4.4. Let L be an autonomous Lagrangian, i.e. which does not
depends on the time variable. Then, the associated functional is invariant
under the translation group φs(t, x) = (t+ s, x).

This result is less evident when one is dealing with the initial definition.

The previous Lemma suggests to introduce the following extended La-
grangian:

Definition 4.2 (Extended Lagrangian). Let L(t, x, v) be a given ad-
missible Lagrangian. The extended Lagrangian associated to L and denoted
by L̃(τ, (t, x), (w, v)) is defined as follows

L̃α(τ, (t, x), (w, v)) := L
(
t, x,

v

wα

)
· w. (4.31)

The Lagrangian functional associated to L̃ and denoted by L̃ is given
by

L̃α,[a,b](t, x) =

∫ b

a
L̃

(
t(τ), x(t(τ)),

dt(τ)

dτ
, cD

α
a+x(t(τ))

)
dτ

=

∫ b

a
L̃(t, x, w, v)dτ.

(4.32)

Remark 4.3. It must be noted that the Lagrangian (4.32) mixes the
classical and fractional derivatives even if at the beginning the fractional
Lagrangian problem was only dealing with fractional derivatives. As a
consequence, we reduce the complexity from the non autonomous to au-
tonomous Lagrangian but we increase the complexity from the functional
point of view dealing with multiple sort of derivatives.

The invariance of the functional L under the local symmetry group φs
can then be rewritten as the invariance of L̃ under an autonomous group
action. Precisely, we have:

Lemma 4.5 (Extended variational symmetries). Assume that the La-
grangian functional L associated to L is invariant under an admissible local
symmetry group {φs}s∈R. Then, the extended Lagrangian functional L̃ as-

sociated to the extended Lagrangian L̃ satisfies

L̃α,[a,b](t, x) = L̃α,[a,b](φs(t, x)) = L̃α,[a,b](ϕ0
s(t), ϕ

1
s(x)), (4.33)
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over the set of paths τ 7→ (t(τ), x(τ)) satisfying t(τ) = τ and x(τ) is a
solution of the Euler-Lagrange equation associated to L. We denote by U
this set.

The restriction of the invariance relation on the set U can not be avoid
as in the classical case.

4.3.2. Step 2 - Euler-Lagrange equations of the extended Lagrangian.
As already noted, the extended Lagrangian mixes the classical and frac-
tional derivatives. Using formula (2.15), we deduce that the Euler-Lagrange
equations associated to the functional (4.32)are given by:

∂L̃
∂x (t, x, w, v) +Dα

b−

(
∂L̃
∂v (t, x, w, v)

)
= 0,

∂L̃
∂t (t, x, w, v)− d

dτ

(
∂L̃
∂w (t, x, w, v)

)
= 0.

(4.34)

The connection between the solutions of the initial fractional problem
and those of the extended Lagrangian (4.31) are then :

Lemma 4.6 (Euler-Lagrange equations for the extended Lagrangian).
The Euler-Lagrange equations associated to the extended Lagrangian of L
restricted to U are given by

(a)
(b)


∂L

∂x
(?τ ) +Dα

b−

(
∂L

∂v
(?τ )

)
= 0,

∂L

∂t
(?τ )− d

dτ

(
L(?τ )− αcDα

a+x(τ) · ∂L
∂v

(?τ )

)
= 0,

(4.35)

where (?τ ) = (τ, x(τ), cD
α
a+x(τ)).

P r o o f. This follows from a simple computation. Indeed, we have

∂L̃

∂t
(t, x, w, v) =

∂L

∂t

(
t, x,

v

wα

)
w,

∂L̃

∂x
(t, x, w, v) =

∂L

∂x

(
t, x,

v

wα

)
w,

∂L̃

∂v
(t, x, w, v) = w1−α∂L

∂v

(
t, x,

v

wα

)
,

(4.36)
and

∂L̃

∂w
(t, x, w, v) = L

(
t, x,

v

wα

)
− α v

wα
∂L

∂v

(
t, x,

v

wα

)
, (4.37)

where (t, x, w, v) =
(
t(τ), x(t(τ)), dt(τ)dτ , cD

α
a+x(t(τ))

)
. This concludes the

proof. 2

We recognize the form already obtained in the classical case. The first
equation of (4.35) corresponds to the classical fractional Euler-Lagrange
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equation (2.9) associated to the Lagrangian L. The second equation (4.35(b))
plays the same role as the energy in the classical case and is sometimes called
the second Euler-Lagrange equation when α = 1. However, and this is the
main difference independently of technical difficulties, this quantity is not a
priori satisfied by solutions of the fractional Euler-Lagrange equation. As
a consequence, the usual correspondence between the solution of extended
Euler-Lagrange equations and the initial fractional Euler-Lagrange equa-
tion is not guaranteed. We will return on this condition in the following.
We then have :

Lemma 4.7. Solutions x(t) of the fractional Euler-Lagrange equations
(2.9) are solutions of the extended Euler-Lagrange equations (4.35) if and
only if they satisfy

∂L

∂t
(?τ )− d

dτ

(
L(?τ )− cD

α
a+x(τ) · ∂L

∂v
(?τ )

)
= 0, (CEα)

where (?τ ) = (τ, x(τ), cD
α
a+x(τ)).

Remark 4.4. This is precisely this point which is not well developed
in the derivation of the Noether’s theorem in [12] and which is not discussed
in the paper of Frederico and Torres [9].

However, condition (CEα) is not a consequence of the fractional Euler-
Lagrange equations for the initial Lagrangian L. We provide in the follow-
ing a numerical example.

4.4. About the second Euler-Lagrange equation in the fractional
calculus of variations. We consider the two-dimensional example of the
quadratic Lagrangian on [a, b] = [0, 1] :

L : [0, 1]× R2 × R2 −→ R
(t, x, v) −→ 1

2

(
‖x‖2 + ‖v‖2

)
,

(4.38)

where x = (x1, x2), v = (v1, v2) = (cD
α
a+x1, cD

α
a+x2). The corresponding

Euler-Lagrange equation (2.9) for the Lagrangian L defined above has the
form

Dα
b− ◦ cDα

a+x+ x = 0. (4.39)

The relation (CEα) reduces to

Qα(x) :=
1

2

(
‖x‖2 − ‖v‖2

)
= const. (4.40)

In the classical case, with α = 1, the equation of motion has the form
ẍ(t) = x(t) and the exact solution is given by x(t) = (x1(t), x2(t)) =
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(c1e
t + c2e

−t, d1e
t + d2e

−t) for t ∈ [0, 1], where c1, c2, d1, d2 ∈ R. Applying
the classical Noether’s Theorem 2.2 we obtain explicit constant of motion.

For the simulations, we consider the Dirichlet boundary conditions
for the Euler-Lagrange equation (4.39): x(0) = (x1(0), x2(0)) = (1, 2),
x(1) = (x1(1), x2(1)) = (2, 1). In order to derive the approximate behavior
of the fractional boundary problem, we discretize the integral form of the
Euler-Lagrange equation (more information can be found in Appendix A).
Let X = (X1, X2) denotes the approximation of the solution x = (x1, x2).
The behavior of the approximate solutionsX and the simulations forQα(X)
with respect to different values of the order of derivative are presented on
the Figures 1 and 2, in the case of α = 1 and α ∈ (0, 1], respectively.

In the classical case α = 1 we obtain the following:
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Figure 1. Behavior of solution X = (X1, X2) of (4.39) with
α = 1 is given on the sub-figure (a) and the constant of
motion in this case can be observed on the sub-figure (b).

In the fractional case, the picture is very different:
The fractional version of the second Euler-Lagrange equation is clearly

not satisfied at least in full generality.

4.5. Noether’s theorem for the extended Lagrangian. In the case of
extended Lagrangian the invariance condition (4.29) is a classical invariance
relation for transformation groups which do not change the ”time” variable.
As remind in Section 2, this case was already studied by Frederico and
Torres in [9] where they derive the corresponding Noether’s theorem given
in Theorem 2.4. Using this result, we obtain:
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Figure 2. Behaviors of solution X = (X1, X2) of (4.39)
with respect to different values of α are given on the sub-
figure (a) and respectively, behavior of Qα(X) can be ob-
served on the sub-figure (b).

Theorem 4.2 (Noether’s theorem for the extended Lagrangian). Let

L̃ is an invariant Lagrangian under the one-parameter group of diffeomor-
phisms {Φs}s∈R. Then if L̃ is a Lagrangian functional defined by La-

grangian L̃, then

d

dτ

[∂L̃
∂w
· d
ds

(ϕ0
s(t))|s=0

]
+

[
∂L̃

∂v
· cDα

a+

( d
ds

(ϕ1
s(x))|s=0

)
−Dα

b−

(
∂L̃

∂v

)
· d
ds

(ϕ1
s(x))|s=0

]
= 0

(4.41)

over the solutions of the fractional Euler-Lagrange equations.

We are now ready to formulate the main result concerning the fractional
generalization of the Jost’s method.

4.6. A first tentative : a weak fractional Noether’s theorem. We
now derive the Noether’s theorem which can be derived using a fractional
version of the Jost’s method :

Theorem 4.3 (A fractional Noether’s theorem). SupposeG = {φs}s∈R
is a one parameter group of symmetries of the variational problem Lα,[a,b](x) =∫ b

a
L
(
t, x(t), cD

α
a+x(t)

)
dt satisfying the chain rule property. Let

X = ζ(t)
∂

∂t
+ ξ(x)

∂

∂x
, (4.42)
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be the infinitesimal generator of G. Assume also that for any solutions of
the Euler-Lagrange equation we have

∂L

∂t
(?τ )− d

dτ

(
L(?τ )− cD

α
a+x(τ) · ∂L

∂v
(?τ )

)
= 0, (CEα)

where (?τ ) = (τ, x(τ), cD
α
a+x(τ)). Then we have:

d

dt

[(
L− cD

α
a+x ·

∂L

∂v

)
ζ

]
+

[
∂L

∂v
· cDα

a+ (ξ)−Dα
b−

(
∂L

∂v

)
· ξ
]

= 0. (4.43)

The proof follows from Theorem 4.2 and Lemma 4.7.

Remark 4.5. In the case of α = 1, we recover the classical Noether
theorem because condition (CE1) and the chain rule property are automat-
ically satisfied and the second term in (4.43) reduces to the total derivative
of ∂L

∂v · ξ.

In the case of α 6= 1, with no transformation in time, the one parameter
group satisfies the chain rule property as φ0s(t) = t and ζ = 0. However, we
do not recover the classical fractional Noether theorem. Indeed,
there is no reasons that the solutions of the Euler-Lagrange equations sat-
isfy the condition (CEα) and in fact, most of the time, they do not.

Moreover, in the case of α 6= 1, with transformation in time, we consider
as an example the special case of the translation group

ϕs(t, x) = (t+ s, x),

from which we conclude that ζ = 1 and ξ = 0. This group satisfies the
chain rule property. Assuming that the condition (4.34(b)) given by

d

dt

(
L− cD

α
a+x ·

∂L

∂v

)
= 0, (4.44)

is satisfied, we derive as a conservation law the quantity (4.44)!

These two remarks tell us that something is going wrong in the frac-
tional generalization of the Jost’s method. This point is discussed and
solved in the next Section.

4.7. A Jost’s type proof of the fractional Noether theorem. The
previous tentative does not give the right answer. Where do we have made
a too strong assumption in our computation ? As all the problems are
clearly coming from the condition (CEα) we must look at this condition
and the reasons why we have introduced it. As we have said, the basic
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idea behind the Jost’s method is to use the autonomous version of the frac-
tional Noether theorem. In this case, one needs to ensure that the solutions
that we consider are solution of the underlying Euler-Lagrange equations
attached to the extended Lagrangian. However, doing so, we clearly ask for
a too strong condition. The invariance relation by itself already provide a
conserved quantity over the solution of the initial fractional Euler-Lagrange
equation which is provided by the following infinitesimal invariance crite-
rion (see ([1],Theorem 8), ([9],Theorem 17 p.840) and (Theorem 9 in [8])):

Lemma 4.8 (Infinitesimal invariance criterion). If the Lagrangian func-

tion L̃ is invariant under the one parameter group {φs = (φ0s, φ
1
s)}s∈R then

we have

∂tL̃.
dφ0s
ds
|s=0 +∂xL̃.

dφ1s
ds
|s=0 +∂wL̃.

d

dt

(
dφ0s
ds
|s=0

)
+∂vL̃.D

α
a+

(
dφ1s
ds
|s=0

)
= 0.

(4.45)

As a consequence, using the extended variational symmetries Lemma
4.5 and formula (4.45), we obtain:

Lemma 4.9. Suppose G = {φs}s∈R is a one parameter group of sym-

metries of the variational problem Lα,[a,b](x) =

∫ b

a
L
(
t, x(t), cD

α
a+x(t)

)
dt

satisfying the chain rule property. Let

X = ζ(t)
∂

∂t
+ ξ(x)

∂

∂x
, (4.46)

be the infinitesimal generator of G. Then, we have:

∂tL.ζ + ∂x.ξ + L.ζ̇ + ∂vL.
(
−Dα

a+x.ζ̇ +Dα
a+(ξ)

)
= 0. (4.47)

The proof follows from simple computations using formula (4.36).

The proof of the fractional Noether theorem now follows easily. Using
the fact that

d

dt
(L(?)) = ∂tL(?) + ∂xL(?).ẋ+ ∂vL(?).Dα

a+[ẋ], (4.48)
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we rewrite equation (4.47) as

d

dt
(L(?)) ζ − ∂xL(?).ẋζ − ∂vL(?).Dα

a+[ẋ]ζ + ∂x.ξ + L.ζ̇

+∂vL.
(
−Dα

a+x.ζ̇ +Dα
a+(ξ)

)
= 0.

(4.49)

Using the equality
d

dt
(L(?)ζ) =

d

dt
(L(?)) ζ − Lζ̇ and the fact that x is a

solution of the fractional Euler-Lagrange equation, we deduce that

d

dt
(L(?)ζ) +Dα

b− [∂vL(?)] . (ẋζ − ξ)

−∂vL(?).
(
ζ ·Dα

a+[ẋ] + +ζ̇ ·Dα
a+[x]−Dα

a+(ξ)
)

= 0.
(4.50)

A conservation law is then obtain integrating the previous expression be-
tween a and t. We then obtain the function

I(x) = L(?) · ζ

+

∫ t

a

[
Dα
b− [∂vL(?)] . (ẋζ − ξ)− ∂vL(?).

(
ζ ·Dα

a+[ẋ] + +ζ̇ ·Dα
a+[x]−Dα

a+(ξ)
)]
dt.

(4.51)
This concludes the proof of the fractional Noether theorem.

5. Examples and numerical simulations

5.1. The fractional harmonic oscillator. Let us consider the fractional
oscillator studied in ([3],Example 18 page 1513) for which the Lagrangian
is given by:

L =
1

2
(0D

α
t u)2 − ω2 1

2
u2, (5.1)

where ω is a frequency. Initial conditions u(0) = 0 and u′(0) = 1. The
Euler-Lagrange equation for such an L is:

tD
α
1 (0D

α
t u) = ω2u. (5.2)

The fractional conservation law for (5.2):

1

2
(0D

α
t u)2 − ω2 1

2
u2 +

∫ t

0

(
−0D

α
s u
′ · 0Dα

s u+ u′ · sDα
1 (0D

α
s u)
)
ds = const.

(5.3)
We can check this result using numerical simulations.

5.2. Example 2. We consider the one parameter α ∈]0, 1] family of La-
grangian

Lα(x1, x2, v1, v2) = v
1/α
1 x2 − v1/α2 x1. (5.4)
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Figure 3. Solution u of the Euler-Lagrange equation (5.2)
(left) and equivalent quantity (5.3) (right) with ω = 1. The
range of quantity values is fixed: [−1, 1]
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Figure 4. Solution u of the Euler-Lagrange equation (5.2)
(left) and equivalent quantity (5.3) (right) with ω = 1. The
range of quantity values is not fixed.

As the Lagrangian is independent of the time variable, we can use Corollary
4.1 to obtain a first conservation law. The quantity

I(q1, q2) = −
[
q2
(
Dα
a+q1

)1/α − q1 (Dα
a+q2

)1/α]
+

∫ t

a

(
−q̇1

(
Dα
a+q2

)1/α
+ q̇2

(
Dα
a+q1

)1/α)
dt

+(1/α)

∫ t

a

(
−q2

(
Dα
a+q1

)(1−α)/α
Dα
a+(q̇1) + q1

(
Dα
a+q2

)(1−α)/α
Dα
a+(q̇2)

)
dt

(5.5)
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Figure 5. Solution u of the Euler-Lagrange equation (5.2)
(left) and equivalent quantity (5.3) (right) with ω = 0.5.
The range of quantity values is fixed: [−1, 1]
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Figure 6. Solution u of the Euler-Lagrange equation (5.2)
(left) and equivalent quantity (5.3) (right) with ω = 0.5.
The range of quantity values is not fixed.

is a conservation law.

The functional is also invariant under a more complicated symmetry
groups.
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Lemma 5.1. The fractional functional associated to Lα is invariant un-
der the local group of transformations given by φ0s(t) = t e−cs and φ1s(x) = x
for s ∈ R.

P r o o f. We apply the invariance criterion given by Lemma 4.3. We
have

L

(
x(t), ,

1

(e−cs)α
Dα
a+(x))

)
· e−cs = L(x,Dα

a+(x)) · e−cs

(e−cs)α/α

= L(x,Dα
a+(x)),

(5.6)

which concludes the proof. 2

We then can use the Theorem 4.1 to obtain the following conservation
law :

I(q1, q2) = −
[
q2
(
Dα
a+q1

)1/α − q1 (Dα
a+q2

)1/α]
ct

−
∫ t

a

(
−q̇1

(
Dα
a+q2

)1/α
+ q̇2

(
Dα
a+q1

)1/α)
ct dt

− 1

α

∫ t

a

(
−q2

(
Dα
a+q1

)(1−α)/α
Dα
a+(q1) + q1

(
Dα
a+q2

)(1−α)/α
Dα
a+(q̇2)

)
ct dt

− c
α

∫ t

a

(
−q2

(
Dα
a+q1

)(1−α)/α
Dα
a+(q1) + q1

(
Dα
a+q2

)(1−α)/α
Dα
a+(q2)

)
dt.

(5.7)

Appendix A. Note on numerical solving of the Euler-Lagrange
equation

In order to obtain approximate solution for the Euler-Lagrange equa-
tion (4.39) we convert this equation into the integral form. First let us
formulate useful composition rules between fractional operators according
to Definitions 2.1 and 2.2 (see [5]):

Lemma A.1. Let α ∈ (0, 1) and x ∈ AC([a, b],Rn), then the following
relations

• Iαa+ ◦ cDα
a+x = x− x(a),

• Iαa+ ◦Dα
a+x = x

are satisfied almost everywhere.

In the case of the right operators the counterparts of this rules are also
valid. According to the definitions of fractional integrals (2.3) and (2.4) we



FRACTIONAL NOETHER THEOREM. . . 27

can conclude that for every constant C ∈ R we have

Iαa+C =
(t− a)α

Γ(1 + α)
C, Iαb−C =

(b− t)α

Γ(1 + α)
C. (1.8)

Now, the integral form of the Euler-Lagrange equation (4.34) :

x(t)+Iαa+ ◦ Iαb−x(t)−
(
t− a
b

)α [
Iαa+ ◦ Iαb−x(t)

]
t=b

=

(
1−

(
t− a
b

)α)
x(a) +

(
t− a
b

)α
x(b)

(1.9)

can be easily derived based on (1.8), the relations between derivatives (2.7)
and the composition rules defined in Lemma A.1. Note that, if we put
α = 1 in (1.9), we obtain the integral form of the equation ẍ = x.

For the purpose of discretization of the integral equation (1.9) we define
the equidistant partition on [a, b] : h = (b − a)/N , tk = a + kh, for k =
0, . . . , N , N ∈ N. On the subinterval [ti, ti+1] we substitute the function
f by the arithmetic average of values f(ti) and f(ti+1). We derive the
approximations of the integrals:

Iαa+f(t)|t=tk =
1

Γ(α)

k−1∑
i=0

∫ ti+1

ti

f(s)

(tk − s)1−α
ds

≈ 1

Γ(α)

k−1∑
i=0

∫ ti+1

ti

1

(tk − s)1−α

(
f(ti) + f(ti+1)

2

)
ds =: hIαa+f(tk)

(1.10)

for k = 1, . . . , N , and

Iαb−f(t)|t=tk =
1

Γ(α)

N−1∑
i=k

∫ ti+1

ti

f(s)

(s− tk)1−α
ds

≈ 1

Γ(α)

N−1∑
i=k

∫ ti+1

ti

1

(s− tk)1−α

(
f(ti) + f(ti+1)

2

)
ds =: hIαb−f(tk)

(1.11)
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for k = 0, . . . , N − 1, where the sub-integrals can be directly calculated.
Then we obtain the following algebraic system of equations

X0 =x(a),

Xk+
hIαa+ ◦ hIαb−Xk −

(
tk − a
b

)α
hIαa+ ◦ hIαb−XN

=

(
1−

(
tk − a
b

)α)
X0 +

(
tk − a
b

)α
XN ,

XN =x(b)

(1.12)

which gives an approximate solution of the Euler-Lagrange equation (4.39).
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