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Abstract We consider a microgrid where different prosumers exchange en-
ergy altogether by the edges of a given network. Each prosumer is located to
a node of the network and encompasses energy consumption, energy produc-
tion and storage capacities (battery, electrical hot water tank). The problem
is coupled both in time and in space, so that a direct resolution of the prob-
lem for large microgrids is out of reach (curse of dimensionality). By affecting
price or resources to each node in the network and resolving each nodal sub-
problem independently by Dynamic Programming, we provide decomposition
algorithms that allow to compute a set of decomposed local value functions
in a parallel manner. By summing the local value functions together, we are
able, on the one hand, to obtain upper and lower bounds for the optimal value
of the problem, and, on the other hand, to design global admissible policies
for the original system. Numerical experiments are conducted on microgrids of
different size, derived from data given by the research and development cen-
tre Efficacity, dedicated to urban energy transition. These experiments show
that the decomposition algorithms give better results than the standard SDDP
method, both in terms of bounds and policy values. Moreover, the decomposi-
tion methods are much faster than the SDDP method in terms of computation
time, thus allowing to tackle problem instances incorporating more than 60
state variables in a Dynamic Programming framework.
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1 Introduction

Multistage stochastic optimization problems are, by essence, complex because
their solutions are indexed both by stages (time) and by uncertainties (scenar-
ios). Hence, their large scale nature makes decomposition methods appealing.
We refer to [I] and [2] for a generic description of decomposition methods
in stochastic programming problems. Dynamic Programming methods and
their extensions are temporal decomposition methods, that have been used on
a wide panel of problems, for example in dam management [3]. Spatial de-
composition of large-scale optimization problems was first studied in [4], and
extended to open-loop stochastic optimization problems [5]. Recent develop-
ments have mixed spatial decomposition methods with Dynamic Programming
to effectively solve large scale multistage stochastic optimization problems.
This work led to the introduction of the so-called Dual Approximate Dynamic
Programming (DADP) algorithm, which was first applied to unit-commitment
problems with a single central coupling constraint linking different stocks alto-
gether [6]. We have extended this kind of methods in the companion paper [7],
on the one hand by considering general coupling constraints among units, and,
on the other hand, by using two different decomposition schemes, namely, price
and resource decompositions. This article presents applications of price and re-
source decomposition schemes to the energy management of large scale urban
microgrids.

General coupling constraints often arise from flows conservation on a graph.
Optimization problems on graphs (monotropic optimization) have been stud-
ied since long [8/Q], with applications, for example, to solve network utility
problems formulated as two-stage stochastic optimization problems [10]. Our
motivation rather comes from electrical microgrid management, where build-
ings (units) are able to consume, produce and store energy and are intercon-
nected through a network. A broad overview of the emergence of consumer-
centric electricity markets is given in [I1]. We suppose here that all actors are
benevolent, allowing a central planner to coordinate the local units between
each other. Each local unit includes storages (hot water tank and possibly a
battery), and has to satisfy heat and electrical demands. It also has the pos-
sibility to import energy from an external regional grid if needed. Some local
units (prosumers) are able to produce their own energy with solar panels, so as
to satisfy their needs and export the surplus to other consumers. The exchanges
through the network are modeled as a network flow problem on a graph. We
suppose that the system is impacted by uncertainties, both in production
(e.g. solar panels) or in demand (e.g. electrical demands). Thus, the global
problem can naturally be formulated as a sum of local multistage stochastic
optimization subproblems coupled together via a global network constraint.
Such problems have been studied in [12]. They are specially challenging from
the dynamic optimization point of view since the number of buildings may be
large in a district. We address districts with up to 48 buildings (with 64 asso-
ciated state variables), that is, a size largely beyond the limits imposed by the
well-known curse of dimensionality faced by Dynamic Programming. The data
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associated with the districts we are studying have been provided by Efficacity.
The local solar energy productions match realistic data corresponding to a
summer day in Paris. The local demands are generated using a stochastic sim-
ulator experimentally validated [I3]. Efficacity is the urban Energy Transition
Institute (ITE), established in 2014 with the French government support. The
aim of Efficacity is to develop and implement innovative solutions to build an
energy-efficient and massively carbon-efficient city.

The paper is organized as follows. In Sect. 2] we model the global opti-
mization problem associated with a microgrid and apply to it the main results
obtained in the companion paper [7]. We present both price and resource de-
composition schemes and recall how the Bellman functions of the global prob-
lem are bounded above (resp. below) by the sum of local resource-decomposed
(resp. price decomposed) value functions that satisfy recursive Dynamic Pro-
gramming equations. In Sect. [3] we present numerical results for different
microgrids of increasing size and complexity. We compare the two decomposi-
tion algorithms with a state of the art Stochastic Dual Dynamic Programming
(SDDP) algorithm. We analyse the convergence of all algorithms, and we com-
pute the bounds obtained by all algorithms. Thanks to the Bellman functions
computed by all algorithms, we are able to devise online policies for the initial
optimization problem and we compare the associated expected costs. The anal-
ysis of case studies consisting of district microgrids coupling up to 48 buildings
together enlightens that decomposition methods give better results in terms
of economic performance, and achieve up to a 4 times speedup in terms of
computational time.

2 Optimal management of a district microgrid

In this section, we write the optimization problem corresponding to a district
microgrid energy management system on a graph in We detail how to
decompose the problem node by node in both by using price and resource
decomposition. In §2:3] we show how to find the most appropriate deterministic
price and resource processes for obtaining the best possible upper and lower
bounds.

2.1 Global optimization problem

A district microgrid is represented by a directed graph G = (V, &), with V the
set of nodes and £ the set of edges. We denote by Ny, the number of nodes,
and by Ng the number of edges. Each node of the graph corresponds to a
single building comprising stocks, energy production and local consumption.
These buildings exchange energy through the edges of the graph.

We first detail the different flows occurring in the graph and the coupling
constraints existing between flows in edges and flows at nodes. We then for-
mulate at each node a local multistage stochastic optimization subproblem, as
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well as a transportation subproblem on the graph. Finally, we gather the cou-
pling constraints and the subproblems inside a global optimization problem.

2.1.1 Exchanging flows through edges

Flows are transported through the graph via the edges, each edge e € [1, N¢]
transporting a flow ¢¢ and each node i € [[1, Ny, ] importing or exporting a flow
fi. Here [1, N] = {1,2,--- , N} denotes the set of integers between 1 and N.

The node flows f? and the edge flows ¢° are related via a balance equation
(Kirchhoff’s current law), which states that the sum of the algebraic edge flows
arriving at a particular node i is equal to the node flow f?. The Kirchhoff’s
current law can be written in matrix form as

Ag+f =0, (1)

where f = (f',---, fN)7 is the vector of node flows, ¢ = (¢*,--- ,¢"™¢)7 is
the vector of edge flows and where A € R *Ne is the node-edge incidence
matrix of the graph G = (V, ). Column e of A represents the edge e of the
directed graph, with values +1 (resp. —1) at the initial (resp. final) node of
the arc, and 0 elsewhere.

2.1.2 Production cost on each node

Each node of the graph G corresponds to a building which may comprise
stocks (hot water tank, battery), production (solar panel), electric consump-
tion. In case that the local production cannot satisfy the local demand, external
energy is bought to the regional grid. We denote by 7" the time horizon, by
{0,1,...,T} the discrete time span (in the application described in a unit
period represents a 15mn time step). We write out all random variables in bold.
For a node i € [1, Ny], the nodal subproblem is the minimization of a func-
tional J},(F",z{) depending on the node flow process F* = (Fg,--- JEL )T
arriving at node ¢ between times 0 and 7" — 1.

Let {X{}iepo,r7, {Ui}eeqo,r—17 and {Wi}iep 1y be sequences of Euclidian
spaces of type RP with appropriate dimensions p (possibly depending on time ¢
and node 7). The optimal nodal cost J{, is given by

T-1

Jy(F,xp) = ;rg}giE[gL;(X;,Utz,wgﬂ)JrKl(XfT) , (2a)
s.t. Vt € [[O7T—1HX1+1 = gz(X7£7U7£7 i-{-l) ) XZO = IE) 9 (2b)
Ai(X;vUzv ;—&-1) = th y (2(3)

O'(Uz) CO’(W1,"' ,Wt,Wt+1) R (2d)

where we denote by X* = (X}, , X5), U' = (U,--- ,U%_,) and W' =
(Wi, -+, W7) the local state (stocks), control (production) and uncertainty
(consumption) processes. Constraint represents the energy balance inside
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node i for each time ¢, with A} : X! x U} x Wi, — R. In order to be able
to almost surely satisfy Constraints , we assume that all decisions follow
the hazard-decision information structure, that is, decision U} is taken after
noise W1 has been observed, hence the specific form of Constraint . This
slightly differs from the scope presented in the companion paper [7] where the
decision-hazard information structure was considered, but does not change the
kind of results already obtained.

We detail the dynamics in building i. A battery is modeled with the
linear dynamics

i i i 1 Jiy—
B!, | = ayB! + AT (p.(U") — E(Uf )7), Vte[0,..., T—1], (3a)

where B is the energy stored inside the battery at time ¢, U?’i is the power
exchanged with the battery, oy is the auto-discharge rate and (pg, p.) are given
yields. An electrical hot water tanks is modeled with the linear dynamics

H}  =o,H +AT(BUY - DY), veelo,.,T—1],  (3b)

where Ht’ is the energy stored inside the tank at time ¢, U?i is the power
used to heat the tank, fol’l is the domestic hot water demand between time
t and t + 1. The coeflicient «y, is a discharge rate corresponding to the losses
by conduction and 3, is a conversion coefficient. Depending on the possible
presence of a battery inside the building, the nodal state X ; has dimension 2
or 1. If node 7 has a battery, its state is X = (B, H}); otherwise, its state is
X = H!. The value of the state at time 0 is known, equal to z}.
Equation is the node balance at node i, with mapping A given by

i i i i _ ne,i el,i b,i t,1
At(Xt7 tr t+1) - Ut - Dt+1 - Ut - Ut ’ (4)

ij_ll being the residua electricity demand between time ¢ and ¢ + 1, and
U?e’i being the amount of electricity taken from the external national grid.
Collecting the different variables involved in the model, the control variable
for building i is U? = (UY", U, U*") and the noise variable affecting node i
is Wi, = (D?:}lz»DfiD
The cost function at node i in depends linearly on the price pf to
import electricity from the external national grid, so that

Ly(X}, U}, Wipy) = pil U (5)
The final cost K is a penalization to avoid an empty electrical hot water tank
at the end of the day.

The global nodal cost Jy,(F,(z},...,25")) over the whole network is ob-
tained by summing the local nodal costs

Ny
I (F, (g, ....ap™)) =) Jp(F' ) . (6)
i=1

1 We have chosen to aggregate the production of the solar panels of node i (if any) with
the electricity demand, since they only appear by their difference.
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2.1.8 Transportation cost on edges

We now consider the edge costs arising when transporting the flow Q¢ through
each edge e € [1,Ng] and for any time ¢t € [0,7 — 1]. The global edge
cost Je(Q) aggregates all transport costs through the different edges in the

graph, namely
Ne T—1
5@ ~E[ 33 @) @
e=1 t=0
where [ : R — R are convex real valued functions assumed to be “easy to
compute”, e.g. quadratic. The cost [ can be induced by a difference in pricing,
a fixed toll between the different nodes, or by the energy losses through the
network.
The global edge cost function Jg in @ is additive and thus decomposable
w.r.t. (with respect to) time and edges.

2.1.4 Global optimization problem

We have stated local nodal criteria and a global edge criterion , both
depending on node and edge flows coupled by Constraint at each time ¢ €
[0,7 — 1], that is, AQ, + F, = 0. We rewrite these constraints in a single
constraint involving the global node flow and edge flow processes: AQ+F = 0.
The matrix A € RT-NvxT-Ne is a block-diagonal matrix with matrix A as
diagonal element. We are now able to formulate a global optimization problem
as

Vi(ag, - = min ZJV ' 2d) + Je(Q) (8a)

s.t. AQ YF=0. (8b)

Problem couples Ny + 1 independent criteria through Constraint . As
the resulting criterion is additive and Constraint is affine, Problem
has a nice form to use decomposition-coordination methods.

Remark 2.1 There may be additional constraints in the problem, for example
bound constraints F ; < Fti < Fi on the node flows, and bound constraints
Q: <Qi < @: on the edge flows. These constraints may be modeled, in the
global optimization problem criterion, by additional terms like

Neg T—-1
)|

{ZHLlF]T F ] 'HE{ZZHQ%Q] (@Qf

e=1 t=0

where

0 ifzeF
Ig:x— 3
+00 otherwise

is the indicator function of the set F. These additional terms do not change
the additive structure of the cost function. O
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2.2 Mixing nodal and time decomposition on a microgrid

In the companion paper [7], we introduced a generic framework to bound a
global problem by decomposing it into smaller local subproblems, easier to
solve. In Problem , the coupling constraints can be written (F,Q) €
—S, where the convex set S of RT"™¥v x RT"Ne is the linear subspace

S={(f,q) e RTN x RT"N¢ | Aq+ [ =0} . 9)

Problem lies in the generic framework introduced in [7], and the coupling
equation AQ + F = 0 becomes a special case of the generic coupling constraint
of this framework. Moreover, it can easily be checked that the dual cone of the
set S defined in (9) has the following expression:

S* ={(p,p) e RTNM x RTNe | ATp — =0} . (10)
The duality terms arising from Constraint are given by the formula

P, )+ {u.q)=(p,(Ag+ 1)), Y(f,q) €S, Y(p,u) €S*, (11)

where (u,v) — (u,v) is the usual scalar product on R”"™v. In order to solve
Problem , we apply the decomposition schemes introduced in [7]. More pre-
cisely, we first apply spatial decoupling into nodal and edge subproblems, and
then apply the temporal decomposition induced by Dynamic Programming.

2.2.1 Price decomposition of the global problem

We follow the procedure introduced in [7, §2.2] to provide a lower bound and to
solve Problem by price decomposition. We limit ourselves to deterministic
price processes, that is, vectors p = (p',...,p™) € RT""v. By Equation (II)),
the global price value function associated with Problem has the following

expression, for all zo = (8, ,20”) € X§ x --- x XV,
Ny
Vipla) = min > J5(F ab) + Je(Q) +E[(p. AQ + F)] . (12)
=1

The global price value function V[p] naturally decomposes into a sequence of
nodal price value functions

Vylp'l(ap) = min To(F' ) +E[(p", F1)], Vie [1, W], (13a)

and an edge price value function (which, to the difference of the nodal price
value function (13al), does not depend on the initial state x)

Velpl = min Je(Q) + E[(A7p.Q)] (13b)
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For all i € [1, Ny], considering the expression of the nodal cost Ji, the
nodal price value function (13al) is, for =) € X,

T—1
Vi) = min E| S (EXGUL W) + (0 FD) + KX
Xi Ui F* i—0
s.t., vt e [0,T-1],

Xi-g-l:gz(Xiana i—&-l)v Xézméa

A;(X27U;7 ;+1):‘th ;

J(Uz) C O—(le e aWta Wt+1) B
The optimal value Kﬁ, [p](z}) can be computed by Dynamic Programming
under the so-called white noise assumption.

Assumption 1. The global uncertainty process (W, -+ , W) consists of
stagewise independent random variables.

For all node ¢ € [1,Ny] and price p* € R, we introduce the sequence
{V3 [P ]} =o0,... o of local price value functions defined, for all ¢ € [0,7] and
zi € Xi, by

T-1
Vol = min B| 3 (BXLULWLL) + (6 F)) + K1)

Xt Ui F* s=t
(14a)
s.t., Vte [0, T-1],
Xi—i—l = g;(XstUzsa fs—&-l) ’ lef = xi ’ (14b)
A;(Xzsv U;a i+1) = FSZ ) (14(3)
o(UY) Co(Wigr, -, W, W), (14d)

with the convention KQT [p!] = K®. Under Assumption |1} these local price
value functions satisfy the Dynamic Programming equations for all i € [1, Ny]:

V3 rlp'l(ah) = K'(af) (15a)
and, fort =T-1,...,0,

Vi [p)(at) = B [ min L (e}, uh, W) + (b}, Al uf, W)

+ V)i wh, W) | (15b)

Note that the measurability constraints o(U.) C o(W1,---, W ;1) in the
above problem can be replaced by o(U}) C o(W?, -+, W},,) without
changing the value V3,[p'](x}). Indeed, Equation only involves the local
noise process (W4, - W), so that there is no loss of optimality to restrain
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the measurability of the control process U’ to the filtration generated by the
local noise process W'.

Considering the expression of the edge cost Jg(Q), the edge price value
function V¢ [p] is additive w.r.t. time and space, and thus can be decomposed at
each time t and each edge e. The resulting edge subproblems do not involve any
time coupling and can be computed by standard mathematical programming
tools or even analytically.

2.2.2 Resource decomposition of the global problem

We now solve Problem by resource decomposition (see [7, §2.2]) using
a deterministic resource process r = (ri,...,7"¥v) € RT™ guch that r €
im(A)P] We decompose the global constraint w.r.t. nodes and edges as

F=r , AQ=-r.

The global resource value function associated to Problem has the following

expression, for all zo = (8, ,20") € X§ x --- x XV,
Ny
Tlrleo) = i S R(F ) + (@) (16w
=1
st. F—r=0, AQ+r=0. (16b)

The global resource value function V[r] naturally decomposes in a sequence
of nodal resource value functions

Vo[r)(zh) = min J(F' i) st. F'—ri=0, Yie[L,Ny], (17a)
Fl
and an edge resource value function (which does not depend on )

Velr] = InQin Je(Q) st. AQ+r=0. (17b)

For all ¢ € [1, Ny], considering the expression of the nodal cost J},, the
nodal resource value function (17a)) is, for =} € X,

T-1
Vo) = min B| Y LKL UL WE) + KX
XU F par
s.t., Vte [0,T—-1],
X§+1 = gZ(Xi,Ui,Wiﬂ) , Xo=ap,
AY(XL UL W) = F
o(U) Co(Wy,-- W, W),

F/—r;j=0.

2 If r ¢ im(A), we have V[r] = +oo in as the constraint AQ + r = 0 cannot be
satisfied.
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If Assumption [1| holds true, V; [r'](z}) can be computed by Dynamic Pro-
gramming. That leads to a sequence {V;’t}tzo,...’T of local resource value
functions given, for all ¢ € [0,T] and z¢ € X, by

, T-1
Ve frilzl) = min | E[ ST LUXL UL W) + KX
xiuiFt LT
st., Vse[t, T-1],
Xi—&-l = gi(Xi’Ui’Wi+l) ) X; = l’i 3

Ai(Xi’U;Wi+l) =F! )

S

O—(Ué) C J(Wt+1a e 7Wsa Ws+1) 5

F,-r;=0,
with the convention V;’T[ri] = K'. As already noticed in the case of price
functions, the measurability constraints o(U?%) C o(W 1, , W) in the

above problem can be replaced by the more restrictive constraint o(U}) C
o(Wi, ... ,Wi,,) without changing the value V,[r](x}).

In the case of resource decomposition, edges are coupled through the con-
straint AQ + 7 = 0, so that the edge resource value function Ve¢[r] in is
not additive in space, but remain additive w.r.t. time. As in price decompo-
sition, it can be computed by standard mathematical programming tools or
even analytically.

2.2.3 Upper and lower bounds of the global problem

Applying [7, Proposition 2.2] to the global price value function and re-
source value functions , we are able to bound up and down the optimal

value V¢ (zo) of Problem (@), for all zo = (x}, - i) e XE x - x XD
Ny , Ny
>Vl + Velp) < Viwo) < D Vylri(eg) +Velr] . (18)
i=1 i=1

From the expression of the dual cone S*, which does not impose any
constraint on the vector p, these inequalities hold true for any price p € RT"™v,
and for any resource r € im(A).

2.3 Algorithmic implementation

In we decomposed Problem spatially and temporally: the global prob-
lem is split into (small) subproblems using price and resource decompositions,
and each subproblem is solved by Dynamic Programming. These decomposi-
tions yield bounds for the value of the global problem. To obtain tighter bounds
for the optimal value , we follow the approach presented in [7, §3.2], that
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is, we maximize (resp. minimize) the left-hand side (resp. the right-hand side)
in Equation w.r.t. the price vector p € RT"™ (resp. the resource vec-
tor r € RT"M), We observe that determining optimal deterministic price and
resource coordination processes turns to implement gradient-like algorithms.

2.8.1 Lower bound improvement

We detail how to improve the lower bound given by the price value function
in (18). We fix 2o = (zf, - i) € X x - x X0V, and we proceed by
maximizing the global price value function V[p](zp) w.r.t. the deterministic
price process p,

sup  V[pl(xo), (19a)

pERT'NV
that is written equivalently (see Equation )

Ny

sup min ;%(Fivwé)+Js(Q)+<p7]E[AQ+F]>' (19b)

We are able to maximize Problem (19b]) w.r.t. p using a gradient ascent method
(Uzawa algorithm). At iteration k, we suppose given a deterministic price
process p*) and a gradient step p*). The algorithm proceeds as follows:

FitFtY ¢ arg min Ji,(F?, x}) +E[<pi(k) JFD], Vie [1L,M], (20a)
i

Q(kH) € argmin Jg(Q) + EKATP(M ,Q>] ) (20b)
Q

pEHD — (B | () E[AQ(k"H) + F(’f+1)] ) (20c)

At each iteration k, updating p*) requires the computation of the gradient
of VV[p®](xf, -+, x}), that is, the expected value E[AQ(kH) + F(k+1)],
usually estimated by Monte-Carlo. The price update formula (20d), corre-
sponding to the standard gradient algorithm for the maximization w.r.t. p
in Problem , can be replaced by more sophisticated methods (BFGS,
interior point method).

2.8.2 Upper bound improvement

We now focus on the improvement of the upper bound given by the global
resource value function in (I8). We fix o = (z§, - o) e X x - x X,
and we aim at solving the problem

Ny
inf  V[r|(zg) = inf Volri(zh) + Velr] . 21a
i VP = it S Vel et
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The detailed expression of this problem is (see Equation )

Ny
inf (min JL(Ft zl) st. F° —TiZO)
reim(A) <§ Fi vl 0)

+(n5n Je(Q) sit. AQ+r:O)>. (21b)

The gradients w.r.t. 7, namely p’ = VriVi) [r'](z}) and & = V,.Vg[r], are
obtained when computing the nodal resource value functions (17a)) and the
edge resource value function (17b)). The minimization problem (21b)) is then
solved using a gradient-like method. At iteration k, we suppose given the

resource 7(¥) and a gradient step p*). The algorithm proceeds as follows:
i(k+1) N NE LA i i .
F € argmin J),(F*, ) st. F'—r', Vie[l,Ny], (22a)
i
Q™Y € argmin Je(Q) s.t. AQ +r=0, (22b)
Q
P+ — proj (roe) — o) (kD) 4 5<k+1>)) , (22¢)

where proji,4) is the orthogonal projection onto the subspace im(.A). Again,
the projected gradient algorithm (22c) used to update the resource can be
replaced by more sophisticated methods.

3 Application to microgrids optimal management

In this section, we treat an application. We apply the price and resource de-
composition algorithms described in §2.3]to a microgrid management problem,
where different buildings are connected together. The energy management sys-
tem (EMS) controls the different energy flows inside the microgrid, so as to
ensure at each node and at each time that the production meets the demand at
least cost. We give numerical results comparing the price and resource decom-
position algorithms with the Stochastic Dual Dynamic Programming (SDDP)
algorithm.

3.1 Description of the problems

We look at a microgrid connecting different buildings together. As explained
in we model the distribution network as a directed graph with buildings
set on nodes and distribution lines set on edges. The buildings exchange energy
with each other via the distribution network. If the local production is unable
to fulfill the local demand, energy can be imported from an external regional
grid as a recourse.
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The network configuration corresponds to heterogeneous domestic build-
ings. Each building is equipped with an electrical hot water tank, some have
solar panels and some others have batteries. As batteries and solar panels are
expensive, they are shared out across the network. We view batteries and elec-
trical hot water tanks as energy stocks. Depending on the presence of battery
inside the building, the state X 1 at node ¢ has dimension 2 or 1 (energy stored
inside the water tank and energy stored in the battery), and such is the con-
trol U? at node i (power used to heat the tank and power exchanged with the
battery). Furthermore, we suppose that all agents are benevolent and share
the use of their devices across the network.

We limit ourselves to a one day horizon. We look at a given day in sum-
mer, discretized at a 15mn time step, so that T = 96. Each house has its
own electrical and domestic hot water demand profiles. At node 4, the uncer-
tainty W; is a two-dimensional vector, namely the local electricity demand
and the domestic hot water demand. We choose to aggregate the production
of the solar panel with the local electricity demand. We model the distribution
of the uncertainty W with a finite probability distribution on the set Wi.

We consider six different problems with growing sizes. Table [I] displays the
different dimensions considered. As an example, the 12-Nodes problem consists

[ Problem [ Ny (nodes) Ng (edges) dim(Xy) dim(Wy) supp(W,) |

3-Nodes 3 3 4 6 103
6-Nodes 6 7 8 12 106
12-Nodes 12 16 16 24 1012
24-Nodes 24 33 32 48 1024
48-Nodes 48 69 64 96 1048

Table 1 Microgrid management problems with growing dimensions

of twelve buildings; four buildings are equipped with a 3 kWh battery, and four
other buildings are equipped with 16 m? of solar panels. The devices are dis-
patched so that a building equipped with a solar panel is connected to at least
one building with a battery. The support size of each local random variable W;
remains low, but that of the global uncertainty W, = (W}, , W) be-
comes huge as Ny grows, so that the exact computation of an expectation
w.r.t. W, is out of reach. The topologies of the different graphs are depicted
in Figure[l}] The structure of the microgrid as well as the repartition of batter-
ies and solar panel on it come from case studies provided by the urban Energy
Transition Institute Efficacity.

3.2 Resolution algorithms

We reconsider the two decomposition algorithms introduced in and apply
them to each problem described in Figure [[} We will term Dual Approzimate
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3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes

Fig. 1 Topologies of the different graphs connecting buildings in the microgrids

Dynamic Programming (DADP) the price decomposition algorithm described
in and Primal Approzimate Dynamic Programming (PADP) the re-
source decomposition algorithm described in We compare DADP and
PADP with the well-known Stochastic Dual Dynamic Programming (SDDP)
algorithm (see [14] and references inside) applied to the global problem.

3.2.1 Gradient-like algorithms

It is common knowledge that the usual gradient descent algorithm may be
slow to converge. To overcome this issue, we use a quasi-Newton algorithm to
approximate numerically the Hessian of the two global value functions p —
Vipl(zh, - ,25¥) in and 7 — V[r](z}, - ,25") in (I6). More precisely,
the quasi-Newton algorithm is performed using Ipopt 3.12 compiled with the
MUMPS linear solver (see [15]). The algorithm stops either when a stopping
criterion is fulfilled or when no descent direction is found.

3.2.2 SDDP on the global problem

In order to have at disposal a reference solution for the global problem , we
solve it using the Stochastic Dual Dynamic Programming (SDDP) method.
But the SDDP algorithm is not implementable in a straightforward manner.
Indeed, the cardinality of the global noise support becomes huge with the num-
ber of nodes Ny, (see Table , so that the exact computation of expectations,
as required at each time step during the backward pass of the SDDP algorithm
(see [16]), becomes untractable. To overcome this issue, we resample the prob-
ability distribution of the global noise (W7, --- , Wiv V) for each time ¢ to deal
with a noise support of reasonable size. To do so, we use the k-means clus-
tering method, as described in [I7]. By using the Jensen inequality w.r.t. the
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noises, we know that the optimal quantization of a finite distribution yields a
new optimization problem whose optimal value is a lower bound for the opti-
mal value of the original problem, provided that the local problems are convex
w.r.t. the noises (see [I8] for details). Then, the exact lower bound given by
SDDP with resampling remains a lower bound for the exact lower bound given
by SDDP without resampling, which istself is a lower bound for the original
problem by construction. In the numerical application, we fix the resampling
size to 100. We denote by {V5%"},_o .. 1 the value functions returned by the
SDDP algorithm. Notice that, whereas the SDDP algorithm suffers from the
cardinality of the global noise support, the DADP and PADP algorithms do
not.

We stop SDDP when the gap between its exact lower bound and a statisti-
cal upper bound is lower than 1%. That corresponds to the standard SDDP’s
stopping criterion described in [I6], which is reputed to be more consistent
than the first stopping criterion introduced in [I9]. SDDP uses a level-one cut
selection algorithm [20] and keeps only the 100 most relevant cuts. By doing
so, we significantly reduce the computation time of SDDP.

3.3 Devising control policies

Each algorithm (DADP, PADP and SDDP) returns a sequence of value func-
tions indexed by time, that allow to build a global control policy. Using these
value functions, we define a sequence of global value functions {Vi}iepo,r) ap-
proximating the original value functions:

o V, = V4% for SDDP,

Ny
o Vo= Vi,lpl + Ve, lp] for DADP,
i=1

Ny
o Vi =Y Vy,[r]+ Veulr] for PADP.
i=1
We use these global value functions to build a global control policy for all time
t € [0,T — 1]. For any global state z; € X; and global noise w;1 € W1, the
control policy is a solution of the following one-step DP problem:

Ny Ne

Ve(@e, wii1) € arg min min Li(a, up, wig)+ > 15(a5) +Vera (wi41) (23a)
ut At =1 e=1

s.t. xh, = gi(z},up,wi,), Vie[l,Ny], (23b)

Ai(x, ug,wy ) = fi, Vie[1,Ny], (23¢)

Aqt + ft =0. (23d)

As the strategy induced by is admissible for the global problem , the
expected value of its associated cost is an upper bound of the optimal value VOtt
of the original minimization problem .
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3.4 Numerical results

We first compare the three algorithms depicted in We analyze the con-
vergence of them and the CPU time needed for achieving it. We also present
the value of the exact bounds obtained by each algorithm. Then we evaluate
the quality of the strategies introduced in for the three algorithms.

3.4.1 Computation of the Bellman value functions

We solve Problem by SDDP, price decomposition (DADP) and resource
decomposition (PADP). Table [2| details the execution time and number of
iterations taken before reaching convergence. For a small-scale problem like

Problem 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
IX¢] 4 8 16 32 64
SDDP CPU time 1 3’ 10’ 79 453’
SDDP iterations 30 100 180 500 1500
DADP CPU time 6’ 14’ 29’ 41’ 128’
DADP iterations 27 34 30 19 29
PADP CPU time 3 7 22’ 49’ 91’
PADP iterations 11 12 20 19 20

Table 2 Convergence results for SDDP, DADP and PADP

3-Nodes (second column of Table [2)), SDDP is faster than DADP and PADP.
However, for the 48-Nodes problem (last column of Table7 DADP and PADP
are more than three times faster than SDDP. Figure [2| depicts how much CPU
time take the different algorithms with respect to the number of state variables
of the district. For this case study, we observe that the CPU time grows almost
linearly w.r.t. the number of nodes for DADP and PADP, whereas it grows
exponentially for SDDP. Otherwise stated, decomposition methods scale better
than SDDP in terms of CPU time for large microgrids instances.

Convergence of the SDDP algorithm. Figure [3] displays the convergence of
SDDP for the 12 nodes problem. The approximate upper bound is estimated
every 10 iterations, with 1,000 scenarios. We observe that the gap between the
upper and lower bounds is below 1% after 180 iterations. The lower bound
remains stable after 250 iterations.

DADP and PADP convergence. We exhibit in Figure [ the convergence of the
DADP’s price process and the PADP’s resource process along iterations for
the 12-Nodes problem. We depict the convergence only for the first node, the
evolution of price process and resource process in other nodes being similar. On
the left side of the figure, we plot the evolution of the 96 different values of the
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Fig. 2 CPU time for the three algorithms as a function of the state dimension
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Fig. 3 Evolution of SDDP lower and upper bounds for the 12-Nodes problem

price process pt = (p§, -+, plel) during the iterations of DADP. We observe
that most of the prices start to stabilize after 15 iterations, and do not exhibit
sensitive variation after 20 iterations. On the right side of the figure, we plot the
evolution of the 96 different values of the resource process r! = (rd, - ,rk_)
during the iterations of PADP. We observe that the convergence of resources
is quicker than for prices, as the evolution of most resources starts to stabilize
after only 10 iterations.

Quality of the exact bounds. We then give the lower and upper bounds ob-
tained by SDDP, DADP, PADP in Table [3] The lower bound of the SDDP
algorithm is the value Kgddp (x0) given by the SDDP method. We recall that
SDDP returns a lower bound because it uses a suitable resampling of the
global uncertainty distribution instead of the original distribution itself (see
the discussion in §3.2.2)). DADP and PADP lower and upper bounds are given
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Fig. 4 Convergence of DADP’s prices (a) and PADP resources (b) for the 12-Nodes problem

by Equation (19b) and Equation (21b|) respectively. In Table 3| we observe
that

e SDDP and DADP lower bounds are close to each other,

e for problems with more than 12 nodes, DADP’s lower bound is up to 2.6%
better than SDDP’s lower bound,

e the gap between the upper bound given by PADP and the two lower bounds
is rather large.

’Problem 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP LB 225.2 455.9 889.7 1752.8 3310.3
DADP LB 213.7 447.3 896.7 1787.0 3396.4
PADP UB 252.1 528.5 1052.3 2100.7 4016.6

Table 3 Upper and lower bounds given by SDDP, DADP and PADP

To sum up, the important result of this paragraph is that, for optimization
problems of large microgrids, DADP is able to compute a slightly better lower
bound than SDDP, and compute it much faster than SDDP. A parallel version
of DADP would obtain even better performance.

3.4.2 Policy simulation results

We now compare the performances of the different algorithms in simulation.
As explained in we are able to devise online strategies induced by SDDP,
DADP and PADP for the global problem, and to compute by Monte Carlo an
approximation of the expected cost of each of these strategies.

The results obtained in simulation are given in Table ] SDDP, DADP
and PADP values are obtained by simulating the corresponding strategies on
5,000 scenarios. The notation + corresponds to the 95% confidence interval.
We use the value obtained by the SDDP strategy as a reference, a positive gap
meaning that the associated decomposition-based strategy is better than the
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SDDP strategy. Note that all these values correspond to admissible strategies
for the global problem , and thus are statistical upper bounds of the optimal
cost VOﬁ of Problem .

Network [ 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes ]
SDDP value [ 226 + 0.6 471 £0.8 936 £ 1.1 1859 £1.6 3550 &+ 2.3 ]

DADP value | 228 £ 0.6 464 £0.8 923 +£1.2 1839+ 1.6 3490 + 2.3
Gap -0.8 % +15% +1.4% +1.1% +1.7%
PADP value | 229 £ 0.6 471 £08 931 +£1.1 1856+ 1.6 3508 + 2.2
Gap -1.3% 0.0% +0.5% +0.2% +1.2%

Table 4 Simulation results for strategies induced by SDDP, DADP and PADP

We make the following observations.

e For problems with more than 6 nodes, both the DADP strategy and the
PADP strategy beat the SDDP strategy.

e The DADP strategy gives better results than the PADP strategy.

e Comparing with the last line of Table [3] the statistical upper bounds ob-
tained by the three simulation strategies are much closer to SDDP and
DADP lower bounds than PADP’s exact upper bound. By assuming that
the resource coordination process is deterministic in PADP, we impose con-
stant importation flows for every possible realization of the uncertainties,
thus penalizing heavily the PADP algorithm (see also the interpretation of
PADP in the case of a decentralized information structure in [7], §3.3]).

4 Conclusion

In this article, as an application of the companion paper [7], we have studied
optimization problems where coupling constraints correspond to interaction
exchanges on a graph and we have presented a way to decompose them spa-
tially (Sect. . We have outlined two decomposition algorithms, the first re-
lying on price decomposition and the second on resource decomposition; they
work in a decentralized manner and are fully parallelizable. Then we have used
these algorithms on a specific case study (Sect. , namely the management
of several district microgrids with different prosumers exchanging energy al-
together. Numerical results have showed the effectiveness of the approach: the
price decomposition algorithm beats the reference SDDP algorithm for large-
scale problems with more than 12 nodes, both in terms of exact bound and
induced online strategy, and in terms of computation time. On problems with
up to 48 nodes (corresponding to 64 state variables), we have observed that
their performance scales well as the number of nodes grew: SDDP is affected
by the well-known curse of dimensionality, whereas decomposition-based meth-
ods are not. Moreover, we have presented in this article a serial version of the
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decomposition algorithms, and we believe that leveraging their parallel nature
could decrease further their computation time.

A natural extension is the following. In this paper, we have only considered
deterministic price and resource coordination processes. Using larger search
sets for the coordination variables, e.g. considering Markovian coordination
processes, would make it possible to improve the performance of the algo-
rithms. However, one would need to analyze how to obtain a good trade-off
between accuracy and numerical performance.
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