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Abstract We consider a large scale multistage stochastic optimization prob-
lem involving multiple units. Each unit is a (small) control system. Static con-
straints couple units at each stage. To tackle such large scale problems, we pro-
pose two decomposition methods, whether handling the coupling constraints
by prices or by resources. We introduce the sequence (one per stage) of global
Bellman functions, depending on the collection of local states of all units. We
show that every Bellman function is bounded above by a sum of local resource-
decomposed value functions, and below by a sum of local price-decomposed
value functions — each local decomposed function having for arguments the
corresponding local unit state variables. We provide conditions under which
these local value functions can be computed by Dynamic Programming. These
conditions are established assuming a centralized information structure, that
is, when the information available for each unit consists of the collection of
noises affecting all the units. We finally study the case where each unit only
observes its own local noise (decentralized information structure).

Keywords Stochastic Programming - Discrete time stochastic optimal
control - Decomposition methods - Dynamic programming

Mathematics Subject Classification (2000) 93A15 - 93E20 - 49M27 -
491,20

1 Introduction

Multistage stochastic optimization problems are, by essence, complex because
their solutions are indexed both by stages (time) and by uncertainties (scenar-
ios). Hence, their large scale nature makes decomposition methods appealing.
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We refer to [I] and [2] for a generic description of decomposition methods
in stochastic programming problems. We sketch decomposition methods along
three dimensions: temporal decomposition methods like Dynamic Programming
[3.4] break the multistage problem into a sequence of interconnected static sub-
problems; scenario decomposition methods [5] split large scale stochastic op-
timization problems scenario by scenario, yielding deterministic subproblems;
spatial decomposition methods break the spatial coupling of the global problem
to obtain local decoupled subproblems. Dynamic Programming methods, and
their extensions, have been used on a wide panel of problems, for example in
dam management [6]. Scenario decomposition is a well-established method and
has been successfully applied to the resolution of unit-commitment problems
[7], among others. Such methods gain a lot of interests recently, with extension
to mixed-integer problems [8[9] and network formulations [I0]. Spatial decom-
position of large-scale optimization problems was first studied in [I1], and
extended to open-loop stochastic optimization problems [I2]. Recent develop-
ments have mixed spatial decomposition methods with Dynamic Programming
to solve large scale multistage stochastic optimization problems. This work led
to the introduction of the Dual Approximate Dynamic Programming (DADP)
algorithm, which was first applied to unit-commitment problems with a single
central coupling constraint linking different stocks altogether [I3], and later
applied to dams management problems [I4]. Once the global problem decom-
posed by DADP, it is possible to solve each subproblem locally by temporal
decomposition, that is, by Dynamic Programming (DP).

This article moves one step further by considering altogether two types of
decompositions when dealing with general coupling constraints among units.
Such constraints often arise from flows conservation on a graph. Optimization
problems on graphs (monotropic optimization) have been studied since long
[I5l16]. The motivation of this paper comes from electrical microgrid man-
agement. In particular, we are interested in multistage stochastic problems
corresponding to a district microgrid with different prosumers exchanging en-
ergy via a local network. The global problem can naturally be formulated as a
sum of local multistage stochastic optimization subproblems coupled together
via a global network constraint. Such a problem is analyzed in a compan-
ion paper [I7T], which presents a case study consisting of a large scale district
microgrid coupling up to 48 small scale units together.

The paper is organized as follows. In Sect. 2l we introduce a generic stochas-
tic multistage problem with different subsystems linked together via a set
of coupling constraints. For this problem, we present price and resource de-
composition schemes, that make use of so-called admissible coordination pro-
cesses. We show how to bound the global Bellman functions above by a sum
of local resource-decomposed value functions, and below by a sum of local
price-decomposed value functions. In Sect. Bl we study the special case of
deterministic coordination processes. First, we show that the local price and
resource decomposed value functions satisfy recursive Dynamic Programming
equations. Second, we outline how to improve the bounds obtained by the
decomposition algorithms. Third, we provide an analysis of the decentralized
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information structure, that is, when the controls of a given subsystem only
depend on the past observations of the noise in that system. Finally, we show
how to use the decomposed Bellman functions to devise admissible policies for
the global problem.

2 Upper and lower bounds by spatial decomposition

We focus in §2.Tlon a generic decomposable optimization problem and present
price and resource decomposition schemes. In §2.21 we apply these two meth-
ods to a multistage stochastic optimization problem, by decomposing a global
static coupling constraint by means of so-called price and resource coordina-
tion processes. For such problems, we define the notions of centralized and
decentralized information structures.

2.1 Bounds for an optimization problem under coupling constraints via
decomposition

We first introduce a generic optimization problem under coupling constraints
in §2.1.1] and show in §2.1.2] that, by decomposition, we are able to bound its
optimal value.

2.1.1 Global optimization problem formulation

We describe a generic optimization problem coupling different local units. We
borrow here the abstract duality formalism of [I§].

Let Z1, ..., ZN¥ be N sets and J? : Z! — (—o0, +o0], i € [1, N], be local
criteria taking values in the extended reals and supposed proper (J¢ # +00),
where [1, N] = {1,2,--- ,N — 1, N} denotes the set of integers between 1
and N. Let RY, ..., RY be N vector spaces and 9 : Z! — R, i € [1, N], be
mappings that model local constraints.

From these local data, we formulate a global minimization problem under
constraints. We define the product set Z = Z! x --- x Z¥ and the product
space R = R! x --- x RY. Finally, we introduce a subset S C R that captures
the coupling constraints between the N units.

We define the global optimization problem as

N
Vvi= inf Ji(2Y) la
D (13)
under the global coupling constraint

(01 (zY), -, 9N (zN)) € =S (1b)

The set S is called the primal admissible set, and an element (r!,--- rV) € -8
is called an admissible resource vector. We note that, without Constraint (IHl),



4 P. Carpentier et al.

Problem () would decompose into N independent subproblems in a straight-
forward manner.

We moreover assume that the spaces R, ..., RN (resources) are paired
with spaces P1,..., PN (prices) by the bilinear forms (-,-) : P! x Rf — R
(duality pairings). We define the product space P = P! x --- x PN so that R
and P are paired by the duality pairing (p,r) = vazl (p",r") (see [18] for
further details; a typical example of paired spaces is a Hilbert space and its
topological dual space).

2.1.2 Upper and lower bounds from price and resource value functions

Consider the global optimization problem (). For each i € [1, N], we intro-
duce local price value functions V' : P* — [—o0, +oc] by

Kz[pz] — inf Jl(zl) + <pz' ’ﬂi(zi» , (2)

ZieZ?
and local resource value functions V'R > [—00, +00] by

V') = inf Ji(z') st 0i(z) =1, (3)
zteZt

We denote by S* C P the dual cone associated with the constraint set S
defined by

S*={peP|{(p,r)y>0, Vres}. (4)

The cone S* is called the dual admissible set, and an element (p!,--- ,p™) € S*
is called an admissible price vector.

The next proposition states that lower and upper bounds are available for
Problem (), and that they can be computed in a decomposed way, that is,
unit by unit.

Proposition 2.1 For any admissible price vector p = (p',--- ,pN) € S* and
for any admissible resource vector r = (r',--- V) € —S, we have the fol-

lowing lower and upper decomposed estimates of the global minimum V¥ of

Problem ():

V] < V< Y V). (5)
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Proof. For a given p = (pt,---,p"V) € S*, we have

N

N
SVl =Y it S+ (D)
i=1 i=1

N

:211612 . JE) +(p, (94 (zh),..., 0N (M),
N

< i 1,0y gN(N
_2122 ._1J(Z)+<p’(19 (z1),....9V(=Y)))
st. (0'(z"),...,9N(=N)) e =8
(minimizing on a smaller set)
N
< i
shb 27
st (9'(2h),..., 9N (Y)) e =8,
(negative pairing between —S and S*)

which gives the lower bound inequality. The upper bound arises directly, as the
optimal value V* of Problem () is given by inf,c g S, V'[r]] < SN, V']
for any r € —S. O

2.2 The special case of multistage stochastic optimization problems

Now, we turn to the case where Problem () corresponds to a multistage
stochastic optimization problem elaborated from local data (local states, local
controls, and local noises), with global coupling constraints at each time step.

We consider a time span {0,...,T} where T' € N* is a finite horizon, and
a number N € N* of local units.

2.2.1 Local data for local stochastic control problems

We detail the local data describing each unit. Let {Xi}te[[o 7 {Ui}te[[o 1]
and {Wi}te[l 1 be sequences of measurable spaces for i € [1, N]. We con-

sider two other sequences of measurable vector spaces {Ri and

{Pg}te[[O,T—l]]

a bilinear form (p’ ,r") for all p € P} and r* € R}. We also introduce, for
all i € [1, N] and for all £ € [0,T — 1],

' ' }tGHO,Tfl]]
such that for all ¢, R} and P, are paired spaces, equipped with

e measurable local dynamics g; : X; x Uj x Wi, — Xi,,
e measurable local coupling functions ©; : X} x U; — Rj,
e measurable local instantaneous costs L} : Xy x Uy x W | — (—o00, +09],
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and a measurable local final cost K* : X5 — (—oo,+00]. We incorporate
possible local constraints (for instance constraints coupling the control with
the state) directly in the instantaneous costs Li and the final cost K, since
they are extended real valued functions which can possibly take the value +o0.

2.2.2 Global data and information structures

From local data given above, we define the global state, control, noise, resource
and price spaces at time ¢ as products (over units) of the local spaces as

N N N N N
X =1Ixi, =[]ui, w,=][Wi, Re=][R:, P.=]]P!
i=1 i=1 =1 i=1 i=1

and we introduce the global constraint set Sy C Ry at time t. The global
coupling constraint at time ¢ is a combination of the local couplings terms ©;:

We also define the global resource and price spaces R and P, as well as the
global set S C R, as

T-1 T-1 T-1
R=[[R:.. P=][P.S=]]5.
t=0 t=0 t=0

and we denote by S* C P the dual cone of S (see Equation ().

We introduce a probability space ({2, F,P). For all ¢ € [1, N], we introduce
local exogenous noise processes W' = {Wi}te[[l,T]]a where each Wi : Q2 — Wi
is a random variablelif We denote by W = (Wq,--- , W) the global noise
process, where

Wt:(W%a""WiV)' (6)

We consider two possible information structures [I9] Chap. 3] for decision
making in stochastic optimization problems.

e The centralized information structure is associated with the global noise
process W, which materializes at any time ¢ € [0, T] through the o-field F;
generated by all noises up to time ¢:

‘Ft:U(Wla"'aWt)v (7&)

with the convention Fy = {0, 2}. The o-field F; captures the information
provided by the uncertainties in all units at time t. We introduce the
filtration F = (F¢)efo,17-

1 Random variables are denoted using bold letters.
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o We also consider a decentralized information structure. For any ¢ € [0,T]
and any i € [1, N], we denote by F; the i-th local o-field which captures
the information provided by the uncertainties in unit ¢ only up to time ¢:

with F§ = {0, 2}. For all i € [1, N], we have that F; C F; = \/, Fi. We
also introduce the filtrations F* = (F});efo,r) for all i € [1, N].
In the sequel, for a given filtration G and a given measurable space Y, we

denote by L°(£2,G,P; Y) the space of G-adapted processes taking values in the
space Y.

2.2.3 Global stochastic control problem

With the data detailed in §2.2.1] and §2.2.2 we formulate the global optimiza-
tion proble

N T-1
Vo(eo) = i E[Z S LXLULWL) F KDL (s
st., Vte[0,T-1],
XiJrl :gi(XZtl’Uztl’WZtlJrl) ’ X6=$6 ) (8b)
o(U) c G}, (8¢)
(@tl(X%aU%)’a@iN(XiVanV))E_Sta (8d)
where 29 = (28, --- ,2}) € Xg is the initial state, where o(U?) is the o-field

generated by the random variable Uf;, and where the o-field G is either equal
to F; (centralized information structure) or to F; (decentralized information
structure), as detailed in §2.2.2

Constraints (8d) express the fact that each decision U? is Gi-measurable,
that is, measurable either with respect to the global information available at
time ¢ (see Equation (7al)) or to the local information available at time ¢ for
unit i (see Equation (7h)). Note that Constraints (8d) have to be taken in the
P-almost sure sense.

We denote by X; = (X},---,XY) and U, = (U},---,UY) the global
state and global control at time ¢. The stochastic processes X = (Xg, -+, X71)
and U = (Uy,--- ,Up_1) are called global state and global control processes.
The stochastic processes X' = (X§,--- , Xkh) and U" = (U}, - ,Ul_,) are
called local state and local control processes.

2 We suppose that measurability and integrability assumptions hold true, so that the
expected value in (B) is well defined.
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At each time t € [0, T, the global value function V; : vazl Xi — (—o0, +0o0]

is defined by, for all (z}, - ,z]) € X} x --- x XV,
N T-1
ViGek, e ) gg}g}E[;;Li(XivUﬁ,Wﬁﬂ)JrKi(XiT) ow)
st., Vse[t, T—1],
Xi+1 = gi(Xi,Ui,WiH) , Xi=ui, (9b)
o(Uy) C G, (9¢)

(XL UY),....oN(xY,Uul) e -5,  (9d)

with the convention Vp = vazl K. Of course, the value function defined
by (@) for t = 0 is the same as the function V; defined by (®). In the global value
function (@), the expected value is taken w.r.t. (with respect to) the global
uncertainty process (W1, -, Wr). We assume that the expected values in
problems (§) and (@) are well defined. In order to have optimal policies, we
also assume that the sets defined by the optimal solutions of Problems (@) are
nonempty.

2.2.4 Local price and resource value functions

As in §2.1.2 we are able to define local price and local resource value functions
for the global multistage stochastic problem (§]).

Let i € [1, N] be a local unit, and P* = (P}, -+, Pj. ) € L°(02, F,P; PY)
be a local price process, that is, adapted to the global filtration F in (7al) gen-
erated by the global noises (note that we do not assume that it is adapted to
the local filtration F* in (L) generated by the local noises). When special-
ized to the context of Problem (), the local price value function defined in
Equation (2) is written

~
_

VPGt = min, B 3 (LiX UL W)

~+
Il
o

+(PL oL )+ )| (100)
st., vte [0, T-1],
Xi-i—l = gz(Xi’Ui’ i-i—l) ) X6 = 'TIO ) (10b)
oUl) CGi. (10c¢)
We introduce paired spaces IE(Q, F,P;R") and IE*(Q, F,P; P?) such that the

duality product terms E[ tT:_Ol <Pti ,OHXE U§)>] make sense. This ensures

that Problem (I0) is well-posed. An example is to consider the case of square
integrable random variables, that is, O} (X}, U;) € L*(2, 7, P; R}) and P} €
L2(02, F,P; P}). Another possibility is that O (X}, U}) € L>(82, F;, P; RY) is
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a bounded random variable, and that P} € L'(£2, 7;,P; P}). We refer to [20]
for a discussion about the duality in the (L°°, L) pairing case.

At each time ¢t € [0,T], we also introduce the local price value functions
ViIPY : Xi — (—o0, +00] as, for all zi € Xi,

T—1
VP = win B Y (LKLULWEL)

s=t

+ (P!, OLXLUY)) + Ki(XiT)] . (11a)

, Vs et, T—1],
X&-i—l - gs(XZ U Ws-‘,—l) Xzzf = ZL'% ) (11b)
a(U,) C G, (11c)

with the convention V4. [P?] = K*. We define the global price value function
at time ¢ € [0, 7] as the sum of the corresponding local price value functions:

~ > VilPG) (12)

In the same vein, let R = (R!,---,Ri_,) € L(R2,F,P;R") be a local
resource process. The local resource value function, defined in Equation (@) is
written here

ViR (5h) = Jgglgl [ZLZ XL UL W) RG] (3a)
, Vte 0, T-1],
thlJrl = g;(Xéngv ZtlJr1> 9 X6 = :C%) 9 (13b>
o(Uy) C Gy, (13c)
04X}, U;) = Ry . (13d)

We introduce the local resource value functions Vi[R!] : Xi — (—o0, +o0] at
each time t € [0, 7] as, for all z¢ € X,

T-1

VIR («}) = )?3131 E{ZLZ (XLULW! )+ K(XT)| (14a)
, Vs et,T-1],

Xerl - gs(‘XZ U W;Jrl) ) X; = ZC; 9 (14b)

a(U) C G, (14c)

OLX . U,) = R, (14d)
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with the convention V; [R'] = K*. We define the global resource value function
at time ¢ € [0,T] as the sum of the local resource value functions as

N .
t) = ZVQ[RZ'](:E%) : (15)

We call the global processes R € E(Q,]:;IP’,R) and P € HNJ*(Q,}', P;P) coor-
dination processes.

2.2.5 Global upper and lower bounds

Applying Proposition 1] to the local price value functions (IQ) and resource
value functions (I3]) makes it possible to bound the global problem (). For
this purpose, we first define the notion of admissible price and resource coor-
dination processes.

We introduce the primal admissible set S of stochastic processes associated
to the almost sure constraints (8d):

S={Y =(Y,, .Y, ) e L(Q,F,P;R)
st. Y, €8, Pas., Vte[0,T-1]}. (16a)

We also define the dual admissible cone of S as

S ={Z=(Zy,- ,Z;_,) €L*(2,F,P;P)
st. E{Y,,Z,)] >0, VY €8, Vte[0,T-1]}. (16b)

We say that P € IE*(.Q, F,P;P) is an admissible coordination price process
if P € 8*. In a similar manner, we say that R € IE(Q, F,P;R) is an admissible
coordination resource process if R € —8.

By considering admissible price and resource coordination processes, we are
able to bound up and down Problem (8) and all the global value functions (3]
with the local value functions (1) and (I4]).

Proposition 2.2 Let P = (P!,..., PN) € 8" be any admissible coordination

price process and let R = (RY,--- , RN) € —8 be any admissible coordination
resource process. Then, for any t € [0,T] and for all z; = (zf,--- ,zN) € Xy,
we have

N N

> ViP)(x}) < Vi(a) SZ : (17)

=1 =1

Proof. For t = 0, the proof of the following proposition is a direct application
of Proposition 2] to Problem (&]).

For ¢t € [1,T—1], from the definitions ([I8) of & and 8*, the assumption
that (Ry,---,R;_;) (resp. (P,, -+, P;_,)) is an admissible process implies
that the reduced process (R,,---,R,_;) (vesp. (P,,---,P,_,)) is also ad-
missible on the reduced time interval [t, T — 1], hence the result by applying
Proposition 2.1 O
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3 Decomposition of local value functions by Dynamic Programming

We have seen in §2.2] that we are able to obtain upper and lower bounds of
optimization problems by spatial decomposition. We now show that spatial
decomposition schemes can be made compatible with time decomposition. We
will thus obtain a mix of spatial and time decompositions. In §3.1] we show that
the local price value functions (I0) and the local resource value functions (I3)
can be computed by Dynamic Programming if price and resource processes
are chosen deterministic. In §3.21 we detail methods to obtain tighter bounds
by appropriately choosing the deterministic price and resource processes. In
§3.31 we analyze the case of a decentralized information structure. Eventually,
in §3.4] we show how to use the local price and resource value functions as a
surrogate for the global Bellman value functions in order to compute global
admissible policies.
In the sequel, we make the following key assumption.

Assumption 1. The global uncertainty process (Wq,--- W) in [@) consists
of stagewise independent random variables.

Under Assumption [[l and in the case where Gi = F; for all ¢ and all i
(centralized information structure), Problem (8) can be solved by Dynamic
Programming, and the global value functions (@) satisfy the Dynamic Pro-
gramming equation (see [19] for further details):

rr) = ZKi(xé") : (18a)

and, for t =T-1,...,0,

Vi(x¢) = min E{Zlﬂ xt’ut’ t+1) +Vt+1(Xi+1a" Xﬁu) (18b)

uy €U

s.t. Xt+1 = gt(ztautv Wi+1) (18c)
(0 (z¢,ui), -, 0 (z) ,up))) € =5, . (18d)

In the case where G = F} for all ¢t and all i (decentralized information struc-
ture), the common assumptions under which the global value functions (@)
satisfy a Dynamic Programming equation are not met.

3.1 Decomposed value functions by means of deterministic coordination
processes

We prove now that, if the coordination price process P and the coordination
resource process R are deterministic, the local problems (I0) and (I3)) satisfy
local Dynamic Programming equations, provided that Assumption [ holds
true. We first study the local price value function (I0)).
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Proposition 3.1 Let p' = (pl,--- ,plr_;) € P be a deterministic price pro-
cess. Then, be it for the centralized or the decentralized information structure
(see §2.2.2), the local price value functions [IIl) satisfy the recursive Dynamic
Programming equation:

Vilp'l(ah) = K (z%) (19a)

and, fort =T-1,...,0,

Vilp](a}) = min E[Li(a}, uf, Wip,) + (5} O(at.u)

Vi ) (gi(ad wi, W) | - (19b)

Proof. Let p* = (p},--- ,pl_;) € P be a deterministic price vector. Then, the
price value function ([I{) has the following expression:

T-1

Vilpleh) = min 5| Y- LKL U W)
’ t=0

+{(pi, 01X}, Up)) + KY(X7) |, (20a)

st., Vte[0,T-1],
Xi+1 = gg(XZtl’Uztl’WZtlJrl) ’ XB = ‘TlO ’ (20b)
oUh) CGi. (20c¢)

In the case where G = JF;, and provided that Assumption [ holds true,
the optimal value of Problem (20) can be obtained by the recursive Dynamic
Programming equation (). Consider now the case Gi = Fi. Since the i-th
local value function and local dynamics in (20) only depend on the local noise
process W', there is no loss of optimality to replace the constraint U(Ui) C F
by o(U%) ¢ Fi. Moreover, Assumption [l implies that the local uncertainty
process (Wi, ..., W) consists of stagewise independent random variables, so
that the solution of Problem (20) can be obtained by the recursive Dynamic
Programming equation ([9). Finally, replacing the global o-field F; by the local
o-field F} (see Equation (7)) does not change anything in Problem 20). O

A similar result holds for the local resource value function (I3]). The proof
of the following proposition is left to the reader.

Proposition 3.2 Let r* = (r), -+ ,7%_;) € R' be a deterministic resource
process. Then, be it for the centralized or the decentralized information struc-
ture, the local resource value functions ([I)) satisfy the recursive Dynamic Pro-
gramming equations:

Volr'](ah) =K (a%) , (21a)
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and, fort =T-1,...,0,

Vi) = min B[Li(of, uf, Wiy ) + V) (gi(eh w, W) |, (210)

uiel:
s.t. Ol(xiul)=r1i. (21c)

In the context of deterministic admissible coordination price and resource
processes, the double inequality (I7) in Proposition 2.2l becomes

D Vilp)(ad) < Vi) < 3 VAl() - (22)

i=1

e Both in the lower bound and the upper bound of V; in ([22]), the sum over
indices ¢ materializes the spatial decomposition for the computation of the
bounds. For each of the bound, this decomposition leads to N independent
optimization subproblems that can be processed in parallel.

e For a given index 4, as stated in Propositions B.Jand 8.2} the computation
of the local value functions V:[p?] and V;[r] for t € [0,T] can be per-
formed by Dynamic Programming. The corresponding loop in backward
time materializes the temporal decomposition, processed sequentially.

Figure [1 illustrates this double decomposition.

time

space

Fig. 1 Mix of spatial and temporal decompositions

Remark 3.1 The results obtained in §3.I] when considering deterministic coor-
dination processes p and r can be extended to the case of Markovian coordi-
nation processes P and R. The reader is referred to |21, Chap. 7] for further
details. O
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3.2 Improving bounds

We have seen that given deterministic admissible price and resource coordi-
nation processes we are able to obtain upper and lower bounds for the global
Bellman functions (@). By choosing the best possible coordination processes,
we will obtain tighter bounds in Equation (22)). Moreover, that allows to in-
terpret the problems corresponding to the class of deterministic coordination
processes in terms of a relaxation (for price) or a restriction (for resource) of
the original primal problem (§]).

3.2.1 Selecting a deterministic global price process

By Propositions and B for any deterministic p = (pg, - ,pr—1) € S*,
we have

D Vilpl(ab) < V(o).

As a consequence, solving the following optimization problem

N T-1
sup minE[ (Li XU\ W
pess XU ; tz:; (X0 U Wiy
+ b SXLUD) + KX (230)
st., Vte [0, T-1],
Xi-i—l = gi(Xi’Ui’ i-i—l) ) X6 = 'TB ) (23b)
a(U}) C Gy, (23¢)

gives the greatest possible lower bound in the class of deterministic price co-
ordination processes. Since E[(p}, 01(X,U}))| = (p; ,E[0}(X},U})]) for all
t € [0,T — 1], Problem (23]) can be interpreted as the dual problem of

N T-1

wi B 30 Y LHXLUL Wi + KX (240)
’ i=1 t=0
s.t., vte [0, T-1],
thlJrl:gg(Xi’Ui’WZtlJrl) ) Xf):xé, (24b)
a(U;) C G, (24c)
(B0} (X1, UD)], - E[ON (XY, UN]) e =S (244)

Problem (24)) is a relaxation of Problem (), in the sense that the almost sure
constraint (8d)) is replaced by the constraint in expectation (24d). We refer to
[20, Chapter 8] for considerations on the duality between Problem (24)) and
Problem (23).
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3.2.2 Selecting a deterministic global resource process

By Propositions and B2 for any deterministic r = (g, ,rr—1) € =9,
we have

N .
Volzg, -+ ag) < ) Volr'l(ap)
i=1

Solving the following optimization problem

N T-1
inf_ min E{; ; Ly(X] U, W)+ K(XT)| (25a)
t., Ve e [0,T-1],
Xi+1 = gi(XianaWi+1) ) Xé = ‘736 ) (25b)
o(U}) C Fe, (25¢)
04X}, UY) =i, (25d)

thus gives the lowest possible upper bound in the set of deterministic resource
coordination processes. Furthermore, imposing by Constraint (25d]) that each
term ©}(X:,U}) has to be deterministic amounts to hardening the constraints
of Problem (8)), so that Problem (25) is a restriction of Problem (g]).

3.3 Analysis of the decentralized information structure

An interesting consequence of Propositions B and is that the local price
and resource value functions V[p’] and V;[r?] remain the same when choosing
either the centralized information structure or the decentralized one. In con-
trast, the global value functions V; depend on that choice. Let us denote by V;c
(resp. V;P) the value functions (@) in the centralized (resp. decentralized) case.
Since the admissible set induced by Constraint (Od) in the centralized case is
larger than the one in the decentralized case (because F; C JF; by (), we de-
duce that the lower bound is tighter for the centralized problem, and the upper
bound tighter for the decentralized problem: for all z; = (z},--- ,z) € Xy,

N
ZW (z}) < Vi€(xe) < VP( ZVi ' (26)

In some specific cases (but often encountered in practical applications), we
can even show that the best upper bound in (26) is equal to the optimal value
VP (z;) of the decentralized problem. We have the following proposition.

Proposition 3.3 Assume that, for all t € [0,T — 1], the global coupling con-
straint (O} (X, Up),...,0N (X}, U)) € =S, is equivalent to

3k, .y e =8, OXLUN =+ Vie[l,N]. (27)
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Then,
VP = | inf STVl (28)

Proof. Using Assumption (271), Problem () can be written as

N
VP (o) = inf < min IE{ZLz (XU} Wtz+1)+Ki(X§~)]> )

(rt,,rN)e=S
st. , Vte [[O,T—lﬂ ,
Xi+1 = g,(X1, Uy, i+1) g Xé =z,
o(Uy) C Ff
Oi(Xi,U") =i,

= ZVo

the last equality arising from the definition of Vé [7'] in (I3). O

As an application of the previous proposition, we consider the case of a
decentralized information structure, and we assume moreover that

e the global uncertainty process (Wl, co WN ) consists of independent ran-
dom processes, that is, the processes wl..., W are (spatially) indepen-
dent to each others.

e the coupling constraints (8d]) are of the form vazl OHX: U =0.

Note that we add here an independence assumption in space, whereas Assump-
tion [[l was an independence assumption in time.

A well-known result is that, if a sum of independent random variables
is zero, then every random variable in the sum is constant (deterministic).
From the dynamic constraint (8b]) and from the measurability constraint (Bd),
we conclude that each term ©(X: U?) is Fi-measurable in the decentral-
ized information structure case. From the space independence assumption,
the random variables O} (X, U?) are independent, and hence constant. By in-

troducing new variables (r},...,7), Constraints (8d) is written equivalently

OUXL U —ri =0Vic[1,N] and Zfil ri = 0. From Proposition B3, we
deduce that the optimal value of the problem with a decentralized informa-
tion structure is, in that case, equal to the upper bound obtained by resource

decomposition provided that the deterministic resource process (r!,--- r")
is chosen at best:
N .
VP (z0) = inf Volr'l(z)) .
Pleo =, it S Vi

In this specific example, resource decomposition allows to compute the opti-
mal value of the global problem (8) when using a decentralized information
structure.
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3.4 Producing admissible policies

We again restrict ourselves to deterministic coordination processes. We more-
over assume that the information structure corresponds to the centralized one
(Gi = F; in (@), in order to be able to compute Dynamic Programming based
policies (see however Remark below for the case of a decentralized infor-
mation structure).

Here we suppose that we have at our disposal pre-computed local value
functions {Zi}te[{o,T]] and {Vz}te[[O,T]} solving Equations (I9) for the price
value functions and Equations (2I)) for the resource value functions. Using
the sum of these local value functions as a surrogate for a global Bellman
value function, we can compute global admissible policies. More precisely, two
admissible policies are built as follows:

1) a global price policy v = (10,~~~ ’lT—l)’ with, for any t = 0,...,7 — 1,
7, : X¢ — Uy defined for all z; = (z},--,2N) € X, by

3, (r2) € argmin E[ZLZ (ol W)+ Vi (g Wz;l))} . (209)

up,uy LG
s.t. (@tl (:ct , u,‘}), e ,@N(xiv,uiv)) IS (29b)

2) a global resource policy ¥ = (g, -+ ,Jr_1), with, for any t =0,...,T — 1,
¥, : X; — Uy defined for all z; = (2},---,2) € X; by

N .
Ve(1) € argmmE[Z (a, up, W) +V§+1(gé(wia%W1+1))} , (30a)

st (Of(xf up), O (@), ul)) € =S, . (30b)

Given a policy v = (yo, ,'yT,l), and any time ¢ € [0,7T7], the expected cost
of policy v starting from state x; at time ¢ is equal to

N T-1
Vi (e {ZZL 0 78(X5), W§+1)+Ki(X1T)} : (31a)
i=1 s=t
, Vse[t, T—-1],
X2+1 - gs(XZa’Y;(Xs); i+1) y Xi = .CC; . (31b>

We prove hereafter that we are able to bound the performance of the global
resource policy defined in (B0).

Proposition 3.4 Lett € [0,T] and x; = (z1,--- ,x)) € Xy be a given state.
Then, we have the following upper bound on the expected value of the global
resource policy ([B0)

N
Vi (et 271 (a?) - (32)
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Proof. We prove the result by backward induction. At time ¢t = T', the result
is straightforward as V;, = K’ for all i € [1, N].

Let ¢t € [0,T — 1] such that [B2) holds true at time ¢t 4+ 1. Then, for all
T S Xtv

N
_ E[Z (L 7). W) + v:H(Xm)} ,
=1

since Dynamic Programming applies to (BI)). Now, using the induction as-
sumption, we deduce that

N . .
V() < E[ZL@(W@W,W;H) +Vi+1<X1H>} |

i=1

From the very definition ([B0) of the global resource policy, 7 , we obtain

V) (2) < min [ZU (wf, up, W) +Vt+1( t+1):| ;

upy ’ut i=1
1,1 1 N(.N , N
st. (Of(zy,up), -+, 07 (@) ,u))) € =S, .
Introducing a deterministic admissible resource process (rf,---,rN) € =S,

and restraining the constraint to it reinforces the inequality

Vi) < min [ZU o, Hnﬁ;mxim} (33a)

s.t. @tl(:zzt,u%):rtl, e @;N(xiv,uiv)—riv, (33b)

so that
V() <3 (minE[Lia,uf, W) + Vi (Xi)] st O ul) =) |

as we do not have any coupling left in (33]). By Equation (ZI]), we deduce that

Z.
E Vi(xt)

hence the result at time t¢. O

Furthermore, for any admissible policy 7, we have V;(z:) < V;"(z¢) as the
global Bellman function gives the minimal cost starting at any point z; € X;.
We therefore obtain the following bounds

N N
D Vi}) < Vi) <V (@) <)V Vi(ah), (34a)
=1 1=1

and
Vi) < min {ViH (@), Vi (@)} - (34b)
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Remark 3.2 In the case of a decentralized information structure (b)), it seems
difficult to produce Bellman-based online policies. Indeed, the global Dynamic
Programming principle does not apply: neither the global price policy in (29)
nor the global resource policy in ([B0) are implementable since both policies
require the knowledge of the global state (z},--- , ) for each unit 4, which
is incompatible with the information constraint (Zh). Nevertheless, one can
use the results given by resource decomposition to compute an online policy.
Knowing a deterministic admissible resource process r € —S, solving at time ¢
and for each i € [1, N] the subproblem

7i(a}) € argmin E|Li(a}, uf, Wiiy) + Vi (Xi4)]
uy
s.t. Xi+1 = gé(xztla ui’ Wi+1) )

9@(%, u;) = Ti )

generates a global admissible policy (7% (x}), ..., 7N (2N )) compatible with the
decentralized information structure (7). O

4 Conclusion

In this article, we have presented a formalism for joint temporal and spatial
decomposition. More precisely, we have decomposed multistage stochastic op-
timization problems — made of interconnected subsystems — first by prices
and by resources, and then by Dynamic Programming. We have proved that,
under proper assumptions, we could bound the Bellman value functions of
the original problem up and down by summing decomposed local Bellman
functions, for all time (Sect. ). Moreover, we have obtained tighter bounds
by optimizing the choice of deterministic price and resource processes. As we
consider multistage stochastic problems, we have stressed the key role played
by information structures in the design of the decomposition schemes.

An application of this methodology is presented in the companion pa-
per [I7]. We use the decomposition algorithms on a specific case study, the
management of a district microgrid with different prosumers located at the
nodes of the grid and exchanging energy altogether. Numerical results show
the effectiveness of the approach: the decomposition algorithms beat the refer-
ence Stochastic Dual Dynamic Programming (SDDP) for large-scale problems
with more than 12 nodes (more than 16 state variables); on problems with up
to 48 nodes (up to 64 state variables), we observe that their performance scale
well as the number of nodes grows.

A natural extension is the following. In this paper, we have only considered
deterministic price and resource coordination processes. Using more complex
stochastic processes such as Markovian coordination processes would make
it possible to improve the performance of the algorithms (see Remark [B.).
However, one would need to analyze how to obtain a good trade-off between
accuracy and numerical performance.
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