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Abstract

Microgrids are recognized as a relevant tool to absorb decentralized renewable energies in the energy
mix. However, the sequential handling of multiple stochastic productions and demands, and of storage,
make their management a delicate issue. We add another layer of complexity by considering microgrids
where different buildings stand at the nodes of a network and are connected by the arcs; some buildings
host local production and storage capabilities, and can exchange with others their energy surplus. We
formulate the problem as a multistage stochastic optimization problem, corresponding to the minimiza-
tion of the expected temporal sum of operational costs, while satisfying the energy demand at each node,
for all time. The resulting mathematical problem has a large-scale nature, exhibiting both spatial and
temporal couplings. However, the problem displays a network structure that makes it amenable to a mix
of spatial decomposition-coordination with temporal decomposition methods. We conduct numerical
simulations on microgrids of different sizes and topologies, with up to 48 nodes and 64 state variables.
Decomposition methods are faster and provide more efficient policies than a state-of-the-art Stochastic
Dual Dynamic Programming algorithm. Moreover, they scale almost linearly with the state dimension,
making them a promising tool to address more complex microgrid optimal management problems.

1 Introduction

1.1 Problem statement

Power networks are organized more and more in a decentralized fashion, with microgrids coordinating the
production of local renewable energies integrated with distributed storage. A broad overview of the emergence
of consumer-centric electricity markets is given in [21], and challenges associated with the integration of
renewable energy can be found in [12].

As renewable energies, like sun and wind, are stochastic, the Energy Management System (EMS) problem
can naturally be formulated as a multistage stochastic optimization problem [24]. If we consider a microgrid
consisting of ten buildings each equipped with a hot water tank and a battery, controlled every quarter of
an hour during one day, such a problem is already large-scale (a hundred stages and a state with dimension
twenty) and a direct resolution is out of reach. The large-scale nature of the EMS problem makes spatial
decomposition methods appealing [13].

Different distributed variants of the Model Predictive Control algorithm have been proposed to control
microgrids [22]. Decomposition methods are also adapted to the resolution of large-scale unit-commitment
problems [1,[15]. We refer the reader to [L1] for a recent survey of distributed optimization methods for
electric power systems, and to [9] for an example of a distributed optimization algorithm applied to the
control of a large power network. When the system is dynamical, as is the case with storage, temporal
decomposition methods are also appealing. Stochastic Dynamic Programming (SDP) [4] is the reference
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algorithm but is hampered by the well-known curse of dimensionality when the state dimension exceeds five.
Stochastic Dual Dynamic Programming (SDDP) takes the relay under linear-convex assumptions with nice
results, for example in dam management [20], but is efficient up to a certain state dimension.

However, despite limitations inherent to SDP, one can go further by mixing decomposition methods
together. For example, recent developments have mixed, in a stochastic setting, spatial decomposition
methods with SDP to effectively solve large-scale multistage stochastic optimization problems, by means
of the so-called Dual Approximate Dynamic Programming (DADP) algorithm [3]. In this paper, the EMS
problems that we consider display a structure that makes them amenable to a mix of spatial and temporal
decomposition methods, as developed previously in [5l{14] for general coupling constraints. Indeed the (global)
problem is naturally formulated as a sum of local multistage stochastic optimization subproblems coupled
together via the global network constraints (flow conservation on the graph).

1.2 Contributions

The contributions of this article are threefold. i) We implement DADP in an extended framework that
supports generic coupling constraints, specified on a directed graph (whereas the previous implementations
of DADP [6] considered only a unique central coupling constraints, or coupling constraints formulated on
a tree). ii) We implement a new algorithm called Primal Approzimate Dynamic Programming (PADP),
based on resource decomposition. iii) Thus equipped, on the one hand, we readily compute an exact upper
bound (PADP) and an exact lower bound (DADP) of the global minimization problem and, on the other
hand, we yield two online control policies implementable by the EMS. We provide numerical comparisons
with a state-of-the-art SDDP algorithm, and we show the effectiveness of the two decomposition algorithms:
for problems with more than 12 nodes, the decomposition algorithms converge faster than SDDP and yield
control policies with lower costs.

1.3 Structure of the paper

The paper is organized as follows. In Sect. [2| we outline the class of optimal energy management problems
that we address, and in Sect. [3] we present the associated mathematical formulation. In Sect. [ we detail
how to design algorithms by a mix of spatial decomposition and of SDP. In Sect. o] we present the results
of numerical simulations for different microgrids of increasing size and complexity.

2 Management of large-scale microgrids

Efficacity is the French urban Energy Transition Institute (ITE) devoted to develop and implement innovative
solutions to build and manage energy-efficient cities. It was created in 2014 with both the French government
support and contributions from companies, small and large. Efficacity has solicited us to address the optimal
energy management of urban electrical microgrids, proposing several microgrid configurations, both in terms
of topology (structure of the districts) and in terms of equipment (energy production and storage).
Buildings are heterogeneous: all are equipped with an electrical hot water tank, but only some have
solar panels and some others have batteries. Indeed, as batteries and solar panels are expensive, they are
shared out across the network. All units have the possibility to import and export energy to and from the
other buildings. Moreover, we suppose that, if the local production is unable to fulfill the local demand,
even after exchanges between buildings, energy can be imported from an external (regional or national) grid
as a recourse. Thus, each building is a decision unit able to locally consume, produce, store, and also to
exchange energy with other units and with the external grid. The flows in the microgrid are impacted by
uncertainties, both in demand (e.g. electrical) and in production (e.g. solar panels). We suppose that all
actors are benevolent, allowing a central planner (namely the EMS) to coordinate the local units. The EMS
aims at satisfying the balance between production and demand at each node (building), but at least cost.
We manage the microgrids over one day, with decisions taken every 15 min. The local solar energy
productions match realistic data corresponding to a summer day in Paris. The local demands are generated



using a stochastic simulator experimentally validated [18].

J: 3-Nodes 6-Nodes 12-Nodes
48-Nodes
24-Nodes

Figure 1: Examples of microgrid topologies

We consider five different microgrids with growing sizes and different topologies, that is, different nodes
and connecting arcs. The structure of the microgrids (see Figure [1) as well as the location of batteries
and solar panels come from case studies provided by Efficacity. As an example (see Table , the 12-Nodes
problem consists of 12 buildings; 4 buildings are equipped with a 3 kWh battery, and 4 other buildings are
equipped with 16 m? of solar panels. The devices are dispatched so that a building equipped with a solar
panel is connected to at least one building with a battery.

3 Mathematical formulation

We now address the mathematical formulation of a multistage stochastic optimization problem that corre-
sponds to satisfying the supply-demand constraint at each node, at least expected cost. After describing the
basic mathematical objects in we write mathematical equations related to arcs in to nodes in

q

and finally present the multistage stochastic optimization problem formulation in

3.1 Network, stages and probability space

We represent a district microgrid by a directed graph (N, A), with A the set of nodes and A the set of arcs.
We denote by |[A| the number of nodes, and by |.A| the number of arcs. We suppose that decisions are made
at regular stages, labeled by ¢t € [0,T], where T' € N* is a finite horizon, and where we use the notation
[r,s] ={r,r+1,...,5— 1, s} for two integers r < s. We have T' = 96 for a daily management with decisions
taken every 15 min.

We introduce a probability space (2, F,P), denote the mathematical expectation by E, and write all
random variables with uppercase bold letters.

3.2 Equations related to arcs
3.2.1 Exchanging flows through arcs

during the time interval [t,¢ + 1), each arc a € A transports an energy flow Qf € R, and each node n € A/
imports or exports a flow Fy € R. The node flows F} and the arc flows Qf are related via a balance
equation (Kirchhoff’s current law) written in matrix form as CQ, + F¢ = 0, where F; = (F})nen € RV
is the family of node flows at time ¢, Q, = (Q%)aca € RA is the family of arc flows at time ¢ and where
C € {—1,0,1}¥*4 is the node-arc incidence matrix of the directed graph (N, A). We identify F;, with a
vector in R and @, with a vector in RMI, C being identified with a matrix with || rows and |.A| columns.



We denote by F' = (Ft)te[[O,Tfl]] € RT'WI the vector of node flows and by Q = (Qt)te[[o,T—l]] e RTIAl the
vector of arc flows.

3.2.2 Transportation cost on arcs

a quadratic cost I(QY) = c2(QF)? +c4QY + 2 (with given coefficients c§ > 0, ¢, cg, so that each function ¢
is strongly convex) is associated with transporting the flow Qf through arc a € A. Such costs can arise from
a difference in pricing, a fixed toll between the different nodes, or by energy losses through the network. We
aggregate, in the global arc cost

DS Tilf(@?)} , 1)

acA t=0

all transport costs over all arcs in the graph, over all times ¢t € [0,7 — 1] and over all random outcomes
(hence the mathematical expectation term E).

3.3 Equations related to nodes

We adopt a state space formalism to describe the physical equations related to each node.

3.3.1 State, control and uncertainty variables

let {X} }iego, 17, {UF beego,r—17 and {W7 },er 77 be sequences of Euclidean spaces of type R?, with appropriate
dimensions p (possibly depending on time ¢ and node n € N).

As all buildings hold a hot water tank, and some possibly also hold a battery, the nodal state X7
has dimension 1 or 2. If the building at node n hosts both a hot water tank and a battery, the state is
X} = (B}, H}) with values in X2 = R?, where B} (resp. H}') is the energy level inside the battery (resp.
hot water tank) at the beginning of the time interval [¢t, ¢+ 1); if the building at node n only hosts a hot water
tank, the state is X} = H} with values in X = R. The state at time 0 is supposed to be deterministic and
known, equal to x{.

In the same way, the nodal control Uy has dimension 3 or 2. If the building at node n hosts a battery,
the control is UT = (UY™, U™, U™ with values in U? = R3, where U™ (resp. U'™) is the amount of
energy flowing into the battery (resp. hot water tank), and Uy®™ is the amount of electricity exchanged
with the external grid, during the time interval [t, ¢ + 1); otherwise, the control is U} = (U™, UT*™) with
values in U} = R%

Insofar, as the inhabitants of the different buildings have different lifestyles, we suppose that each building
has its own electrical and domestic hot water demand profiles, and possibly its own solar panel production.

At node n € N, the uncertainty W7, , = (Df_ﬁ’i"7 Dfi_?) € W7, = R? is made of the domestic hot water

demand D}¥;" and of D{u', the local electricity demand minus the production of the solar panel (if any),
both during the time interval [t,t + 1).

3.3.2 Dynamics inside each node

we detail the dynamics in a building at node n € /. We model the temporal evolution of a battery with
the linear dynamics: Vt € [0,T — 1]]E|
n 1 ny—
Bl = B + AT (pu(U}")" — - (U7")") (2a)

where «, is the auto-discharge rate and (p4, p.) are given yields. We model the temporal evolution of an
electrical hot water tank with the linear dynamics: V¢ € [0,T — 1],

H!. |, = o, H + AT(B,U"™ — DI (2b)

IWe have used the notation f+ = max{0, f} and f~ = max{0, —f}.



where a4, is a discharge rate corresponding to losses by conduction and [ is a conversion coefficient.

We gather equations (2a)-(2b)) in a nodal dynamics function g : X x Uy x Wi, — X7, , stating that
at each time ¢, the next state X7, ; depends on the current state X}, the current decision U} and the
uncertainty W', ; occurring between time ¢ and ¢ + 1.

3.3.3 Load balance

the load balance between production and demand at node n € N writes U}*" — D2t — U™ — U™ = FY,

where we recall that F7 is the energy exchanged with the adjacent nodes. Thus, for each time ¢t € [0,T — 1]
and node n € N, we introduce the nodal load balance function

AN X UL Wi) = U = DY - U™~ U™ (3)
If AP(-) <0 (resp. AP(-) > 0), the node n imports (resp. exports) energy from (resp. to) adjacent nodes
3.3.4 Cost function
during the time interval [t, 4+ 1) and at node n € N/, the cost
LX) UL Wiyy) =p'U" (4)
depends linearly on the price p§’ to import electricity from the external grid. When we sum over time, we
add a final penalization term K" (X7.) to avoid an empty electrical hot water tank at the end of the day.

3.4 Multistage stochastic optimization problem formalization

We write F" = (F(,--- ,F%_;)" the node flow process arriving at each node n € N between times 0 and
T — 1. We call optimal nodal cost the expression

J.;\lf(Fn7 1'8) =

T—1
in. E[Z XU W) + K(X7)| (50)
st. Vte[0,T-1]
X?+1 = g?(X?, ?7 ?Jrl) ) g = xg ) (5b)
AP(XIL UL W) = F (50)
J(U?) - U(Wla"' ,Wt,Wt—&-l) ) (5d)

where X" = (X(,---,X7}), U" = (Uy,---,U}_y) and W" = (W{,.-- W) are respectively the local
state (stocks), control (production) and uncertainty (consumption) processes. Similarly, we denote by W =
(W™),,en the global uncertainty process.

To be able to almost surely satisfy the load balance equations at each node n € N, we assume
that all decisions follow the hazard-decision information structure, that is, decision U} is taken after the
global uncertainty W1 = (W}, |)nen has been observed, hence the specific form of the nonanticipativity
constraint (5d)), where o(U}') denotes the o-algebra generated by the random variable U} . The multistage
nature of Problem stems from the nonanticipativity constraint . Indeed, ensures that the
decisions taken at time ¢ depend only on the previous global uncertainties or, alternatively, that the solution
of is given as a sequence of policies 77, ..., v} _q, such that, forallt =1,...,T—1, 4 : Wy x-- - xW; 1 —
Ut and U? = ’)/ZL(Wl, ey Wt+1).

We have stated a global arc criterion in and local nodal criteria in , both depending on node and
arc flows coupled by Kirchhoff’s current law CQ, + F; = 0, at each time ¢t € 0,7 — 1]. We rewrite these
constraints globally as CQ + F = 0 involving the global node flow and arc flow processes @ and F', and
where the matrix C € RT'WI x RT"IAl is a block-diagonal matrix with matrix C' as diagonal element.



We set Xo = [],,car Xg and, for any 2o = (2§ )nen € Xo, we formulate the global optimization problem
of the central manager (EMS) as

Vot(wo) = min 3 Ji(F",25) + Ja(Q) (6a)
Y neN
st.CQ+F=0. (6b)

The Problem @ couples |N| + 1 independent criteria through Constraint . As the resulting criterion
is additive and Constraint is affine, Problem @ has a nice form to use decomposition-coordination
methods.

4 Resolution by distributed optimization

As just detailed in Sect. |3, the global Problem @ encompasses a family of local multistage stochastic opti-
mization subproblems, coupled together via a transportation problem corresponding to the flows exchanged
through the graph. We now detail how to solve @ in a distributed fashion.

In we decouple @ node by node using either price or resource decomposition schemes. In
we show how to find the most appropriate deterministic price and resource processes. Thus, we obtain two
algorithms, each of them yielding nodal value functions and, from these latter, upper and lower bounds for
the optimal cost and online control policies.

4.1 Mixing nodal and time decomposition

In [5], we introduced a generic framework to bound a global problem by decomposing it into smaller local
subproblems, easier to solve. Problem @ lies in the generic framework introduced in [5], and the coupling
equation CQ + F = 0 is a special case of the generic coupling constraint of this framework. Thus, to solve
Problem @, we first apply spatial decoupling into nodal and arc subproblems, and then apply the temporal
decomposition induced by Dynamic Programming.

4.1.1 Price decomposition of the global problem

we follow the procedure introduced in [5, §2.2] to solve Problem @ by price decomposition and to provide
a lower bound of its optimal value Vpf(zp). In the case under study, price decomposition follows from the
dualization of Constraint using a deterministic price coordination process p = (p")nen € RT VT as
multiplier. We define the global price value functionﬂ Vip] : Xog — R associated with Problem @ by the
following expression, for all g = (2§ )nen € Xo,

TlK[p](xo) = mingqQ Zne,/\/ ij\lf(anxg) + JA(Q)
+E[(p.CQ+F)] . (7)

We observe in a straightforward manner that

Vipl(zo) = Y Vip")(ag) + Vulpl, (8)

neN

that is, the global price value function V[p|(-) naturally decomposes into a family of nodal price value
functions Vi/[p"] : Xp — R, Vn € N, given by

Vilp")(25) = min J3H(F", 25) + E[(p" , F")] , (9a)

2In the expression V[p](zo), we use brackets [p] to indicate a parametric dependence, whereas we use parenthesis (zg) to
indicate the argument of the function V[p] : Xo — R. We also use the notation V[p](-) to designate this function.



and an arc price value functionﬁ given by
VAlp] = min Ja(@) +E[(CTp. Q)] (9b)

What is more, for all n € N, the optimal value Vi [p"](zf) can be computed by Dynamic Programming
under the so-called white noise assumption.

Assumption 1 The global uncertainty process (Wi, -+, W) consists of stagewise independent random
variables.

For all node n € A and for any price p" € RT, taking into account the expression (f]) of the nodal cost J},
we introduce the sequence {Vx; ,[p"](*) }sc[o,77 of local price value functions defined by Vi, +[p"](-) = K"(-)
(final cost) and then, inductively, for all ¢ € [0,T] and z} € X}, by

Viep" @) = _min E [Z XU W)

08 FD) + K0

st Xp=at . @) - @D - 6.

Under Assumption [T} these local price value functions satisfy the following Dynamic Programming equations:
for all n € N, Vi, p[p"](2}) = K™(2%) , and, for t =T—1,...,0,

Vilp")(e?) =B | min L (2} w W)
+ <p? 7A?(xt 7ut vW?+1)> (10)
+ Vil (90 @ W) | -

The nodal price value function Vi [p"](+) in is equal to the local price value function at time ¢ = 0:
V3l (e8) = Ve ofp"] (), for all for af € X3

Considering the expression of the arc cost J4(Q), the arc price value function V 4[p] is additive
w.r.t. (with respect to) time and space, and thus can be decomposed at each time ¢ and each arc a. The
resulting arc subproblems do not involve any time coupling and can be computed by standard mathematical
programming tools or even analytically.

4.1.2 Resource decomposition of the global problem

we now solve Problem @ by resource decomposition (see |5, §2.2]) using a deterministic resource process
r=(")pen € RTWI such that r € im(C) We decompose the global constraint w.r.t. nodes and arcs
as F =r,CQ = —r. We define the global resource value function V[r](-) associated with Problem () by the
following expression, for all z¢g = (z§)nen € Xo:

VIrl( mln Z I (F™ zg) + JaA(Q) (11a)
F.Q neN
st. F—r=0, CQ+r=0. (11b)

We observe in a straightforward manner that

= S V) Val] (12)

neN

3Which, to the differengs of the nodal price value function , does not depend on the initial state xq.
4If r ¢ im(C), we have V[r] = +o0 in as the constraint CQ + r = 0 cannot be satisfied.



that is, the global resource value function V[r](+) naturally decomposes into a family of nodal resource value
functions V y[r"](-) defined, for all n € A" and z} € X2, by

Vi lr"(ag) = min J(F",z5) st F"—r"=0 (13a)

and an arc resource value function (not depending on )

Valr] = Irgn Ja(Q) st. CQ+r=0. (13b)

For all node n € NV, taking into account the expression of the nodal cost J};, we introduce the sequence
{Vx,t[rn](')}te[[o,ﬂ} of local resource value functions defined by VX/T[T”](') = K"(-) (final cost) and then,
inductively, for all ¢ € [0,7T] and z}* € X}, by

T-1
Vi "el) = minE| 3 LK UL W)+ KT (XE)
U™ s=t
5

st. X7 =af, **’
FZ—TZZO, VSE[[t,T—l]]~

If Assumption |1| holds true, VX/ [r™](z8) can be computed by Dynamic Programming and the nodal resource
value function V' [r"](-) in is equal to the local resource value function at time t = 0: Vy/[r"](z}) =
VX/7O[7“”](3:8) for all zfy € X. In the case of resource decomposition, arcs are coupled through the constraint
CQ +r = 0, so that the arc resource value function V 4[r] in is not additive in space, but remain
additive w.r.t. time. As in price decomposition, it can be computed by standard mathematical programming
tools or even analytically.

4.1.3 Upper and lower bounds of the global problem

applying [5, Proposition 2] to the global price value function and resource value functions , we are
able to bound up and down the optimal value Vot(zo) of Problem (6]) as follows:

Vip)(zo) < Voi(xo) < VIr(xo) , Voo € [ X - (14)
neN

These inequalities hold true for any price process p € RTWI and for any resource process r € im(C) C RTINI,

4.2 Algorithmic implementation

In we have decomposed Problem @ spatially and temporally: the global problem is now split into
(small) subproblems using price and resource decompositions, and each subproblem is solved by Dynamic
Programming. These decompositions yield bounds for the value of the global problem. To obtain tighter
bounds for the optimal value in , we follow the approach presented in [5, §3.2], that is, we maximize
(resp. minimize) the left-hand side (resp. the right-hand side) in w.r.t. the price vector p € RT'WVI
(resp. the resource vector r € RT'WI) using a gradient-like algorithm.

4.2.1 Lower bound improvement
we detail how to improve the lower bound given by the price value function in . We fix zg = (2 )nen €

Xo, and we aim at solving max,cgr.vi V[p](wo), that is, written equivalently (see (7))

B i D IR at) + 4@+ (p E[CQ+ F) (15)



We solve the maximization Problem w.r.t. p using a gradient ascent method (Uzawa algorithm). At
iteration k, we suppose given a deterministic price process p*) and a gradient step p*). The algorithm
proceeds as follows, Vn € N,

F"%Y ¢ argmin J(F™, 2) + E[(p"® , F™)] (16a)
F"'L

Q(kH) € argmin J4(Q) + IE[<CTp(k) ,Q)} , (16Db)
Q

pEHD — ) L ,(0) E[CQ(kJrl) 4 F(k+1)] ) (16¢)

At each iteration k, updating p'®) requires the computation of the gradient of sz[p(k)](mo), that is, the
expected value E[CQ(kH) + F(k+1)], usually estimated by a Monte-Carlo method. The price update for-
mula — corresponding to the standard gradient algorithm for the maximization w.r.t. p in Problem
— can be replaced by more sophisticated algorithms (e.g. quasi-Newton).

4.2.2 Upper bound improvement

we now focus on the improvement of the upper bound given by the global resource value function in .
We fix 20 = (2§ )nen € [],,en X4, and we aim at solving min,¢im(c) V[r](zo), whose detailed expression is

(see (TT)):

min min JY(F™, zf)  s.t. F"—r"zO)
T-eim(0)<7§[(w w 0)

+Q%n44Q)sL CQ+r=®). (17)

We now sketch how we solve the minimization problem using a gradient-like method. As we recognize
in the minimization problems and 7 we obtain that the gradients w.r.t. r in can be
expressed as mathematical expectations ™ = E[M"] and ¢ = E[Z], where we have denoted by M" the
optimal multiplier associated with the constraint F* — r™ = 0 in , and by E the optimal multiplier
associated with the constraint CQ + r =0 in .

The algorithm proceeds as follows. At each iteration k, the algorithm updates the resource r*) and
the gradient step p(®). We solve the optimization problems and with the resource set to r(*)
and obtain the optimal solutions together with the associated multipliers *) and £¢*) as described in the
previous paragraph. Then, the resource r*+1) is updated by

D = proji e (T(k) — p®) (D 4 §(k+1))) 7 (18)

where proji,,c) is the orthogonal projection onto the subspace im(C) and pFD = LDy The
multipliers ;™ and £ are approximated using a Monte Carlo method. Again, the above projected gradient
algorithm, used to update the resource, can be replaced by any gradient-based constrained optimization
algorithm.

4.2.3 Upper and lower nodal value functions

The two algorithms and converge respectively to a price process p™ and to a resource process
r*° € im(C), parameterized by a fized initial state. However, by applying the two inequalities (14]) with
both admissible processes p> and r°°, we are able to bound the optimal value function Vpi(-) globally:
V[p*)(z0) < Voli(zo) < V[r™](xo) for all ¢ € Xo.



Problem | [N [A] dim(Xy) dim(W,) supp(Wy)
3-Nodes | 3 3 4 6 10°
6-Nodes 6 7 8 12 106
12-Nodes | 12 16 16 24 1012
24-Nodes | 24 33 32 48 1024
48-Nodes | 48 69 64 96 1048

Table 1: Microgrid management problems (cardinals and dimensions)

5 Numerical simulation results

We will term Dual Approzimate Dynamic Programming (DADP) the price decomposition algorithm de-
scribed in and Primal Approzimate Dynamic Programming (PADP) the resource decomposition al-
gorithm described in We compare DADP and PADP with the well-known Stochastic Dual Dynamic
Programming (SDDP) algorithm (see [7] and references inside) on the results that they yield on five mi-
crogrid optimal management problems with growing sizes: Table [1| displays the features (different sizes and
dimensions) of the cases we consider for numerical simulations. For this purpose, we detail the offline compu-
tation of value functions in the online control policies in and we finally summarize the numerical
simulation results and compare the three algorithms in

For the uncertainties, we generate scenarios for the demands at each node using the generator presented
in [2], from which we add the production of the solar panel for the corresponding buildings. Then, we model
the process (W), as nonstationary random variables that are stagewise and node by node probabilistically
independent with a finite probability distribution on the set W? = R2. For each case, we consider a single
initial state xg, corresponding to standard configurations of the storages (like minimal energy in a battery).

5.1 Computing offline value functions

5.1.1 With the SDDP algorithm

to compute value functions, the SDDP algorithm is not implementable in a straightforward manner. Indeed,
even if the cardinality of the support of each local random variable W7 remains low, the cardinal of the
support of the global uncertainty W becomes huge as the number [N of nodes grows (see Table , so that
the exact computation of expectations, as required at each time step during the backward pass of the SDDP
algorithm (see |19]), becomes untractable. To overcome this issue, we resample the probability distribution
of (W3 )nen for each time ¢, to deal with an uncertainty support of reasonable size, using the k-means
clustering method in [17]. As the local problems are convex w.r.t. the uncertainties, by Jensen inequality
the optimal quantization yields a new optimization problem whose optimal value is a lower bound for the
optimal value of the original problem (see [10] for details). Then, the exact lower bound given by SDDP
with resampling remains a lower bound for the exact lower bound given by SDDP without resampling, which
itself is by construction a lower bound for the original problem. In the numerical application, we fix the
resampling size to 100. We denote by {Ziddp}te[[o,;pﬂ the value functions returned by the SDDP algorithm.
Notice that, whereas the SDDP algorithm suffers from the cardinality of the global uncertainty support, the
DADP and PADP algorithms do not.

We stop SDDP when the gap between its exact lower bound and a statistical upper bound is lower than
1%. That corresponds to the standard SDDP’s stopping criterion described in [19], which is reputed to be
more consistent than the first stopping criterion introduced in [16]. Our implementation of SDDP uses a
level-one cut selection algorithm [8] and keeps only the 100 most relevant cuts. By doing so, we significantly
reduce the computation time of SDDP.

5.1.2 With the DADP and PADP algorithms

to optimize the price and resource processes, we use a quasi-Newton method, and more precisely the L-BFGS
algorithm (implemented in the nonlinear solver Ipopt 3.12 [23] which allows to explicitly tackle the linear
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constraint r € im(C) in the resource decomposition algorithm (18])). The algorithms stop at p and r either
when a stopping criterion is fulfilled or when no descent direction is found.

5.2 Devising online control policies

Each algorithm (DADP, PADP and SDDP) returns a sequence of value functions indexed by time. Using
these value functions, we define a sequence of surrogate global value functions {V;}ieqo,ry b

o V, = V3% for SDDP,
o Vi = 0en Virlpl + Vou,[p] for DADP,
o Vi =Y nen Viralr] + V aqlr] for PADP.

With these global value functions, we design online control policies. For any time ¢t € [0,7 — 1], any global
state x; € X; and global uncertainty wyy1 € Wyy1, the control policy is a solution of the following one-step
optimization problem:

Ve (xg, wep1) € arg min (min

Ut ft.qt
> L )+ Y )+ Ve ()
neN a€A
st. Cq+fi=0, (19a)
z?—‘rl = g;n(x?vu?7w?+l) ’ (lgb)
AY(xf,uf,wi ) = f{1, YneN . (19¢)

As the policy induced by is admissible for the global problem @, the expected value of its associated
cost is an upper bound of the optimal value Vo#(zo) of the original minimization problem @

5.3 Numerical results

We first compare the three algorithms w.r.t. the convergence and the CPU time needed for computing offline
value functions. Second, we compare the values of the theoretical bounds for the optimal expected total
cost. Third, we compare online policies simulation results.

5.3.1 Computing offline value functions

we solve Problem (6)) by SDDP, price decomposition (DADP) and resource decomposition (PADP). Table
details the execution time and number of iterations taken before reaching convergence. For a small-scale

[ # Nodes [V] [3 6 12 24 48 |
| dim X; |4 8 16 32 64 |

SDDP CPU time | I' 3" 100 79" 453
‘ SDDP iterations | 30 100 180 500 1500

DADP iterations | 27 34 30 19 29
3y 7T 22 499U’
1 12 20 19 20

DADP CPU time | 6 14" 29" 41 128"

PADP CPU time
PADP iterations

Table 2: Convergence results for SDDP, DADP and PADP

problem like 3-Nodes (second column of Table , SDDP is faster than DADP and PADP. However, for
the 48-Nodes problem (last column of Table , DADP and PADP are more than three times faster than

Swhere the functions V 4 +[p] (vesp. V a,t[r]) are easily deduced from (resp. from (13D)).
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SDDP. Figure [2] depicts how much CPU time take the different algorithms with respect to the number of
state variables of the district. For this case study, we observe that the CPU time grows almost linearly w.r.t.
the number of nodes for DADP and PADP, whereas it grows exponentially for SDDP. Otherwise stated,
decomposition methods scale better than SDDP in terms of CPU time for large microgrids instances.

CPU time [minute]

4 8 16 32 64
State dimension

Figure 2: (a) CPU time for the three algorithms as a function of the state dimension

Convergence of the SDDP algorithm on all instances, the approximate upper bound is estimated
every 10 iterations, with 1,000 scenarios. On the 12-Nodes problem, we observe that the gap between the
upper and lower bounds is below 1% after 180 iterations and that the lower bound remains stable after 250
iterations.

Convergence of the DADP and PADP algorithms Figure [3] shows the evolution of DADP’s price
process and PADP’s resource process over the iterations for the 12-Nodes problem. We depict the convergence
only for the first node, the evolution of price process and resource process in other nodes being similar. On the
left side of the figure, we plot the evolution of the 96 different values of the price process p* = (pg,--- ,pk_;)
during the iterations of DADP. We observe that most of the prices start to stabilize after 15 iterations, and
do not exhibit significant variation after 20 iterations. On the right side of the figure, we plot the evolution
of the 96 different values of the resource process r* = (r},---,rk_;) during the iterations of PADP. We
observe that the convergence of resources is quicker than for prices, as the evolution of most resources starts
to stabilize after only 10 iterations.

0.175
0.6
0.150
0.4
0.125 A
g 0.2
0.100 ; !
9] S
Y =
= c
* 0.075 1 S 0.0
e
2
£
0.050 A ~0.2
0.025
—0.4
0.000 -
0 5 10 15 20 25 30 0 4 8 12 16 20
Iteration Iteration
(a) (b)

Figure 3: Convergence of DADP prices (a) and PADP resources (b) for the 12-Nodes problem
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5.3.2 Theoretical bounds for the optimal expected total cost

we then give the lower and upper bounds obtained by SDDP, DADP, PADP in Table [3] The lower bound
of the SDDP algorithm is the value V5% (x4) given by the SDDP method. We recall that SDDP returns
a lower bound because it uses a suitable resampling of the global uncertainty distribution instead of the
original distribution itself (see the discussion in . DADP and PADP lower and upper bounds are
given by and respectively. In Table [3] we observe that SDDP and DADP lower bounds are close
to each other, and for problems with more than 12 nodes, DADP’s lower bound is up to 2.6% better than
SDDP’s lower bound. However, the gap between the upper bound given by PADP and the two lower bounds
is rather large.

# Nodes [N] 3 6 12 24 43

SDDP LB 225.2 4559 889.7 1752.8 3310.3
DADP LB 213.7 4473 896.7 1787.0 3396.4
PADP UB 252.1 5285 1052.3 2100.7 4016.6

Table 3: Upper and lower bounds, given by SDDP, DADP and PADP, for the optimal expected total cost

To sum up, DADP provides slightly better lower bounds than SDDP, while being less computationally
demanding (and a parallel version of DADP would yield even better performances).

5.3.3 Online policies simulation results

we now compare the performances of the different algorithms in simulation. As explained in §5.2] we are
able to devise online policies induced by SDDP, DADP and PADP for the global problem, and to compute
by Monte Carlo an approximation of the expected cost of each of these policies.

The results obtained in simulation are given in Table[d SDDP, DADP and PADP values are obtained by
simulating the corresponding policies on 5,000 scenarios. The notation + corresponds to the 95% confidence
interval. We use the value obtained by the SDDP policy as a reference, and compute the relative difference:
a positive percentage means that the associated decomposition-based policy is better than the SDDP policy.
Note that all these values correspond to admissible policies for the global problem @, and thus are statistical
upper bounds of the optimal cost Vpf(zo) of Problem (6.

We make the following observations. i) For problems with more than 6 nodes, both the DADP policy and
the PADP policy beat the SDDP policy. ii) The DADP policy gives better results than the PADP policy.
iii) Comparing with the last line of Table [3| the statistical upper bounds obtained by the three simulation
policies are much closer to SDDP’s and DADP’s lower bounds than PADP’s exact upper bound. By assuming
that the resource coordination process is deterministic in PADP, we impose constant importation flows for
every possible realization of the uncertainties, thus penalizing heavily the PADP algorithm (see also the
interpretation of PADP in the case of a decentralized information structure in [5, §3.3]).

6 Conclusion

We have addressed the mathematical problem of optimal management of urban microgrids by using two
decomposition algorithms relying on a deterministic price (resp. resource) coordination process: DADP
and PADP. Both algorithms work in a distributed manner and are fully parallelizable. We have conducted

[ # Nodes [N] | 3 6 12 24 48 |
SDDP value [ 226 £ 0.6 471 £0.8 936+ 1.1 1859 + 1.6 3550 + 2.3
DADP value | 228 +£0.6 464+08 92312 1839+ 1.6 3490 +23

DADP/SDDP | -0.8% +15% +1.4% +1.1% +1.7%
PADP value 229+ 0.6 471 +08 931+ 1.1 1856 + 1.6 3508 + 2.2
PADP/SDDP -1.3% 0.0% +0.5% +0.2% +1.2%

Table 4: Simulation results for SDDP, DADP and PADP induced policies
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numerical simulations on microgrids of different sizes and topologies, with up to 48 buildings. We have
compared the two decomposition algorithms with a state-of-the-art SDDP algorithm. Numerical results
have shown the effectiveness of DADP, that gives better results than the reference SDDP algorithm for
problems with more than 12 nodes — both in terms of theoretical bounds and of economic performance
induced by online policies. On problems with up to 48 nodes (corresponding to 64 state variables), we
observed that the performances of DADP and PADP scale well as the number of nodes grew. Numerically,
we observe that decomposition-coordination methods are less impacted by the curse of dimensionality than
SDDP, as: i) decomposed subproblems have small dimension (1 or 2) and can be solved in parallel; ii) as the
size of the problem grows, we empirically observe that the number of iterations of decomposition methods
grows slower than with SDDP. Thus, algorithms that mix spatial and temporal decompositions appear to
be a promising tool to address large-scale microgrid optimal management problems.
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