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Properties of Chromy’s sampling procedure

Guillaume Chauvet*

Abstract

Chromy (1979) proposed a unequal probability sampling algorithm,
which enables to select a sample in one pass of the sampling frame
only. This is the default sequential method used in the SURVEYSELECT
procedure of the SAS software. In this article, we study the proper-
ties of Chromy sampling. We prove that the Horvitz-Thompson is
asymptotically normally distributed, and give an explicit expression
for the second-order inclusion probabilities. This makes it possible
to estimate the variance unbiasedly for the randomized version of the
method programmed in the SURVEYSELECT procedure.

1 Introduction

Chromy (1979) proposed a fixed-size unequal probability sampling design
which is strictly sequential, in the sense that a sample is selected in one pass of
the sampling frame only. This algorithm benefits from a stratification effect,
in the sense that the selected units are well spread over the population like
with systematic sampling. The drawback is that many second-order inclu-
sion probabilities are zero, making unbiased variance estimation not possible.

Chromy (1979) therefore proposed to partially randomize the order of the
units in the population before applying the sampling algorithm. This ran-
domization is sufficient to guarantee that the second-order inclusion prob-
abilities are positive. The randomized Chromy algorithm is the default se-
quential method currently available in the SURVEYSELECT procedure of the
SAS software. The method has been extensively used for sample surveys, see
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for example Mills et al. (2018), Radwin et al. (2018), Schmitt et al. (2018)
and Rust et al. (2019) for recent examples.

So far, the properties of this sampling algorithm have not been fully investi-
gated, and this is the purpose of the current paper. We prove that Chromy
sampling is equivalent to ordered pivotal sampling (Deville and Tillé, 1998;
Chauvet, 2012), in the sense that both algorithms lead to the same sampling
design. This leads to the Horvitz-Thompson being consistent and asymptot-
ically normally distributed, under weak assumptions. This also leads to an
explicit formula for the second-order inclusion probabilities, making unbiased
variance estimation possible for randomized Chromy sampling.

The paper is organized as follows. In Section 2, the notation and the as-
sumptions are given. Chromy sampling and ordered pivotal sampling are
introduced in Sections 3 and 4. The equivalence between both sampling
designs is proved in Section 5, and the properties of Chromy sampling are
studied. The results of a small simulation study are given in Section 6. We
conclude in Section 7. The proofs are gathered in the Appendix.

2 Notation and assumptions

We consider a finite population U of N sampling units that may be repre-
sented by integers k = 1,..., N. Denote by 7 = (m1,...,7n)' a vector of
probabilities, with 0 < 7, < 1 for any unit & € U, and with n = Y, _,,
the expected sample size. A random sample S is selected in U by means
of a sampling design p(-) with parameter 7, in the sense that the expected
number of draws for unit k& is m,. We let I, denote the number of times that
unit £ is selected in the sample, and we note [ = (I1,...,Iy)".

The set of probabilities 7 may be defined proportionally on some positive aux-
iliary variable known for any unit in the population, which leads to unequal
probability sampling with probabilities proportional to size (m-ps) (Sdrndal
et al., 1992, Section 3.6.2). The sampling algorithm proposed by Chromy
(1979) may handle 7;’s greater than 1, in which case a same unit may be
selected several times in the sample. In this paper, we focus on the fairly
usual situation when all 7;’s lie between 0 and 1, which means that the sam-
pling design is without replacement. In this case, we may interpret 7 as



the probability for unit k£ to be included in the sample, and I is the sample
membership indicator for unit k. We are interested in the total t, = >, ., yx
of some variable of interest taking the value y for unit £ € U. The Horvitz-
Thompson estimator is

» Yk
tye = Zw_k[’“' (2.1)
keU

In order to study Chromy sampling, some additional notation is needed. We
let V,, = Zle m; denote the cumulated inclusion probabilities up to unit &,
with Vo = 0. The integer part of Vj is the largest integer smaller than V,
and is denoted as V;/. The difference between Vj, and its integer part V! is
the fractional part, and is denoted as V;/' = V;, — V;!. For example, if V,, = 3.6
we have V! = 3 and V" = 0.6, and if V;, = 4.0 we have V! =4 and V;/' = 0.

A unit k is a cross-border if V,,_; < i and V;, > i for some integer i =

1,...,n — 1. The cross-border units are denoted as k;, i = 1,...,n — 1,
and we note a; = ¢ — Vj,_1 and b; = Vi, — . The cross-border units define
a partition of the population into microstrata U;, ¢ = 1,...,n, which are
defined as

The quantities are presented in Figure 1 for illustration.

We consider the following assumptions, which are the same than in Chauvet
and Le Gleut (2019):

H1: There exists some constants 0 < fy and f; < 1 such that for any k& € U:

fo% <m < i (2.3)

H2: There exists some constant C'; such that:

4
Zﬂ'k (% — t—y) < OyN*n™3, (2.4)
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Figure 1: Inclusion probabilities and cross-border units in microstratum Uj,
for population U

H3: There exists some constant C'y > 0 such that:

n 2
S (L-Tal] > av e
k l

i=1 keU; leU;

where for any unit k£ € U; we take:

bi—y ifk=ki,
i = Tk if ki <k< ki,
a; if k= ki;

with the convention that by = a,, = 0.

It is assumed in (H1) that the first-order inclusion probabilities are bounded
away from 1. This is not a severe restriction in practice, since a unit with an
inclusion probability close to 1 is usually placed into a take-all stratum, i.e.
the probability is rounded to 1 and the unit is not involved in the selection
process. It is also assumed in (H1) that the first-order inclusion probabili-
ties have a lower bound of order n/N, which ensures that no design-weight
d,, = 1/ is disproportionately larger than the others.

Under the condition (H1), the condition (H2) holds in particular if the vari-
able y has a finite moment of order 4. This seems a fair assumption in
practice, unless the variable of interest is heavily skewed like in wealth sur-



veys, for example.

Assumption (H3) is somewhat technical, and is used to ensure that the
Horvitz-Thompson estimator is not close to being degenerate. This assump-
tion is only needed to prove a central-limit theorem for the Horvitz-Thompson
estimator. It requires that the dispersion within the microstrata does not
vanish. For example, it does not hold if ¥, is proportional to .

3 Chromy sampling

Chromy (1979) proposed a sampling algorithm which is strictly sequential,
in the sense that the units in the population are successively considered for
possible selection, and the decision for the unit is made at once. The method
is presented in Algorithm 1. Let us denote

Se ~ Chr(m;U) (3.1)

for a sample selected by means of Chromy sampling with parameter 7 in the
population U. The method was originally proposed for 7-ps sampling where
the inclusion probabilities are defined proportionally on some auxiliary vari-
able, but it is applicable to any set of inclusion probabilities.

The method proceeds by considering at each step k = 1,..., N the unit £ for
possible selection, and by computing its probability of selection conditionally
on the number of units already selected. This algorithm defines a fixed-size
sampling design, and Chromy (1979) proves that the parameter 7 defining
the inclusion probabilities is exactly matched. Note that the case VI" > VI,
(Step 2.a) corresponds to the treatment of a non cross-border unit, while the
case Vi, > VI (Step 2.b) corresponds to the treatment of a cross-border
unit. For illustration, the complete probability tree for Chromy sampling on
a small population is given in Appendix A.

This algorithm allocates the sample regularly in the population, as stated
in Proposition 1. The proof is given in Appendix B. At any step k of the
procedure, the number of units selected is equal to the sum of inclusion
probabilities up to rounding, a property which is sometimes coined as spatial
balancing (Grafstrom et al., 2012).



Algorithm 1 Chromy sampling with parameter 7 in the population U

1. At step k =1, take I; = 1 with probability 7.
2. At step k=2,...,N:

(a) If VI > ViI' || then we take the transition probabilities
k—1
VF _ VF
I k k-1
=1
k—1
PT([kzlz[l:VkI_l+1> = 0.
=1
(b) If VE' | > VI’ then we take the transition probabilities
k—1
Pr <Ik =1 I, = V,f_1> = 1,
=1

k—1 VF
Pr{L,=1> 5=V, +1| = Vj;.
=1 k-1




Proposition 1. For any k=1,..., N, we have

Vi <L <vE+L (3.2)

A drawback of the method is that, by construction, two non cross-border
units inside the same microstratum U; may not be selected jointly in the
sample. Therefore, many second-order inclusion probabilities are equal to 0
and the variance of the Horvitz-Thompson estimator may not be unbiasedly
estimated.

For this reason, Chromy (1979) proposed to use a randomized procedure,
which is as follows. The population U is viewed as a closed loop, and we
consider the set Y. of the N possible circular permutations, each of which
using a different unit as the first one. The first permutation is o1, with the
natural order 1,...,N. For k = 2,..., N the k-th permutation is o, where
the units are in the order k,...,N,1,...,k — 1. The randomized Chromy
sample S, is selected as

Spe ~ Chr(n;U%%), (3.3)

with o a random permutation selected in ¥, with probability 7y, /n, with U%*
the population ordered with respect to o, and 7% the vector of probabilities
ordered accordingly. This is the algorithm currently implemented in the
SURVEYSELECT procedure of the SAS software.

4 Ordered Pivotal sampling

Ordered pivotal sampling (Fuller, 1970; Deville and Tillé, 1998; Chauvet,
2012) is presented in Algorithm 2. This is a succession of duels between
units, and at each step the two first units remaining in the population are
considered. If the sum of their probabilities is lower than 1 (rejection step),
one of the unit is randomly discarded while the other gets the sum of their
probabilities. If the sum of their probabilities is greater than 1 (selection
step), one of the unit is randomly selected while the other goes on with the
residual probability. For illustration, the complete probability tree for or-
dered pivotal sampling on a small population is given in Appendix A.

The pivotal sample is selected in at most N — 1 steps. Pivotal sampling is a



Algorithm 2 Ordered pivotal sampling with parameter 7 in the population
U
1. Initialize with 7(0) = my.

2. Atstept=1,...,T:
(a) Initialize with 7(¢t) = w(t — 1).
(b) Take k < [ the two first units in the population such that
m(t—1) ¢ {0,1} and m(t—1) ¢ {0,1}
(¢) If mp(t — 1)+ m(t —1) <1 (rejection step), then do:

{(me(t — 1)+ m(t —1),0} with prob. p(t)
{me(8), m(t)} = {{Qm@—n+wﬂ—dﬂ mmgmbﬁ—p@,
7Tk(t — 1)
Wk(t - 1) +7Tl(t - 1)

where p(t) =

(d) If m(t — 1)+ m(t —1) > 1 (selection step), then do:

(Lme(t— 1)+ m(t— 1) — 1} with prob. p(t)
{me(t), m(t)} = { (et —1) + m(t—1)— 1,1} with Erob. ];—p(t)
1 —7Tl(t— 1)
2—7Tk(t— 1)—7Tl(t—1).

where p(t) =

3. The algorithm stops at step 7" when all the components of 7(7") are 0
or 1. Take I = =(T).




particular case of the cube method (Deville and Till¢, 2004), which enables
to perform balanced sampling, i.e. to select samples such that the Horvitz-
Thompson estimator exactly matches the known totals for some auxiliary
variables. Pivotal sampling has found uses in spatial sampling, since it en-
ables to spread well the sample over space: see for example Grafstrom et al.
(2012) for the so-called local pivotal method, Chauvet and Le Gleut (2019)
for the so-called pivotal tesselation method, or Benedetti et al. (2017) for a
recent review on spatial sampling methods. Pivotal sampling is also of use
in Monte Carlo methods (Gerber et al., 2019).

5 Properties of Chromy sampling

We first prove in Theorem 1 that Chromy sampling and ordered pivotal
sampling are equivalent, which is the main result of the paper. The proof is
lengthy, and given in Appendix C.

Theorem 1. Ordered pivotal sampling and Chromy sampling with the same
parameter w induce the same sampling design.

By using the characterization of Chromy sampling given in Theorem 1, the
mean-square consistency of the Horvitz-Thompson estimator stated in equa-
tion (5.1) of Theorem 2 is a direct consequence of Theorem 2 in Chauvet
(2017). The central-limit theorem stated in equation (5.2) is a direct conse-
quence of Theorem 1 in Chauvet and Le Gleut (2019).

Theorem 2. Suppose that the sample S. is selected by means of Chr(m; U).
If assumption (H2) holds, then

E{N iy —t,)} = Or™). (5.1)
If in addition assumptions (H1) and (H3) hold, then

~

G2ty — N(0,1), (5.2)

~

V(tyr)

where ? stands for the convergence in distribution.

It also follows from Theorem 1 that Chromy sampling is a negatively as-
sociated sampling design (Joag-Dev et al., 1983). This implies that the
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Sen-Yates-Grundy conditions are satisfied. From Theorem 2 in Bertail and
Clémencon (2019), the Horvitz-Thompson also satisfies a Bennett /Bernstein-
type exponential inequality.

From Theorem 5.1 in Chauvet (2012), and from the computation given in
Deville (1998), it is possible to give an explicit expression for the second-
order inclusion probabilities under Chromy sampling. This is the purpose of
Theorem 3.

Theorem 3. Let k and | be two distinct units in U. If k and | are two non
cross-border units that belong to the same microstratum U;, then
i = 0,

if k and | are two non cross-border units that belong to distinct microstrata
Ui and Uj, respectively, where i < j, then

Tk = TR {1 - C<i7j>}7

if k =k;_1 and l is a non cross-border unit that belongs to the microstratum
U; where ¢ < j, then

o = mem [1— b (1 —m) {m(1 = b)Y e, )]

if l = kj_1 and k 1s a non cross-border unit that belongs to the microstratum
U; where i < j, then

Tl = TR {1 — (1 — 7Tl)(1 — bj_l)(ﬂ'lbj_l)_lc(’i,j)} s
if kK =pi—1 and I = p;_1, where 1 < j, then
Tl = TR [1 — bi_l(l — bj_l)(l — 7Tk)(1 — 7Tl) {Wkﬂlbj_l(l — bi_l)}il C(l,j)} s

where c(i,5) = 1= e, e = aiby {(1 — a;)(1 = b)Y " and with c(i,i) = 1.
It is clear from Theorem 3 that many second-order inclusion probabilities are
equal to zero for Chromy sampling. It also makes possible to compute the

second-order inclusion probabilities for randomized Chromy sampling. For
any units k # [ € U, let us denote 7} their second-order inclusion probability

10



under randomized Chromy sampling. Then:

rc T o

icU

with 7] the joint selection probabilities of units £ and [ with the permuta-
tion oy, i.e. when Chromy sampling is applied to the population U? with
parameter 7%. A SAS IML subroutine to compute the second-order inclusion
probabilities in (5.3) is available as Supplementary Material.

We evaluate in the simulation study performed in Section 6 a variance es-
timator making use of second-order inclusion probabilities computed from
equation (5.3). For illustration, we give in this Section a small example. We
consider a population U of size N = 8, with the parameter

7 =(0.2,0.4,0.7,0.4,0.6,0.6,0.3,0.8)",

which leads to a sample of size n = 4. From equation (5.3), we obtain the
following matrix of second-order inclusion probabilities (rounded to three
decimal places):

0.200 0.041 0.133 0.075 0.116 0.108 0.046 0.081
0.400 0.171 0.142 0.224 0.227 0.099 0.297
0.700 0.209 0.410 0.415 0.207 0.555

(n5) = 0.400 0.118 0.224 0.113 0.319
ki 0.600 0.293 0.165 0.474
0.600 0.065 0.469
0.300 0.205
0.800

We also selected 10° samples by means of the SURVEYSELECT procedure with
the option METHOD=PPS_SEQ, which leads to randomized Chromy sampling.
These 10 samples are used to obtain a simulation-based approximation of the
matrix of second-order inclusion probabilities, which is given below (rounded

11



to three decimal places):

0.200 0.041 0.133 0.075 0.116 0.108 0.046 0.081
0.400 0.171 0.142 0.223 0.227 0.099 0.296

0.701 0.210 0.410 0.416 0.208 0.556

A 0.400 0.118 0.225 0.113 0.318
ki sim 0.600 0.293 0.165 0.474
0.600 0.065 0.469
0.300 0.205
0.800

It is clear that both matrices are almost identical.

6 Simulation study

We conducted a simulation study in order to evaluate variance estimation and
interval estimation for randomized Chromy sampling. The set-up is inspired
from Chauvet et al. (2017). We generate 2 populations of size N = 500, each
consisting of an auxiliary variable x and 4 variables of interest yq,...,ys. In
the first population, the x-values are generated according to a Gamma dis-
tribution with shape and scale parameters 2 and 2; in the second population,
the z-values are generated from a log-normal distribution with parameters 0
and 1.7. The z-values are then shaped and scaled to lie between 1 and 10.

Given the x-values, the values of the variables of interest are generated ac-
cording to the following models:

linear : yi, = aio+ oni(Tr — o) + 01 €,
quadratic : yg, = o+ aor(Tk — fie)? + 02 €, (6.1)
exponential : ys = exp{asy + asi(Tp — f1e)} + 03 €,
bump : yar = auo + aur (T — pe)® — a exp {—0443(% - Mx)Q} + 04 €,

where i, is the population mean of z, and where ¢, follows a standard normal
distribution N'(0,1). The population mean f, and the population dispersion
S; for the two populations and the four variables of interest are given in
Table 1.

In each population, we computed inclusion probabilities proportional to the

12



Table 1: Population mean and population dispersion for two populations and
four variables of interest

linear quadratic | exponential bump

Hyl 551 Hy2 532 Hy3 553 Hy4 534
Population 1 | 10.1 13.1 | 11.7 69.8 | 10.3  18.2 12.3 84.6
Population 2 | 10.1 5.3 | 88 83 | 9.9 4.4 5.2 18.0

x-values, according to the formula

Tk
> e T ’

with n = 50, 100 or 200. The range of inclusion probabilities is given in Table
2. In some cases, equation (6.2) leads to inclusion probabilities greater than
1 for some units. In such case, the corresponding units are selected with
certainty (mp = 1), and the other probabilities are recomputed. For the first
population, 5 units are selected with certainty with n = 200. For the second
population, 2 units are selected with certainty with n = 100 and 9 units are
selected with certainty with n = 100.

(6.2)

T = N

Table 2: Range of inclusion probabilities proportional to x for two popula-
tions and three sample sizes

n = 50 n = 100 n = 200
Min Max | Min Max | Min Max

Population 1 | 0.030 0.305 | 0.060 0.609 | 0.122 1.000
Population 2 | 0.079 0.791 | 0.160 1.000 | 0.325 1.000

We select B = 1,000 samples by means of randomized Chromy sampling,
using the SURVEYSELECT procedure. For each sample and each variable of in-
terest, we compute the Horvitz-Thompson estimator fyw, and the Sen-Yates-
Grundy variance estimator

~a 1 mm = (ue w\’
Vity) = 5 Z 7191(___ , (6.3)

rc
k£LESre Tkl e T
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where the second-order inclusion probabilities are given by equation (5.3). To
evaluate the properties of this variance estimator, we compute the relative
bias

B! Ef:l Vb(’gyﬂb) - V<£y7r)

RB{V(t,z)} = 100 x o ,

(6.4)

where Vb(fy,rb) denotes the variance estimator in the b-th sample, and where
V(fyw) is the exact variance, computed by using the exact second-order in-
clusion probabilities given in (5.3). As a measure of stability, we use the
Relative Root Mean Square Error

L X 971/2
RRMSEV G = 100 n {Bl Zbl{%(tywb)—v(tyw)}]
" V(iy) |

Finally, we compute the error rate of the normality-based confidence inter-
vals with nominal one-tailed error rate of 2.5 % in each tail.

The simulation results are given in Table 3. The Sen-Yates-Grundy variance
estimator is almost unbiased in all cases considered, except for the first popu-
lation with n = 50 where the variance estimator is slightly positively biased.
The Relative Root Mean Square Error diminishes as n increases, as expected.
We note that the coverage rates are not well respected with n = 50, which
is likely due to the small sample size and to the instability of the variance
estimator. When the sample size increases, the coverage rates become close
to the nominal level.

7 Conclusion

In this paper, we have studied Chromy’s sampling algorithm. We proved that
it is equivalent to ordered pivotal sampling, which enables in particular com-
puting the second-order inclusion probabilities for the randomized Chromy
algorithm programmed in the SURVEYSELECT procedure. The results in our
simulation study confirm that the variance estimator based on the second-
order probabilities computed from Deville’s formulas show almost no bias for
moderate sample sizes.

14
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Table 3: Relative bias (in % ), Relative Root Mean Square Error (in % ) of the variance estimator and Coverage
Rate of the normality-based confidence intervals for three populations and four variables of interest

n = 50 n = 100 n = 200
RB RMSE Cov. Rate | RB RMSE Cov. Rate | RB RMSE Cov. Rate
linear -0.8 76 11.20 -0.5 46 7.20 -1.0 28 5.50
Population 1 | quadratic 3.2 118 13.50 -0.6 66 8.60 -2.0 37 7.00
exponential | -0.4 85 11.40 -0.9 50 7.10 -1.1 30 6.50
bump 3.7 103 11.30 -0.4 59 8.30 -2.1 32 7.00
linear -0.7 56 8.20 0.6 31 7.30 0.0 17 4.80
Population 2 | quadratic -0.7 o6 8.60 0.6 30 7.70 0.0 17 4.80
exponential | -0.6 95 8.10 0.5 30 7.50 0.0 17 4.90
bump -14 61 11.10 0.8 35 6.90 0.9 19 4.30




The number of computations for the second-order inclusion probabilities of
randomized Chromy sampling is of order N®. Formula (5.3) is therefore
tractable in case of a small population, for example when Chromy sampling
is used to select a set of Primary Sampling Units in a multistage survey
(e.g. Rust et al., 2019). Otherwise, we may resort to a simulation-based
approximation of equation (5.3).
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A Chromy sampling and pivotal sampling on
an example

We consider the population U = {1,2,3,4,5} with 7 = (0.4,0.8,0.5,0.6,0.7).
The complete probability tree for Chromy sampling with parameter 7 is
given in Figure 2. For example, at the first step the unit 1 is selected with
probability 0.4, and discarded with probability 0.6. If unit 1 is selected,
then 7, I, = Vf 4 1. Since unit 2 is a cross-border unit, we follow Step
2.b of Algorithm 1 and unit 2 is selected at the next step with probability
VE/VE =02/04=1/2.

The complete sampling design is

({1,2,4} with proba. 3/35,
{1,2,5} with proba. 4/35,
{1,3,4} with proba. 3/56,

g {1,3,5} with proba. 1/14,

¢ {1,4,5} with proba. 3/40,
{2,3,4} with proba. 9/56,
{2,3,5} with proba. 3/14,

| {2,4,5} with proba. 9/40.

Now, we consider ordered pivotal sampling on the same population U with
the same parameter w. The complete probability tree for pivotal sampling
is given in Figure 3. For example, at the first step, the units 1 and 2 fight
with respective probabilities 0.4 and 0.8. With probability (1 — 0.8)/(2 —
0.4 — 0.8) = 1/4, unit 1 is selected and unit 2 gets the residual probability
0.2, and with the complementary probability unit 2 is selected and unit 1
gets the residual probability 0.2. In the first case, unit 2 faces unit 3 with
respective probabilities 0.2 and 0.5. With probability 0.2/(0.2 4+ 0.5) = 2/7,
unit 2 gets the sum of the probabilities and unit 3 is discarded, and with the
complementary probability unit 3 gets the sum of the probabilities and unit
2 is discarded.

It follows from straightforward computations that the complete sampling
design is the same as for Chromy sampling.
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Figure 2: Probability tree for Chromy sampling on a population U of size

N =5
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Figure 3: Probability tree for ordered pivotal sampling on a clustered popu-
lation U,
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B Proof of Proposition 1

The proof is by induction. For k = 1, we have I; € {0,1} and V! = 0, so the
property holds. Suppose that the property holds at £ — 1, namely

Vi, <L <V + L (B.1)

First note that if k is a cross-border unit, we have V! =V}l | + 1 and if not,
we have V! = V[ |.

e Suppose that E;:ll I, =V;' . If k is a non cross-border unit, we have

k—1 k
VIS I+ L <Vl +1 & WY L<V+1
=1 =1

If k£ is a cross-border unit, we obtain from Algorithm 1 that I, = 1,
and Y0 [ =V +1=V]

e Suppose that Z;:ll I, =V;E | +1. If k is a non cross-border unit, then
from Algorithm 1, we have [, = 0 and Zle L=V, +1=VL Ifk
is a cross-border unit, we obtain from I} € {0, 1}

k—1 k
=1 =1

21



C Proof of Theorem 1

The proof proceeds in two main steps. We first prove that Chromy sampling
may be alternatively seen as the result of a two-stage sampling procedure,
inside a population U, of clusters which is introduced in Section C.1. We then
consider in Section C.2 the ordered sample, which is given by the selected
units ranked with respect to the natural order in the population, and we give
the transition probabilities between the selected units. These results are used
in Section C.3 to prove Theorem 1.

C.1 Clustered population

The N sampling units in the population U are grouped to obtain a pop-
ulation U, = {uy,...,us,_1} of clusters. There are the clusters associated
to the cross-border units (n — 1 singletons), denoted as uy; with associated
probability ¢9; = m,. There are the n clusters of non cross-border units
that are between two consecutive integers, denoted as uy; 1 with associated
probability ¢o;_1 = Vi,_1 — Vi,_,- The vector of inclusion probabilities in
the population U, is denoted as ¢ = (¢, ..., ¢pa,_1)". For illustration, useful
quantities for population U, are presented in Figure 4.

P2i—2 P2i—1 b2 P2i4+1 P2i42
1 —1 7 i+ 1
— | ‘ | | ‘ | | ‘ | -

I ‘ I I ‘ I I ‘ I

> - —————>

aj_1  bi_1 a b aj+1 bita
szl Ui+1
l | l
U; Usis2

Figure 4: Inclusion probabilities and cross-border units in microstrata U; and
U; 1 for population U,
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Proposition 2. Chromy sampling with parameter m in U may be performed
by two-stage sampling, with.:

1. a first-stage selection of a sample S, of n clusters by means of Chromy
sampling with parameter ¢ in the population U,,

2. an independent second-stage selection inside each u; € S, of a sample
S; of size 1, with unit k € w; selected with a probability 7/ ;.

Proof. 1t is sufficient to prove that the transition probabilities given in Algo-
rithm 1 are the same under Chromy sampling with parameter 7 and under
the two-stage sampling procedure. We use the following notation: for any
unit k € U, recall that [, is the sample membership indicator under Chromy
sampling with parameter ; for any cluster u; € U, J.; is the sample mem-
bership indicator under Chromy sampling with parameter ¢; for any unit
k € U, Ji is the sample membership indicator under the two-stage proce-
dure. We first note that, by definition of the two-stage procedure, we have

Jei = Z Ji, for any u; € U,. (C.1)

k€u;

We now consider the case when k£ € U is a cross-border unit, k; say. The
corresponding cluster is uy;, and in such case

Jki =1 & JC’QZ' = 1. (02)

We obtain successively

ki—1 2i—1
r (Jki =1 Z Jl> = Pr (Jki =1 Z vaj> from equation (C.1)
I=1 j=1
21—1

- (cZz_

B {1 fzml j=i—1,

Z Jc]> from equation (C.2)

b, 5t 1 :
lfzai lf Z 0 ¢J = ,1/7

from Step 2.b in Algorithm 1

ki—

izlfk> ; (C.3)
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where the last line is obtained again from Algorithm 1.

We now consider the case when k is not a cross-border unit, and belongs to
the cluster ug;_1, say. We begin by computing the quantities

21—2 k—1
Pr\Jy=1\>"Jej, Y

J=1 I=k;—1+1

Note that from Proposition 1, Z; | Jc] may only take the values i — 1 and

k—1
i, and since we select at most one unit [ inside ug;—1, » ;. Ji may only

take the values 0 and 1. If Z;chi_ﬁl J; = 1, we have J, = 0 since we select
at most one unit [ inside ug;_;. Therefore

2i—2 k-1
Pri|Jy=1)) J=i-1 Y J=1]| =0 (C4)
j=1 I=ki—1+1

If E Je; = 1, Algorithm 1 implies that the cluster ug;_; and therefore k
may not be selected. Therefore

2i—2
Pr|Ji=1> I, Z J=0] = o (C.5)

j=1 l=k;—1+1
For the same reason, we may not have simultaneously Z Je; = 4 and

f:kli_lﬂ J; = 1. Finally, we have

21—2 k—1
Pri|Ji=1\> Joj=i—-1 Y J=0
j=1

I=ki_1+1

Pr (Jk =1, E]:kl, =0 3:12 Joj=1- 1)
PT( . 120’25112J07j:i_1>
Pr (Jk =1 gy =i 1)

PT( I= k L4 120’25112J07j:i_1>’

where the last line in (C.6) follows from the fact that if J, = 1, we necessarily

(C.6)
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have Z;:,jz _,+1J1 = 0. We compute the numerator and the denominator in
(C.6) separately. The numerator is

2i—2

> Jej=i— 1)

j=1
21—2 21—2

= Pr Jc,Zi—l =1 ch’j :Z—1> Pr <Jk: 1 ch’j :Z._l,JQQZ‘_l = 1)
J=1 J=1

21—2
= Pr JC722‘_1:1 ch’j:i_:[) PT(Jk:1|JC72i_1:1).
7j=1

Pr szl

1-bij—1
and from the definition of the two-stage procedure Pr (J; = 1|Jp9i-1 =1) =
Tt This leads to

1-bi—1—a;
21—2 -
. k
Pr (Jk =1 jEZl Jej=1— 1) = T (C.7)

From the definition of the two-stage procedure, the denominator in (C.6) is

From Algorithm 1, we have Pr (Jc72i_1 =1 ‘2512712 Jej=1— 1) = LZhicima

%

k—1 i—2 k—1 2i—2
Pri > 5=0) Jy=i-1] = 1=Pr| Y J=1> J=i-1
j=1 J=1

I=k;_1+1 I=k;—1+1
k—1 .
I=ki_1+1
= 1—-—. C.8
b, (C.8)
From (C.6), (C.7) and (C.8), we obtain
2i—2 k—1 .
Pr|Jy=1 Joj=1i—1, J=0]| = b
jzl ! l/;-i-l 1- bi_l - Zl<l€€Uzi—1 i
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From (C.4), (C.5) and (C.9), we obtain

VkF_Vk}il
Pr|Ji=1 ZJJ+ Z h=i-1] = =%
I=ki—1+1 k=l

Pr Jk_1ZJCJ+ Z J=i| = 0. (C.10)
I=k;_1+1
From equation (C.1), we have
ki—1 k—1 k—1
ZJ,]+ Z Jo= Y D+ > =)0, (C11)
I=k;_1+1 =1 I=k;_1+1 =1

and from (C.10), this implies that

k-1
Pr (Jk: 1 ZJ[)

where the last line in (C.12) follows from Step 2.b in Algorithm 1. This
completes the proof. O

VkF_VkFil
{ L i S =i

=1 0 if El:l Jl = Z7
k—1
= Pr ([k =1 ZI,) : (C.12)
=1

C.2 Ordered sample

We use the same notation as in Section C.1, and consider a sample S, selected
in U, by means of Chromy sampling with parameter ¢. In this case, we let
Vei = 22:1 ¢; denote the cumulated inclusion probabilities up to unit w;,
with V.o = 0. The integer part of V. ; is denoted as VCIZ, and the difference

between V,; and its integer part V/; is the fractional part, denoted as V,[.

Let us denote by X; < ... < X, the selected units, ranked with respect to
the natural order in the population U. The transition probabilities between
the ranked selected units are given in Proposition 3.

Proposition 3. Let S. denote a sample selected by Chromy sampling with
parameter ¢ in the population U.. The transition probabilities between the
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ordered sampled units X; < ... < X, are:

(

PT(XiJrl = UJ‘Xl = u2i72) =

Pr(Xiy = ui| X = ugi 1) =

\

PT‘(XH_l = U]|XZ = Ugi) = {

e if j = 2i,
1-b;—a; 1—a;—b; o .
: (1—a-:;()1(—bi) L ifj=2i+1,

a; —a;—b; .- .
(ig)(kbi)) if j=2i+2,
— if = 2i,

1_—I§i—ai 1—a;—b; po. .
: (1—a-:;()1(—bi) Loifj=2i+1,

a; —a;—b; .- .
(ig)(kbi)) if j=2i+2,

Lbian r 941,
St if j = 2i+2.

Proof. We first consider the case when X; = wug; o, which is equivalent to

251;12 Je; = i. Therefore,
Pr(Xip = uj| Xi = ugia) =

2i—2
Pr (XiJrl = Uj Z Jc,j = ’l)
j=1
2i—1
Pr (XiJrl = Uj Z Jc,j = ’l) s (013)
j=1

where the second line in (C.13) follows from the fact that, from Step 2.a of
Algorithm 1, Y°*7% J.; = i implies that Joo;—y = 0. If j = 2i:

Pr(Xii1 = ug| X; = ugi—2) =

Pr (Xi-l—l = U2;

2i—1

> o= z)

j=1
2i—1

Pr (JQQZ' =1 Z Jgj = Z)
j=1

VF

coi b (C.14)

F -
Vezin  1—a
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If j = 2i + 1:

PT(XZ‘+1 = U2i+1|Xi = U2i—2) = Pr Xi+1 = U2i+1

2i—1

> Jey= z)

j=1

2i—1

Z JCJ' - ’l)

j=1

2
Z Jc,j = ’l) Pr (JQQZ‘ =0

j=1

ch{;i-H - ‘/;gz 1— bz

(T =bi—ai1)(1 —a; — by)
= (1= a) (1 —b) , (C.15)

where the last but one line in (C.15) follows from Step 2.a of Algorithm 1
and from equation (C.14). If j = 2i + 2, we obtain similarly:

2i—1
E JCJ‘ =1
J=1

= Pr|Jeoivo=1,Jc2i41=0,Jc2: =0

= Pr Jc,2i+1 =1, Jc,2i =0

= Pr Jc,2i+1 =1

2i—1
E Jc,j :’l
J=1

PT(XZ‘+1 = U2i+2|Xi = U2i—2) = Pr Xi+1 = U2i+2

2i—1
> Je= z)
21
> o= 2)
j=1

J=1

2i+1

Z JCJ = Z) Pr (Jc,Qi—f—l =0
j=1

2i—1

> Ji= z)

j=1

_ 1 1_1_ai+1_bi 1_ b;
]_—bz 1—(1,2‘

. a; 1(1—(1,2—87@)
T (10

This gives the first equation in Proposition 3.

= Pr{Jeaira=1

x Pr JCQZ':O
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Now, we consider the case when X; = ug;_1. We have

21—2

X, =uUg1 = E JCJ‘ =1¢—1and Jc,2i—1 =1
Jj=1
2i—1

= Y =i (C.17)
j=1

Since at each step of Chromy sampling, the conditional probabilities only
depend on the number of units already selected, this leads to

2i—1
}:L@j:¢>,(cas)
j=1

which is identical to equation (C.13). Therefore, the second equation in
Proposition 3 follows.

PT(X/L'+1 = u]|XZ = ng;l) = Pr (XiJrl = Uj

Finally, we consider the case when X; = usy;, which is equivalent to Zjlzl Jej =
i. Ifj=2i+1:

PT(XHl = u2i+1|Xi = Uzz‘) = Pr (Xi+1 = U2i+1

21
E:LJ:¢>

Jj=1
2
E Jej=1
Jj=1
F F
Vc,2i+1 - Vc,m’ . 1 —aiq — b

1-VE 1— b

c,21

= Pr <Jc,2z‘+1 =1

(C.19)
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If j = 2i + 2:

Pr(Xii1 = ugiio|Xi = ug) = Pr| Xy = ugiqo

21

> Jey= z)

j=1

21

> o= z)

= Pr Jc,2i+2 =1, Jc,2z‘+2 =0

j=1
2i+1 2%
= Pr| Jeaip2 =1 Z Jej = Z) Pr (JC,QZ-H =0 ZJCJ = 2)
J=1 j=1
1 —aiy1 —b; Qit1
" ( > ) b (C.20)
This completes the proof. O

C.3 Proof of Theorem 1

From Lemma 3.1 in Chauvet (2012) and our Proposition 2, Chromy sampling
and ordered pivotal sampling have the same two-stage characterization. It
is therefore sufficient to prove that they lead to the same sampling design
when sampling with parameter ¢ in the clustered population U.. However,
from equations (4.2)-(4.4) in Chauvet (2012) and our Proposition 3, both
Chromy sampling and ordered pivotal sampling have the same transition
probabilities between ordered sampled units, which means that the induced
sampling designs are identical.
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