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Conservatism reduction for Nonlinear Takagi-Sugeno Observer :
Interconnected System Approach.

H. Arioui, D. Ichalal, L. Nehaoua and S. Mammar

Abstract— This work considers observer design for nonlinear
systems by using Takagi-Sugeno (TS) models combined to
the interconnected systems formalism. The approach is based,
on a TS models of interconnected parts obtained from an
adequate decomposition of the initial nonlinear system into sub-
systems, and then transforming each one into Takagi-Sugeno’s
representation.

The observer design conditions for this new representation
are expressed as Linear Matrix Inequality (LMI) constraints
obtained from a common quadratic Lyapunov functions for sta-
bility analysis. The proposed observer, Luenberger-like struc-
ture, aims to reduce the number of LMIs and then reduces
the conservatism related to the huge number of verticies in
the polytope. Numerical examples show the effectiveness of the
proposed approach.

I. INTRODUCTION

A wide class of physical systems can be written as non-
linear (descriptor or not) models. Since this type of systems
often appears in control problems, a polytopic representation
makes it possible to obtain a smaller number of Linear Matrix
Inequalities (LMI) constraints [1]. This problem is crucial
in polytopic systems’s framework due to the conservatism
induced by a judge number of vertexes in the polytop (sub-
models). Indeed, from the beginning of the 1990 years, the
use of LMI formalism became a tool of choice for studying
the polytopic systems [2]. However, several difficulties ap-
peared, among them, the conservatism related to the number
of sub-models. The conservatism increases when the number
of LMIs increases [3].

Designing observers for nonlinear systems is a challenging
problem due to its importance in automatic control design
such as control, fault diagnosis, monitoring and fault tolerant
control. Polytopic and Takagi-Sugeno play an important role
in such a problem and provide different and efficient way to
design controllers and observers by using Lyapunov theory
and LMI formalism. In the context of observer’s design,
several works have been provided. Among them, one can
cite [3], [4], [5], for controller-based observer design. In [6],
[7], [8], observers have been proposed for state estimation
and state estimation in the presence of unknown inputs
(faults, perturbations ...). Extensions have been proposed for
state estimation of Takagi-Sugeno systems with state de-
pendent premise variables [9], [10], [11] and differentiation
techniques [12]. Notice that all these works transform the
nonlinear system in a TS form and design the observer
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which leads, in several cases of strong nonlinear systems,
to TS systems with a huge number of sub-models and then
a huge number of LMIs to solve. This leads, often, too
much conservatism property. This problem has been dealt
with by different approaches such as polyquadratic and non-
quadratic Lyapunov functions, considering the variation of
the weighting functions [13] and using the Polya’s theorem
[14]. Recently, the descriptor approach has been used in order
to reduce the conservatism for a certain class of descriptor
system by letting them in the descriptor form [1].

As discussed before, reducing the number of LMIs may
guarantee a less conservative design. Starting from this
point, different directions can be explored. In this paper, the
interconnected-based approach is considered. As in nonlinear
systems, the interconnected representation is an interesting
technique in stability analysis and control by using the small
gain theorem [15]. Indeed, it is proven that for complex
systems and large-scale systems, the decentralized approach
for control is allows to reduce the complexity in computation
point of view. Starting from this point, the idea proposed
in this paper is based on the decomposition of a nonlinear
system into an interconnection of several nonlinear sub-
systems. Keeping in mind the reduction of sub-models in TS
models, the interconnected systems can represent a nonlinear
system into an interconnection of several TS systems with
reduced number of vertexes. Then, the stability of each sub-
system additionally to the small gain theorem may provide
less restrictive stability conditions with a common Lyapunov
storage function. The problem of designing state observers
(or controller) is then transformed into a design of observers
for equivalent interconnected Takagi-Sugeno sub-systems.

In order to deal with this problem, several approaches can
be found. For example, exploit the nonlinear transformation
in order to re-write the nonlinear system with less number
of nonlinearities equivalently. In the proposed paper, a new
approach is adopted. The idea is based on a decomposition of
the nonlinear system into a suitable interconnected nonlinear
sub-systems. To do so, each sub-system will contain less non-
linearities compared to the whole nonlinear system. It will
be proven that, using this representation, almost decoupled
linear matrix inequalities constraints for each sub-system are
obtained by common Lyapunov analysis (advanced functions
may be considered).

The paper is organized as follows : after recalling some
important lemmas, section III) states the problem and the
main result and how to reduce number of sub-models (LMI
conditions). Section IV discuss the synthesis of the observer
and gives sufficient conditions for its convergence. In section



V we illustrate the effectiveness of the proposed approach
through an example. Section VI concludes the paper.

II. MATHEMATICAL BACKGROUND

Before giving the formulation of our problem, recall the
following basic results which will be used in the proof of
our main results :

Lemma 1: (Xie Lemma, [16])
Given matrices X , Y and G of appropriate dimension with

G symmetric matrix (G=GT > 0), the property below is true:

XTY +Y T X ≤ XT GX +Y T G−1Y (1)
Lemma 2: (Schur Lemma, [2])
Consider X , Y and Z with appropriate dimensions with

X = XT and Z = ZT , hence:[
X Y
Y T Z

]
< 0⇔

{
Z < 0

X−Y T Z−1Y < 0 (2)

III. PROBLEM STATEMENT, MOTIVATIONS AND
NOTATIONS

In this section, we discuss the decomposition of the affine
nonlinear systems and the intricacy (in term of conservatism)
they induce by comparing it with a prior decomposition
into two (or more) interconnected systems before writing the
Takagi-Sugeno form for each sub-model. To the knowledge
of the authors, this work is precursor.

A. Interconnection of TS Systems

Lets consider the following nonlinear system:{
ν̇(t) = f (ν(t))+g(ν(t))u(t)
y(t) = Cν(t) (3)

where ν(t) ∈ Rn is the state vector, u(t) ∈ Rm the control
input, and y(t) ∈ Rl the output vector; f (·) and g(·) are
nonlinear functions.

The previous system can be represented according to the
number r of sub-models by the Takagi-Sugeno structure.

As said before, a TS model is composed of a finite set of a
weighted linear systems, used to achieve a trade-off between
the accuracy and complexity of the model. The mathematical
formulation of the TS model of system (3) is given by:{

ν̇(t) = ∑
p
k=1 µk(ρ(t))(Akν(t)+Bku(t))

y(t) = Cν(t) (4)

The r nonlinearities are captured via membership functions.
These functions satisfy the convex-sum property in the
compact set of the state space, i.e.

p

∑
k=1

µk(ρ(t)) = 1 with µk(ρ(t))≥ 0 (5)

with p = 2r, and ρ(t) is the permise variable vector depend-
ing on states system (measured or not). In this work the
premise variables are assumed to be known at real time.

In order to illustrate the proposed approach based on sys-
tem decomposition into some nonlinear interconnected sub-
systems (here we suppose a two sub-systems decomposition),
and under some conditions (there is a dynamic coupling

between the interconnected subsystems), the previous system
is expressed by:

ẋ(t) = f1(x(t))+g1(x(t))z(t)+h1(x(t))u(t)
yx(t) = C̄x(t)
ż(t) = f2(z(t))+g2(z(t))x(t)+h2(z(t))u(t)
yz(t) = C̆z(t)

(6)

where : ν(t) = [x(t) z(t)]T and C = [C̄ C̆]T . x(t) ∈ Rn̄

and z(t) ∈ Rn−n̄ are the state vector, and yx(t) ∈ Rm̄ and
yz(t) ∈Rm−m̄ the output vector; fi(·) and g j(·) are nonlinear
functions. The mathematical formulation of the TS model of
system (6) is given by:

ẋ(t) = ∑
p1
i=1 σi(x(t))(Āix(t)+ D̄iz(t)+ B̄iu(t)))

yx(t) = C̄x(t)
ż(t) = ∑

p2
j=1 η j(z(t))(Ă jz(t)+ D̆ jx(t)+ B̆ ju(t))

yz(t) = C̆z(t)
(7)

where matrices Āi, B̄i, C̄, Ăi, B̆i and C̆ represent the ith linear
right-hand side of each sub-dynamics of model (7).

Respectively, the r1 and r2 nonlinearities of the two (or
more) sub-dynamics are captured via membership functions
with : ∑

p1
i=1 σi(·) = 1, σi(·)≥ 0 (respectively ∑

p2
j=1 η j(·) = 1,

η j(·)≥ 0), with pi = 2ri .
Since, r1 + r2 ≤ r, because of the vanishing nonlinear

terms between x(t) and z(t) under the interconnected form,
hence, p1 + p2 ≤ p. For example, if the initial number of
nonlinearities are about r = 5, this implies p = 2r = 32 sub-
models. Otherwise, r1 = r2 = 2 this implies p1 = p2 = 4 sub-
models for each sub-dynamics. This means that the system
under the interconnected decomposition needs only 8 LMI
constraints instead 32 LMI conditions to be verified for
the classical TS model. In the previous example, only one
coupling nonlinearity was removed.

Moving to the interconnection of two or more dynamics
can significantly reduce the number of sub-models as well
as the number of LMIs and inevitably increase the feasibility
set; therefore, it reduces the conservativeness of the optimi-
sation problem [5]. The following example highlights these
remarks.

B. Motivating Example
Consider the nonlinear descriptor system :{

E(ν)ν̇(t) = A(ν(t))+Bu(t)
y(t) = Cν(t) (8)

with matrices

E(ν(t)) =


1 0 0 0
0 1 −acos(ν1) 0
0 0 1 0
−bcos(ν1) 0 0 1

 ,

A(ν(t)) =


0 1 0 0
agsin(ν1)/ν1 0 0 0
0 0 1 0
0 −bsin(ν1) 0 −1

 ,



B =


0
1
2c
0
1
c

 , and CT =


1 0
0 0
0 1
0 0



Writing the example in the form (8) gives re = 21 = 2 due
to the nonlinear term cos(ν1(t)) in E(ν(t)) and r = 22 = 4
due to sin(ν1(t))/ν1(t) and sin(ν1(t)) and about 2× 4 = 8
sub-models. In this case, the inversion E(ν(t)) has no effect
on the increase of the number of sub-models. Indeed, the
new system{

ν̇(t) = E−1(ν(t))A(ν(t))+E(ν)−1Bu(t)
y(t) = Cν(t)

(9)

E−1(ν)A(ν) =


0 1 0 0

l1(ν) 0 0 acos(ν1)
0 0 1 0
0 l2(ν) 0 −1


and E−1(ν)B = B, where

l1(ν) = agsin(ν1)/ν1, l2(ν) =−b(cos(ν1)− sin(ν1))

To rewrite the previous example (8) into the classical Takagi-
Sugeno representation it is necessary to invert the matrix
E(ν) resulting in (9). This gives r = 23 = 8 sub-models.

On the other side, splitting the system (8) into two
dynamics as follows:

Σ1 :


ẋ1 = x2
ẋ2 = agsin(x1)+acos(x1)z2 +

1
2c u

yx = x1

(10)

and,

Σ2 :


ż1 = z2
ż2 = −z2 +bx2(cos(x1)− sin(x1))+

1
c u

yz = z1

(11)

Sub-system Σ1 gives rx = 22 = 4 sub-models due to
the nonlinear terms cos(x1(t)) and sin(x1(t)). System Σ2
becomes linear with respect to z(t). The nonlinear part
depending on x1(t) and x2(t) is considered as input to the
second dynamics.

Remark 1: The splitting of the overall system into two
or more subsystems is neither straightforward nor unique.
For an optimal choice, the subsystems must be chosen in
such a way that they have as little interaction as possible
between them. This can involve cases, when the states of
a subsystem are measurable, where the observer design is
not necessary. This is the case of the motivating example
above with subsystem Σ1. Also, the number of sub-models
is determined by the number of nonlinearities that can be
aggregated into a sector function.

Remark 2: It is interesting to note that in some cases,
following a decomposition of the descriptor systems results
in an interconnection of several non-descriptor sub-systems.

This can lead to a greater reduction in the number of sub-
models of interconnected Takagi-Sugeno systems.

Remark 3: For the rest of the developments and for sim-
plicity, only the case of measurable decision variables is
considered. This means that the membership function, in
systems and observers, are depending only on measured
states. In the same way, the outputs are linearly depending
to the system states.

IV. OBSERVER DESIGN

The objective of this section is to design a nonlinear
observer for interconnected Takagi-Sugeno systems based on
a common quadratic Lyapunov functions. The extension of
the proposed approach to poly-quadratic Lyapunov functions
is straightforward.

A. State estimation

Based on the developments above (3)-(7), the following
nonlinar observer is proposed [17]:

˙̂x = ∑
p1
i=1 νi(yx)(Āix̂+ D̄iẑ+ B̄iu− L̄i(yx− ŷx))

ŷx = C̄x̂
˙̂z = ∑

p2
j=1 η j(yz)(Ă j ẑ+ D̆ j x̂+ B̆ ju− L̆ j(yz− ŷz))

ŷz = C̆ẑ
(12)

By considering ex = x− x̂ and ez = z− ẑ, observers errors
dynamics are given by:{

ėx = ∑
p1
i=1 νi(yx)(Φ̄iex + D̄iez)

ėz = ∑
p2
j=1 η j(yz)(Φ̆ jez + D̆ jex)

(13)

where Φ̄i = (Āi− L̄iC̄) and Φ̆ j = (Ă j− L̆ jC̆). The following
Theorem provides LMI conditions that ensure asymptotic
convergence and allows to compute the gains of the inter-
connected observer.

Theorem 1: The state estimation error between the system
and the interconnected observers converges asymptotically to
zero if there exists two symmetric and definite matrices P
and Q, two diagonal positive matrices Ω1 and Ω2 and vectors
gains K̄i, i = 1, ..., p1 and K̆ j, j = 1, ..., p2 such that the LMI
conditions are :[

ĀT
i P+PĀi− K̄iC̄−C̄T K̄T

i +Ω2 PD̄i
D̄T

i P −Ω1

]
< 0, i= 1, ..., p1

(14)[
ĂT

i P+PĂi− K̆iC̆−C̆T K̆T
i +Ω1 QD̆ j

D̆T
j Q −Ω2

]
< 0, j = 1, ..., p2

(15)
hold. The gains of the interconnected observer are obtained
from the equations Li = P−1K̄i, i = 1, ..., p1 and L̆i =
Q−1K̆i, i = 1, ..., p1.

Proof: To study the convergence of the first observer,
the quadratic Lyapunov function is used:

V (e(t)) = ex(t)T Pex(t)+ ez(t)T Qez(t) (16)

The time-derivative of the Lyapunov function (16) is:

V̇ (e) = ∑
p1
i=1 νi(yx)((Φ̄iex + D̄iez)

T Pex + eT
x P(Φ̄iex

+D̄iez))+∑
p2
j=1 η j(yz)((Φ̆ jez + D̆ jex)

T Qez

+eT
z Q(Φ̆ jez + D̆ jex))

(17)



Considering Γ̄i = Φ̄T
i P+PΦ̄i and Γ̆ j = Φ̆T

j Q+QΦ̆ j, we have:

V̇ (e(t))< 0⇔
∑

p1
i=1 νi(yx)(eT

x Γ̄iex + eT
x PD̄iez + eT

z D̄T
i Pex)+

∑
p2
j=1 η j(yz)(eT

z Γ̆ jez + eT
z QD̆ jex + eT

x D̆T
j Pez)< 0

(18)

By considering Lemma (1), inequality (18) yields:

∑
p1
i=1 νi(yx)(eT

x (Γ̄i +PD̄iG1D̄T
i P)ex + eT

z G−1
1 ez)+

∑
p2
j=1 η j(yz)(eT

z (Γ̆ j +QD̆ jG2D̆T
j Q)ez + eT

x G−1
2 ex)< 0

(19)
If this last condition holds then V̇ (e(t))< 0. This condition
leads to the following optimization problem:[

Γ̄i +PD̄iG1D̄T
i P+G−1

2 0
0 Γ̆ j +QD̆ jG2D̆T

j Q+G−1
1

]
< 0

(20)
or [

Γ̄i +PD̄iG1D̄T
i P+G−1

2

]
< 0 (21)

and [
Γ̆ j +QD̆ jG2D̆T

j Q+G−1
1

]
< 0 (22)

The previous inequalities are connected by matrices gains
G1 and G2. Using Schur Lemma (2), inequality (20) yields
to: [

Γ̄i +G−1
2 PD̄i

D̄T
i P −G−1

1

]
< 0, i = 1, ..., p1 (23)[

Γ̆ j +G−1
1 QD̆ j

D̆T
j Q −G−1

2

]
< 0, j = 1, ..., p2 (24)

Finally, by using the definitions of the matrices Γ̄i and Γ̆ j and
change of variables K̄i = PL̄i, K̆ j =QL̆ j, Ω1 =G−1

1 and Ω2 =
G−1

2 where Ω1 and Ω2 are diagonal and positive definite
matrices. Hence, the gains of the interconnected observer are
computed from the LMI conditions given in the following
theorem.

Remark 4: The previous optimization problem is a set
of two independent conditions from the dynamics point-of-
view. The sufficient condition given above is less conserva-
tive than the Small Gain Theorem [18].

Remark 5: As for affine nonlinear systems case, the pre-
vious optimization problem is a set of two independent
conditions and may be rewritten in separate optimisation
problem for each sub-system. The Small Gain Theorem is
not needed.

Remark 6: Notice that the approach requires a number of
outputs greater than one. But it is possible to decompose
the system into different sub-systems, some of them are
observable and others detectable. In such a case it is also
possible to design the observer.

Remark 7: The presented result in this paper aims to
illustrate the approach based on interconnected systems for
observer design. The stability is then studied by a common
Lyapunov function. However, one can use different Lyapunov
functions in order to establish less conservatism LMI condi-
tions.

These approaches are illustrated in the following numer-
ical examples, where a comparison between both observers
(TS and interconnected one) is given.

V. SIMULATION RESULTS

A. Numerical example

Consider the example of double inverted pendulum given
by equation (8). A simulation behavior of the system is
illustrated by Fig. (1).
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Fig. 1. Evolution of System States

In order to express the Takagi-Sugeno form of the system,
the number of nonlinearities is analyzed. In fact, number
of nonlinearity of E(x) is one, hence sub-models are about
pe = 21. In the same way, number of nonlinearity of A(x) is
two, hence sub-models are about p = 22. Indeed, the system
dynamics accepts about p1 = p× pe = 21 × 22 = 8 sub-
models or LMI problems to solve. The previous system is
separated into two interconnected dynamics as follows (Fig.
2):

Σ1 :


ẋ1 = x2
ẋ2 = agsin(x1)+acos(x1)z2 +

1
2c u

yx = x1

(25)

and,

Σ2 :


ż1 = z2
ż2 = −z2 +bx2(cos(x1)− sin(x1))+

1
c u

yz = z1

(26)

Σ1

Σ2

u(t)

u(t)

yx(t)

yz(t)

Fig. 2. Interconnected systems Σ1 and Σ2.

In order to express the Takagi-Sugeno form of the system,
number of nonlinearities is analyzed. One can state that
the Ei matrices of each sub-models are identity matrix. In



Parameters
g = 9.81
mch = 0.195
Lb = 0.4
mb = 0.095
a = 3/(4∗Lb)
b = mb ∗Lb/(mb +mch)
c = 1/(mb +mch);

TABLE I
SYSTEM PARAMETERS

addition, the interconnection of TS sub-models gives the
exact nonlinear system.

Also, following the interconnection of the two systems
we remark that the system is still nonlinear with respect
to x allowing 4 sub-models (2 nonlinearities). However,
the second sub-model is linear with respect to z. Hence,
the whole system dynamics presents, under interconnection
outline, 5 sub-models and the corresponding LMI constraints
to solve.

1) Observer analysis: It is easy to see that the previous
example shows that the system is completely observable.

By using Sedumi & Yalmip [19] LMI toolbox, one can
solve the problem and find the observer gains as follows:

L =


L1
L2
L3
L4
L5

=


5.8081 46.5631
5.8081 18.9725
5.8081 46.5631
5.8081 18.9725
1.6400 2.3675


Matrices Gi, equations (23) and (24), are:

G1 =

[
1.0007 0

0 1.3880

]
, and G2 =

[
1.0007 0

0 0.0256

]
Taking x0 = [0.5 0.3]T and z0 = [0.3 0.6]T , simulation results
are shown in Fig. 3.
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Fig. 3. State estimation error with the Interconnected TS Luenberger
observer

Fig. (4) shows results of a classical Luenberger TS ob-
server (gains are given in the appendix VII-A), synthesized
under the same conditions as before, with observer gain

of dimension 4× 16. The new approach presents almost
the same performance with a faster convergence than the
classical technique.
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B. Conservatism study

The observability of the exemple above was verified with
theorem 1 and for a ∈ [0 200], b ∈ [0 200]. Fig. (5) shows
that the feasibility region of the optimisation problem (15) is
larger than the region given by a classic TS observer. Thus,
the results presented here are less conservative.
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Fig. 5. Conservatism analysis with both obsrervers : TS observer (black
circles) and Inerconnected observer (black and gray circles).

C. Result Discussion and Analysis

Results of Fig. 3 and 4, show the states estimation for
the both observer approaches. Under the interconnected
formalism, the performances are much better: number of
gains is six times less than for the classical design, less
conservatism as shown previously and rapid convergence.
For many cases, the optimisations problem is not feasible
for Takagi-Sugeno representation due to the huge number of
LMI’s.



The estimated states with both observers are quite differ-
ent, and we state cannot which method is more accurate. Ta-
ble V-C gives some objective comparisons based on the sen-
sitivity of the estimation approach. Three simulations were
performed with different initial conditions (x01 = [0.5 0 0 0]
and x02 = [−0.5 0.8 1 − 1]) and some of parameters set
(a1 = 1.87, b1 = 3.13, a2 = 10, b2 = 40). In this last case,
the optimisation problem for the classical TS observer is not
feasible.

The estimated states are compared with their correspond-
ing data by means of the Root Mean Square Error (RMSE)
to show how close are the estimated values to the real states.
The mathematical formulas, are defined below:

RMSEj =

√
∑

n
j=1 (x j− x̂ j)2

n
(27)

where x j is the real state containing n data and x̂ j is its
estimate provided by both observers.

The resulting RMSE for the conducted simulations are
shown in table (1). One can state that the RMSE for both
observers are close and generally better for the proposed
approach.

States RMSE a1, b1 and x01 a1 = 1.87, b1 and x02 a2, b2 and x01
x1 TS Obs. 5.36 10−2 9.75 10−2 unfeasable

Inter. Obs. 3.69 10−2 7.78 10−2 12.38
x2 TS Obs. 5.9 10−1 1.02 unfeasable

Inter. Obs. 7.42 10−2 1.01 0.58
x3 TS Obs. 7.3 10−3 2.09 10−1 unfeasable

Inter. Obs. 1.45 10−2 1.4 10−1 23.94
x4 TS Obs. 6.22 10−4 1.99 unfeasable

Inter. Obs. 2.36 10−2 1.908 1.55

TABLE II
RMSE PERFORMANCE STUDY

VI. CONCLUSION

In this paper, an approach based on transforming a non-
linear system into interconnected Takagi-Sugeno sub-systems
is proposed for state observer design. The idea is to reduce
the number of vertices in the polytope and to reduce the
conservatism related to the number of LMIs. As illustrated
in the example, expressing a nonlinear system may lead to
interconnected Takagi-Sugeno sub-systems with less number
of vertices for each one. Almost decoupled LMI conditions
have been proposed in order to ensure the asymptotic state
estimation error convergence for a number of sub-systems
with reduced number of vertices for each one. Numerical
results confirm the simplification offered by the proposed
result compared to the classical approach. Future results will
concern the use of the descriptor modeling and extension to
uncertain and unknown input nonlinear systems.
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VII. APPENDIX

A. Takagi-Sugeno Observer gains

L =



L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15
L16



=



4.7450 35.5068 0.0053 −1.0263
−0.0044 −0.0537 0.4653 1.6914
4.7450 7.9162 0.0053 −1.0263
−0.0044 −0.0536 0.4653 1.6914
4.7364 35.4386 −0.0320 0.8057
−0.0045 −0.0539 0.4655 1.6835
4.7364 7.8478 −0.0320 0.8056
−0.0044 −0.0536 0.4655 1.6837
4.7561 35.5496 0.0053 0.0053
−0.0293 −0.1492 0.4654 1.6921
4.7561 7.9588 0.0053 −1.0266
−0.0295 −0.1497 0.4654 1.6922
4.7476 35.4814 −0.0321 0.8054
−0.0293 −0.1490 0.4656 0.4656
4.7476 7.8907 −0.0321 0.8054
−0.0294 −0.1493 0.4656 1.6843




