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Introduction

We consider the following L 2 -critical 1-dimensional NLS-Szegő equation on the line R

i∂ t u + ∂ 2 x u = -Π(|u| 4 u), (t, x) ∈ R × R, u(0, •) = u 0 , (1.1) 
where Π : L 2 (R) → L 2 (R) denotes the Szegő projector that cancels all negative Fourier modes

Π(f )(x) = 1 2π +∞ 0 e ixξ f (ξ)dξ, ∀f ∈ L 1 (R) L 2 (R). (1.2) 
Set L 2 + = Π(L 2 (R)), then L 2 + can be identified as the Hardy space that consists of all the holomorphic functions on the Poincaré half-plane H + := {z ∈ C : Imz > 0} with L 2 boundary

L 2 + = {f holomorphic on H + : f 2 L 2 + := sup y>0 R |f (x + iy)| 2 dx < +∞}.
Since Π = id+iH 2 , where H = -isign(-i∂ x ) is the Hilbert transform, Π : L p (R) → L p (R) is a bounded operator, for every 1 < p < +∞ (Stein [23]). We define the filtered Sobolev spaces H s + = H s (R) L 2 + , for every s ≥ 0.

The motivation to study this equation is based on the following two results. On the one hand, the L 2 -critical focusing non linear Schrödinger equation

i∂ t U + ∂ 2 x U = -|U | 4 U, (t, x) ∈ R × R, U (0, •) = U 0 . (1.3) 
marks the transition between the global existence (see Cazenave-Weissler [START_REF] Cazenave | The Cauchy problem for the nonlinear Schrödinger equation in H 1[END_REF][START_REF] Cazenave | The Cauchy problem for the nonlinear Schrödinger equation in H s[END_REF] for small data case) and the blow-up phenomenon (see Glassey [START_REF] Glassey | On the blow up of solutions to the Cauchy problem for non linear Schrödinger operators[END_REF] for viriel identity method, Perelman [START_REF] Perelman | On the blow-up phenomenon for the critical nonlinear Schrödinger equation in 1D[END_REF] and Merle-Raphael [START_REF] Merle | On universality of blow-up profile for L 2 -critical non linear Schrödinger equation[END_REF] for blow-up dynamics). The instability of traveling waves U (t, x) = e iωt R(x) of equation (1.3) and the classification of its ground states R associated to the Gagliardo-Nirenberg inequality

f 6 L 6 ∂ x f 2 L 2 f 4 L 2 , ∀f ∈ H 1 (R)
are established in Weinstein [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]. The ground states are unique up to scaling, phase rotation and spatial translation. It has been proved that the scattering mass threshold of equation (1.3) is equal to the mass of ground state R L 2 in Dodson [START_REF] Dodson | Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state[END_REF].

On the other hand, it has been shown in Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF] that filtering the positive Fourier modes could accelerate the transition to high frequencies in a Hamiltonian evolution PDE, leading to the superpolynomial growth of Sobolev norms of solutions of the cubic Szegő equation on the torus S 1 . So we introduce the cubic defocusing NLS-Szegő equation on the torus S 1 in Sun [START_REF] Sun | Long time behavior of the NLS-Szegő equation[END_REF] in order to understand how applying a filter keeping only positive Fourier modes modifies the long time dynamics of the non linear Schrödinger equation.

We continue this topic in this paper and we put the NLS-Szegő equation on the line R. The traveling waves and the classification of ground states of the cubic Szegő equation on the line R

i∂ t V = Π(|V | 2 V ), (t, x) ∈ R × R, V (0, •) = V 0 (1.4)
are studied in Pocovnicu [START_REF] Pocovnicu | Traveling waves for the cubic Szegő equation on the real line[END_REF]. Now we consider the quintic focusing NLS-Szegő equation on the line R in order to understand how Π modifies the global wellposedness result, the scattering mass threshold and the stability result of traveling waves of the L 2 -critical non linear Schrödinger equation. 

-∈ H s + such that lim t→-∞ e it∂ 2 x u --u(t) H s = 0.
In the small mass case, equation (1.1) is globally well-posed in L 2 + and the solution L 2 -scatters both forward and backward in time. The proof is similar to Cazenave-Weissler [START_REF] Cazenave | The Cauchy problem for the nonlinear Schrödinger equation in H 1[END_REF][START_REF] Cazenave | The Cauchy problem for the nonlinear Schrödinger equation in H s[END_REF].

Proposition 1.2. There exists 0 > 0 such that if u 0 L 2 ≤ 0 , then the global solution u ∈ C(R; L 2 + ) of equation (1.1) exists uniquely and L 2 -scatters both forward and backward in time.

There are three conservation laws for (1.1) and (1.3): the mass, the momentum and the Hamiltonian

M (u) = u 2 L 2 , P (u) = Du, u L 2 , E(u) = ∂ x u 2 L 2 2 - u 6 L 6 6 
,

where D = -i∂ x and u ∈ H 1 + for (1.1), u ∈ H 1 (R) for (1.3). If u ∈ C(R; H 1 + ) solves equation (1.1), then the momentum P (u) = |D| 1 2 u 2 L 2 and the mass M (u) control H 1 2
-norm of the solution, leading to the global wellposedness of equation (1.1). By using Gagliardo-Nirenberg's interpolation inequality

u L 2m+2 m |D| 1 2 u m m+1 L 2 u 1 m+1 L 2 , ∀m ≥ 0, ∀u ∈ H 1 2 (R), (1.5) 
one can solve the problem of global wellposedness for all L 2 -supercritical non linear NLS-Szegő equations for all large initial data u 0 ∈ H 1 + . On the other hand, when U 0 ∈ H 1 (R) such that E(U 0 ) < 0 and U 0 ∈ L 2 (R, x 2 dx), then the solution U of equation (1.3) associated to initial datum U 0 blows up in finite time by the viriel identity (Glassey [START_REF] Glassey | On the blow up of solutions to the Cauchy problem for non linear Schrödinger operators[END_REF], Cazenave [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). We refer to Perelman [START_REF] Perelman | On the blow-up phenomenon for the critical nonlinear Schrödinger equation in 1D[END_REF] and Merle-Raphaël [START_REF] Merle | On universality of blow-up profile for L 2 -critical non linear Schrödinger equation[END_REF] to see the asymptotic representation of the blow-up dynamics of equation (1.3) in details. Now we state the first result of this paper.

Theorem 1.3. For all m ≥ 0, λ = ±1 and u 0 ∈ H 1 + , there exists a unique function u ∈ C(R; H 1 + ) solving the following equation

i∂ t u + ∂ 2 x u = λΠ(|u| 2m u), u(0, x) = u 0 (x), (t, x) ∈ R × R. (1.6) 
The local well-posedness of equation (1.6) is established by the fixed-point theorem and Sobolev estimates.

In the focusing case λ = -1, since the mass, the momentum and the Hamiltonian are conserved under the flow of equation (1.6), inequality (1.5) yields that

sup t∈R ∂ x u(t) 2 L 2 m ∂ x u 0 2 L 2 + |D| 1 2 u 0 2m L 2 u 0 2 L 2 .
Thus every solution of (1.6) is global. Besides the global well-posedness problem, there are still other differences between equation (1.1) and equation (1.3).

We consider the traveling waves of equation (1.1), u(t, x) = e iωt Q(x + ct), for some ω, c ∈ R. u solves (1.1) if and only if Q solves the following non local elliptic equation

∂ 2 x Q + Π(|Q| 4 Q) = ωQ + cDQ. (1.7)
It suffices to identity equation (1.7) to the Euler-Lagrange equation of some functional associated to Gagliardo-Nirenberg inequality (1.5) in order to obtain the traveling waves. For all m ≥ 2 and γ ≥ 0, we define

I (γ) m (f ) := ∂ x f m L 2 f m+2 L 2 + γ |D| 1 2 f 2m L 2 f 2 L 2 f 2m+2 L 2m+2 , ∀f ∈ H 1 (R)\{0}. (1.8)
This functional is invariant by space-translation, phase-translation, interior and exterior scaling.

I (γ) m (f ) = I (γ) m (f λ,µ,y,θ ), where f λ,µ,y,θ (x) = λe iθ f (µx + y), ∀x, y, θ ∈ R, ∀λ, µ > 0.
We denote its greatest lower bound by J

(γ) m = inf f ∈H 1 + \{0} I (γ)
m (f ) and all its minimizers by

G (γ) m = {f ∈ H 1 + \{0} : I (γ) m (f ) = J (γ) m } = a,b>0 G (γ) m (a, b), (1.9) 
where

G (γ) m (a, b) = {f ∈ G (γ) m : f L 2 = a, f L 6 = b}. Then we have G (γ) m (a, b) = {λf (µ•) ∈ H 1 + \{0} : f ∈ G (γ) m (1, 1), λ = a -1 m b m+1 m and µ = b 2m+2 m a -2m+2 m }.
A concentration-compactness argument shows that the functional I

m attains its minimum in H 1 + \{0}. We shall follow the idea of profile decomposition of minimizing sequence introduced in Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], which is a refinement of the concentration-compactness principle (see Lions [START_REF] Lions | The concentration-compactness principle in calculus of variations. The locally compact case. Part 1[END_REF][START_REF] Lions | The concentration-compactness principle in calculus of variations. The locally compact case. Part 2[END_REF] and Cazenave-Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] for orbital stability of traveling waves of L 2 -subcritical NLS equation), in order to establish the existence of minimizers.

Theorem 1.4. For all m ≥ 2 and γ ≥ 0, if

(f n ) n∈N ∈ H 1 + is a minimizing sequence for I (γ) m such that f n L 2 = f n L 2m+2 = 1 and lim n→+∞ I (γ) m (f n ) = J (γ)
m , then there exists a profile U ∈ G (γ) m (1, 1), a strictly increasing function ψ : N → N and a real-valued sequence (x n ) n∈N such that

lim n→+∞ f ψ(n) -U (• -x n ) H 1 = 0.
(1.10)

Remark 1.5. If H 1 + is replaced by H 1 (R), then we have U ∈ H 1 (R)\{0} such that U L 2 = U L 2m+2 = 1, I (γ) m (U ) = min f ∈H 1 (R)\{0} I (γ)
m (f ) and the limit (1.10) also holds.

Thus G (γ)
m (a, b) is not empty, for all a, b > 0. We refer to Gérard-Lenzmann-Pocovnicu-Raphaël [START_REF] Gérard | A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line[END_REF] to see the asymptotic dynamics and long time behavior in two different regimes of the two-soliton solutions of the cubic focusing half-wave equation on R. Similarly, one obtains the existence of ground states of traveling waves for L 2 -critical Schrödinger equation on R d (see Hmidi-Keraani [START_REF] Hmidi | Blowup theory for the critical nonlinear Schrödinger equations revisited[END_REF]), for cubic Szegő equation (see Pocovnicu [START_REF] Pocovnicu | Traveling waves for the cubic Szegő equation on the real line[END_REF]), for non linear Schrödinger equation on the Heisenberg group (see Gassot [START_REF] Gassot | On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group[END_REF]), etc.

Given m ≥ 2 and γ ≥ 0, let f ∈ H 1 + \{0} be a minimizer of

I (γ) m , then d d =0 log I (γ) m (f + h) = 0, for all h ∈ H 1 + . f solves the following Euler-Lagrange equation m f m+2 L 2 ∂ x f m-2 L 2 ∂ 2 x f + 2(m + 1)J (γ) m Π(|f | 2m f ) =((m + 2) f m L 2 ∂ x f m L 2 + 2γ |D| 1 2 f 2m L 2 )f + 2γm f 2 L 2 |D| 1 2 f 2m-2 L 2
Df.

(1.11)

From now on, we restrict ourselves to the case m = 2. We want to identify equation (1.7) to equation

Q 4 L 2 3J (γ) 2 ∂ 2 x Q + Π(|Q| 4 Q) = 2 Q 2 L 2 ∂ x Q 2 L 2 + γ |D| 1 2 Q 4 L 2 3J (γ) 2 Q + 2γ Q 2 L 2 |D| 1 2 Q 2 L 2 3J (γ) 2 DQ. A minimizer Q (γ) ∈ G (γ) 2
is called the ground state of functional

I (γ) 2 , if Q (γ) 4 L 2 = 3J (γ) 2 . If u(t, x) = e iωt Q (γ) (x + ct) solves equation (1.1) and Q (γ) ∈ G (γ) 2 ( 4 3J (γ)
2 , b) for some b, ω > 0 and c, γ ≥ 0, then c = 0 if and only if γ = 0.

If γ = 0, then we have ∂ x Q (γ) 2 L 2 = ω 2 3J (0) 2 and Q (γ) 6 L 6 = 3ω 2 3J (0) 2 . If γ > 0, then we have ∂ x Q (γ) 2 L 2 = 3J (γ) 2 8γ (4γω -c 2 ), |D| 1 2 Q (γ) 2 L 2 = 3J (γ) 2 c 2γ , Q (γ) 6 L 6 = 3 3J (γ) 2 ( ω 2 + c 2 8γ ).
Furthermore, the interpolation inequality |D|

1 2 Q (γ) 2 L 2 ≤ Q (γ) L 2 ∂ x Q (γ) L 2 yields that c 2 ≤ 4γ 2 ω γ+2 .
Even though we do not know how to classify all the ground states of

I (γ)
2 , for general γ ≥ 0, the H 1 -orbital stability with scaling can be established by using theorem 1.4 and the conservation law

P (u) = -i∂ x u, u L 2 = |D| 1 2 u 2 L 2 . Theorem 1.6. For every , b > 0 and γ ≥ 0, there exists δ = δ(b, , γ) > 0 such that if inf f ∈G (γ) 2 ( 4 3J (γ) 2 ,b) u 0 -f H 1 < δ, then we have sup t∈R inf Ψ∈ C(γ) -1 ≤θ≤C(γ) G (γ) 2 ( 4 3J (γ) 2 ,θb) u(t) -Ψ H 1 < , where u is the solution of equa- tion (1.1) with initial datum u(0) = u 0 and C(γ) := inf f ∈H 1 + \{0} |D| 1 3 f L 2 f L 6 -1 6 J (γ) 2 1+γ .
The problem of uniqueness of ground states of a non-local elliptic equation is difficult (See Frank-Lenzmann [START_REF] Frank | Uniqueness of non-linear ground states for fractional Laplacians in R[END_REF] for the fractional Laplacians in R and also Lenzmann-Sok [START_REF] Lenzmann | A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbitrary order[END_REF] for a strict rearrangement principle in Fourier space). We refer to subsection 4.2 to discuss the classification of ground states of

I (γ) 2 .
For general γ ≥ 0, we only have the H 1 -orbital stability with scaling. Since we do not know the uniqueness of ground states of

I (γ)
2 , the L 6 -norm of the ground state Ψ that approaches u(t) is unknown. We can only give a range

f L 6 C(γ) ≤ Ψ L 6 ≤ C(γ) f L 6
, where f denotes the ground state that approaches the initial datum u 0 .

On the other hand, all the ground states can be completely classified in the case γ = 2, by using Cauchy-Schwarz inequality. The ground state of I Proposition 1.7. In the case γ = m = 2, we have

J (2) 2 = min f ∈H 1 + \{0} I (2) 2 (f ) = 8π 2 3 , G (2) 
2 = {x → λe iθ µx + y + i ∈ H 1 + : ∀λ, µ > 0 ∀θ, y ∈ R}. (1.12) If u(t, x) = e iωt Q(x + ct) is a traveling wave of (1.1) and Q ∈ G (2)
2 , then we have

3c 2 = 8ω, Q 4 L 2 = 8π 2 , Q 6 L 6 = 3πc 2 √ 2 , |D| 1 2 Q 2 L 2 = πc √ 2 , ∂ x Q 2 L 2 = πc 2 2 √ 2 ,
thanks to the classification of G

2 . In this case, the traveling wave

u c (t, x) = e 3c 2 it 8 Q c (x + ct) is H 1 -orbitally stable, for every c > 0, where Q c ∈ G (2) 2 ( 4 √ 8π 2 , 6 3πc 2 √ 2 ).
Theorem 1.8. For every , c > 0, there exists δ ,c > 0 such that if inf

f ∈ G( 4 √ 8π 2 , 6 3πc 2 √ 2 ) u 0 -f H 1 < δ, then we have sup t∈R inf f ∈ G( 4 √ 8π 2 , 6 3πc 2 √ 2 )
u(t)-f H 1 < , where u solves equation (1.1) with initial datum

u(0) = u 0 .
Remark 1.9. In the case γ = 2, since all the ground states are completely classified and unique up to scaling, phase rotation and spatial translation by proposition 1.7, we obtain the Ḣ 1 2 -norm of the ground state that approaches u(t) by the conservation law P (u) = Du, u L 2 and formula (1.10). Then we know also the L 6 -norm of the very ground state and we have the actual orbital stability without scaling, which is a refinement of theorem 1.6.

Similar results on the classification of ground states of traveling waves by using Cauchy-Schwarz inequality can be found in Foschi [START_REF] Foschi | Maximizers for the Strichartz Inequality[END_REF] for linear Schrödinger equation and linear wave equation on R d , for d ≥ 1, Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF] for the cubic Szegő equation on the torus S 1 , Pocovnicu [START_REF] Pocovnicu | Traveling waves for the cubic Szegő equation on the real line[END_REF] for the cubic Szegő equation on the line R and Gassot [START_REF] Gassot | On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group[END_REF] for the non linear Schrödinger equation on the Heisenberg group.

In the case γ = 0, we have

I (0) 2 (f ) := ∂ x f 2 L 2 f 4 L 2 f 6 L 6 , ∀f ∈ H 1 (R)\{0}.
All of the ground states in H 1 (R) of

I (0) 2
have been completely classified in Weinstein [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]. We know

min f ∈H 1 (R)\{0} I (0) 2 (f ) = π 2
4 and there exists a unique real-valued, positive, spherically symmetric and

decreasing function R(x) = 4 √ 3 √ cosh(2x) such that (I (0) 2 ) -1 ( π 2 4 ) = {λe iθ R(µ • -y) : λ, µ > 0 θ, y ∈ R}.
The traveling wave U (t, x) = e iωt R(x) is an unstable solution of the L 2 -critical focusing Schödinger equation (1.3) in the following sense: there exists a sequence u

(n) 0 = (1 + 1 n )R ⊂ H 1 (R) such that u (n) 0 → R, as n → +∞, but the corresponding maximal solution u (n) blows up in finite time. We denote by Q (0) ∈ G (0) 2 ( 4 3J (0) 2 , Q (0) L 6
) one of the ground states of

I (0) 2 in Hardy space H 1 + . Since R / ∈ H 1 + and Q + : x → 1 x+i ∈ H 1 + , we have π 2 4 = I (0) 2 (R) < J (0) 2 = I (0) 2 (Q (0) ) ≤ I (0) 2 (Q + ) = 4π 2 3 .
In proposition 1.2, we know that the solution of equation (1.1) and equation (1.3) scatters if the initial datum has sufficiently small mass. Furthermore, Dodson [START_REF] Dodson | Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state[END_REF] has proved that if U 0 < R L 2 , then equation (1.3) is globally well-posed and the solution L 2 -scatters both forward and backward in time.

Together with the instability result of traveling waves by Weinstein [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF], the scattering mass threshold of equation (1.3) is equal to the mass of ground state R ∈ H 1 (R) of

I (0) 2 .
On the other hand, adding the Szegő projector in front of the non linear term of the L 2 -critical focusing Schrödinger equation makes the scattering mass threshold strictly less than the mass of ground state

Q (0) ∈ H 1 + of I (0)
2 , thanks to the orbital stability theorem 1.6. We define E ⊂ R * + to be all > 0 such that if u 0 L 2 < , the corresponding solution of (1.1) L 2 -scatters both forward and backward in time.

If an H 1 -solution of equation (1.1) L 2 -scatters, then it also H 1 -scatters and its L r -norm decays, with 2 < r ≤ +∞. Thus traveling waves do not L 2 -scatter and neither does the solution that approaches the traveling wave.

Corollary 1.10. sup E < Q (0) L 2 = 4 3J (0) 2 . Precisely, there exists u ∈ C(R; H 1 + ) solving equation (1.1) such that u(0) L 2 < Q (0)
L 2 and u does not L 2 -scatter neither forward nor backward in time.

Remark 1.11. The mass of ground state of I

(2) 2

is strictly larger than the mass of ground state of

I (0) 2 . Q (2) 4 L 2 = 8π 2 > 4π 2 ≥ Q (0) 4 L 2 . E(Q (2) ) = - πc 2 4 √ 2 < 0 = E(Q (0) ).
The value of scattering mass threshold of equation ( 1 This paper is organized as follows. In section 2, we recall profile decomposition theorem prove theorem 1.4. In section 3, the orbital stability of traveling wave u(t, x) = e iωt Q(x + ct) is proved at first. Then we give the details of the special case γ = 2. In the first appendix, we prove the persistence of regularity of scattering. In the second appendix, we discuss the open problem of uniqueness of ground states of the functional

I (γ)
2 , for general γ ≥ 0. It suffices to study the uniqueness of ground states modulo positive Fourier transform.

At first, we recall the result of profile decomposition theorem in Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], which is a refinement of concentration-compactness argument of Sobolev embedding introduced in Lions [START_REF] Lions | The concentration-compactness principle in calculus of variations. The locally compact case. Part 1[END_REF][START_REF] Lions | The concentration-compactness principle in calculus of variations. The locally compact case. Part 2[END_REF]. Every bounded sequence in H 1 + has a subsequence which can be written as a nearly orthogonal sum of a superposition of sequence of shifted profiles and a sequence tending to zero in L p (R), for every 2 < p ≤ +∞. It will be used to find the minimizers of some functionals in calculus of variation and establish the orbital stability of some traveling waves. We shall use the version of Hmidi-Keraani [START_REF] Hmidi | Remarks on the blow-up for the L 2 -critical nonlinear Schrödinger equations[END_REF] and construct the profiles without scaling.

Theorem 2.1 (Gérard 10, Hmidi-Keraani 16). If (f n ) n∈N+ is a bounded sequence in H 1 + , then there exists a subsequence of (f n ) n∈N+ , denoted by (f φ(n) ) n∈N+ , a sequence of profiles (U (j) ) j∈N+ ⊂ H 1 + and a double-indexed sequence (x

(j) n ) n,j∈N+ ⊂ R such that if j = k, then |x (j) n -x (k)
n | → +∞ and for every l ∈ N + , we have

f φ(n) (x) = l j=1 U (j) (x -x (j) n ) + r (l) n (x), ∀x ∈ R, (2.1) 
where lim sup n→+∞ r (l)

n L p → 0, as l → +∞, ∀2 < p ≤ +∞. For every l ∈ N + and s ∈ [0, 1],

|D| s f φ(n) 2 L 2 - l j=1 |D| s U (j) 2 L 2 -|D| s r (l) n 2 L 2 → 0, as n → +∞. (2.2)
Remark 2.2. According to Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] and Hmidi-Keraani [START_REF] Hmidi | Remarks on the blow-up for the L 2 -critical nonlinear Schrödinger equations[END_REF], we may construct the profiles (U (j) ) j∈N+ ⊂ H 1 + such that if U (l) = 0 for some l ∈ N, then U (j) = 0, for every j ≥ l.

Then we shall use this theorem to establish the existence of minimizers in

H 1 + of I (γ)
m , for every m ≥ 2 and γ ≥ 0. Similar applications may be found in Hmidi-Keraani [START_REF] Hmidi | Blowup theory for the critical nonlinear Schrödinger equations revisited[END_REF] Pocovnicu [START_REF] Pocovnicu | Traveling waves for the cubic Szegő equation on the real line[END_REF] and Gassot [START_REF] Gassot | On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group[END_REF].

Proof of theorem 1.4. Since sup n∈N f n H 1 < +∞, theorem 2.1 gives a subsequence of (f n ) n∈N+ , denoted by (f φ(n) ) n∈N+ , a sequence of profiles (U (j) ) j∈N+ ⊂ H 1 + and a double-indexed sequence (x For all 0 ≤ s ≤ 1, l ∈ N + and δ > 0, there exists N = N (s, l, δ) ∈ N + such that

(j) n ) n,j∈N+ ⊂ R such that |x (j) n -x (k) n | → +∞, if j = k,
|D| s f φ(n) 2 L 2 ≥ l j=1 |D| s U (j) 2 L 2 -δ, ∀n > N.
Taking n → +∞, δ → 0 and l → +∞, we have

l j=1 |D| s U (j) 2 L 2 ≤ lim inf n→+∞ |D| s f φ(n) 2 L 2
, for every 0 ≤ s ≤ 1. Then, there exists a subsequence of (f φ(n) ) n∈N , denoted by (f φ• φ(n) ) n∈N such that both sequences ( |D|

1 2 f φ• φ(n) L 2 ) n∈N and ( ∂ x f φ• φ(n) L 2 ) n∈N converge and we have      +∞ j=1 ∂ x U (j) 2 L 2 ≤ lim n→+∞ ∂ x f φ• φ(n) 2 L 2 , +∞ j=1 |D| 1 2 U (j) 2 L 2 ≤ lim n→+∞ |D| 1 2 f φ• φ(n) 2 L 2 , +∞ j=1 U (j) 2 L 2 ≤ lim n→+∞ f φ(n) 2 L 2 = 1.
(2.3) Thus 0 ≤ U (j) L 2 ≤ 1, for every j ∈ N + . We set ψ = φ • φ : N → N. Since m ≥ 2 and

J (γ) m = lim n→+∞ I (γ) m (f ψ(n) ) = lim n→+∞ ∂ x f ψ(n) m L 2 + γ lim n→+∞ |D| 1 2 f ψ(n) 2m L 2 ,
estimates (2.3) yields that

J (γ) m ≥( +∞ j=1 ∂ x U (j) 2 L 2 ) m 2 + γ( +∞ j=1 |D| 1 2 U (j) 2 L 2 ) m ≥ +∞ j=1 ( ∂ x U (j) m L 2 U (j) m+2 L 2 + γ |D| 1 2 U (j) 2m L 2 U (j) 2 L 2 ) ≥J (γ) m +∞ j=1 U (j) 2m+2 L 2m+2 .
(2.4)

We claim that

+∞ j=1 U (j) 2m+2 L 2m+2 = 1. (2.5)
In fact, each profile U (j) ∈ L ∞ (R). More precisely, we have

∞ j=1 U (j) 2 L ∞ m 1 by Sobolev embedding H 1 → L ∞ and estimate (2.3). One can easily check that l j=1 U (j) 2m+2 L 2m+2 = l j=1 U (j) 2m+2 L 2m+2 + R (l) n , ∀l ∈ N + ,
where

|R (l) n | m,l 1≤j<k≤l R |U (j) (x-x (j) n )||U (k) (x-x (k) n )|dx. Since U (j) ∈ L 2 + , lim n→+∞ |x (j) n -x (k) n | = +∞, for all 1 ≤ j < k ≤ l, we have |U (j) (• -x (j) n + x (k) n )| 0 in L 2 + , as n → +∞. So lim n→+∞ R (l) n = 0. The profile decomposition theorem (2.1) implies that r (l) n L 2m+2 ≥ f ψ(n) L 2m+2 - l j=1 U (j) L 2m+2 = 1 -( l j=1 U (j) 2m+2 L 2m+2 + R (l) n ) 1 2m+2
.

Taking n → +∞, we have 1 -

( l j=1 U (j) 2m+2 L 2m+2 ) 1 2m+2
≤ lim sup n→+∞ r (l) n L 2m+2 → 0, as l → +∞ and we obtain (2.5).

Combining (2.4), we have

J (γ) m ≥ J (γ) m +∞ j=1 U (j) 2m+2 L 2m+2 = J (γ)
m . All inequalities in (2.3) and (2.4) are actually equalities. In particular, we have

∂ x U (1) m L 2 U (1) 2m+2 L 2 = ∂ x U (1) m L 2 , I (γ) m (U (1) ) U (1) 2m+2 L 2m+2 = J (γ) m U (1) 2m+2 L 2m+2 .
If U (1) ≡ 0 a.e. in R, then so is U (j) , for every j ≥ 2 by the construction of profiles in remark 2.2. It contradicts formula (2.5). Thus Gagliardo-Nirenberg inequality yields that ∂ x U (1) L 2 > 0 and U (1) L 2 = 1. Since +∞ j=1 U (j) 2 L 2 ≤ 1, we have U (j) = 0 a.e., for every j ≥ 2. Formula (2.5) implies that U (1) L 2m+2 = 1 and

I (γ) m (U (1) ) = J (γ) m . Estimate (2.3) is also equality, so ∂ x U (1) 2 L 2 = lim n→+∞ ∂ x f ψ(n) 2 L 2 . We set (l) n,s := |D| s f ψ(n) 2 L 2 - l j=1 |D| s V (j) 2 L 2 -|D| s r (l) φ(n) 2 L 2 , ∀n ∈ N, l ∈ N + , 0 ≤ s ≤ 1.

Thus lim n→+∞ (l)

n,s = 0, for all l ∈ N + , 0 ≤ s ≤ 1. Then

f ψ(n) -U (1) (• -y (1) n ) 2 H 1 = r (1) φ(n) 2 H 1 = ∂ x f ψ(n) 2 L 2 -∂ x U (1) 2 L 2 - (1) 
n,0 -

n,1 → 0, as n → +∞.

3 Orbital stability of traveling wave u(t, x) = e iωt Q(x + ct)

At first, we prove the H 1 -orbital stability with scaling for traveling wave u(t, x) = e iωt Q(x + ct) of the mass-critical focusing NLS-Szegő equation,

i∂ t u + ∂ 2 x u = -Π(|u| 4 u), (t, x) ∈ R × R, u(0, •) = u 0 , with ω, c > 0, γ ≥ 0 and Q ∈ G (γ) 2 ( 4 3J (γ) 2 , Q L 6
). Then we focus on the case γ = 2 by classifying all ground states and refining theorem 1.6 as theorem 1.8.

Proof of theorem 1.6

Proof. Fix b > 0 and γ ≥ 0, for every n ∈ N, we choose

u n 0 ∈ H 1 + and ϕ n ∈ G (γ) 2 ( 4 3J (γ) 2 , b) such that u n 0 -ϕ n H 1 → 0, as n → +∞. Let u n solve (1.1) with initial datum u n (0) = u n 0 . We shall prove that inf Ψ∈ C(γ) -1 ≤θ≤C(γ) G (γ) 2 ( 4 3J (γ) 2 ,θb) u n (t n ) -Ψ H 1 → 0, as n → +∞, (3.1) 
up to a subsequence, for every temporal sequence (t n ) n∈N ⊂ R. We use the three conservation laws

E(u) = ∂ x u 2 L 2 2 - u 6 L 6 6 , P (u) = Du, u L 2 = |D| 1 2 u 2 L 2 , M (u) = u 2 L 2 .
to construct another conservation law

K γ (u) := E(u) + γP (u) 2 M (u) = ∂ x u 2 L 2 2 - u 6 L 6 6 + γ |D| 1 2 u 4 L 2 2 u 2 L 2 = u 6 L 6 6 u 4 L 2 (3I (γ) 2 (u) -u 4 L 2 ). (3.2) 
Since

I (γ) 2 (ϕ n ) = J (γ) 2 and u n 0 -ϕ n H 1 → 0, as n → +∞, we have lim n→+∞ u n 0 4 L 2 = 3J (γ) 2 and lim n→+∞ I (γ) 2 (u n 0 ) = J (γ) 2 . Thus K γ (u n (t n )) = K γ (u n 0 ) → 0, as n → +∞. (3.3) 
In order to construct a minimizing sequence of

I (γ)
2 , we need to prove the following inequalities

C(γ) -1 b ≤ lim inf n→+∞ u n (t n ) L 6 ≤ lim sup n→+∞ u n (t n ) L 6 ≤ C(γ)b. (3.4) 
In fact, we denote by

C 6 1 := 1+γ J (γ) 2 C(γ) 6 , then Sobolev embedding f L 6 ≤ C 1 |D| 1 3 f L 2 yields that ∂ x u n (t n ) 2 L 2 2 + γ |D| 1 2 u n (t n ) 4 L 2 2 u n (t n ) 2 L 2 ≥ (1 + γ) |D| 1 2 u n 0 4 L 2 2 u n 0 2 L 2 ≥ (1 + γ) |D| 1 3 u n 0 6 L 2 2 u n 0 4 L 2 ≥ (1 + γ) u n 0 6 L 6 2C 6 1 u n 0 4 L 2 . Thus u n (t n ) L 6 ≥ 6 3(1+γ) u n 0 6 L 6 C 6 1 u n 0 4 L 2 -6K γ (u n (t n )) → b C(γ)
, as n → +∞. Similarly, we have

u n (t n ) L 6 ≤ C 1 |D| 1 3 u n (t n ) L 2 ≤ C 1 |D| 1 2 u n (t n ) 2 3 L 2 u n (t n ) 1 3 L 2 = C 1 |D| 1 2 u n 0 2 3 L 2 u n 0 1 3 L 2 ,
and (3.4) are proved and we have lim n→+∞

u n (t n ) L 6 ≤ C 1 ∂ x u n 0 1 3 L 2 u n 0 2 3 L 2 . Thus we have u n (t n ) L 6 ≤ C 1 u n 0 L 6 6 I (γ) 2 (u n 0 ) 1+γ → C(γ)b, as n → +∞. Thus estimates
I (γ) 2 (u n (t n )) = J (γ) 2 . Rescaling v n (x) := λ n u n (t n , µ n x) such that v n L 2 = v n L 6 = 1, with λ n , µ n > 0. Then √ µ n λ -1 n = u n 0 L 2 , 6 √ µ n λ -1 n = u n (t n ) L 6 , lim n→+∞ I (γ) 2 (v n ) = J (γ) 2 (3.5) 
∂ x v n 2 L 2 = I(v n ) = I(u n (t n )) = ∂ x u n (t n ) 2 L 2 u n (t n ) 6 L 6 u n 0 4 L 2 → J, as n → +∞.
Theorem 1.4 yields that there exists a profile U ∈ G

) and a sequence of real numbers (x n ) n∈N such that v n -U (• -x n ) H 1 → 0, as n → +∞ up to a subsequence, still denoted by (v n ) n∈N+ . Moreover, we assume that u n (t n ) L 6 → θb, as n → +∞ in the same subsequence. Then (3.4) yields that C -1 ≤ θ ≤ C. We denote by λ ∞ = lim n→+∞ λ n and µ ∞ = lim n→+∞ µ n . Then we have

λ ∞ > 0, µ ∞ > 0, √ µ ∞ λ -1 ∞ = 4 3J (γ) 2 and 6 √ µ ∞ λ -1 ∞ = θb. (3.6) Then lim n→∞ λ n u n (t n , µ n •) -U (• -x n ) H 1 = 0 ⇐⇒ lim n→∞ u n (t n ) - 1 λ n U ( • -µ n x n µ n ) H 1 = 0. ( 3.7) 
Since U ∈ H 1 + , we have lim n→∞

1 λn U ( • µn ) -1 λ∞ U ( • µ∞ ) H 1 = 0.
Together with (3.7), we have

u n (t n ) -Ψ(• -µ n x n ) H 1 → 0, as n → +∞, (3.8) 
where Ψ(x) :

= 1 λ∞ U ( x µ∞ ). Since U L 2 = U L 6 = 1, we have Ψ ∈ G (γ) 2 ( 4 3J (γ)
2 , θb) by (3.6), leading to (3.1) up to a subsequence.

The special case γ = 2

We prove proposition 1.7 in order to classify all the ground states of the functional

I (2) 2 = ∂ x f 2 L 2 f 4 L 2 + 2 |D| 1 2 f 4 L 2 f 2 L 2 f 6 L 6 , ∀f ∈ H 1 + \{0}.
as G

(2) 2

= {x → λe iθ µx+y+i ∈ H 1 + : ∀λ, µ > 0 ∀θ, y ∈ R}. The idea of using Cauchy-Schwarz inequality to classify ground states follows from Foschi [START_REF] Foschi | Maximizers for the Strichartz Inequality[END_REF] for linear Schrödinger equation and linear wave equation on R d , for d ≥ 1, Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF] for the cubic Szegő equation on the torus S 1 , Pocovnicu [START_REF] Pocovnicu | Traveling waves for the cubic Szegő equation on the real line[END_REF] for the cubic Szegő equation on the line R and Gassot [START_REF] Gassot | On the radially symmetric traveling waves for the Schrödinger equation on the Heisenberg group[END_REF] for the non linear Schrödinger equation on the Heisenberg group.

Proof of proposition 1.7. Plancherel formula gives that f 6

L 6 = 1 32π 5 ξ>0 |( f * f * f )(ξ)| 2 dξ
. By using Cauchy-Schwarz inequality, for every ξ > 0, we have

|( f * f * f )(ξ)| 2 = η1>0,η2>0,η1+η2≤ξ f (η 1 ) f (η 2 ) f (ξ -η 1 -η 2 )dη 1 dη 2 2 ≤ ξ 2 2 | η1>0,η2>0,η1+η2≤ξ f (η 1 ) f (η 2 ) f (ξ -η 1 -η 2 ) 2 dη 1 dη 2 .
Thus we have

f 6 L 6 ≤ 1 64π 5 η1>0,η2>0,η3>0 (η 1 + η 2 + η 3 ) 2 f (η 1 ) f (η 2 ) f (η 3 ) 2 dη 1 dη 2 dη 3 = 3 8π 2 ( ∂ x f 2 L 2 f 4 L 2 + 2 |D| 1 2 f 4 L 2 f 2 L 2 ). If I (2) 2 (f ) = 8π 2 3 , then f (η 1 ) f (η 2 ) f (η 3 ) = f (0) 2 f (η 1 + η 2 + η 3 ), for all η 1 , η 2 , η 3 > 0. Since f ∈ H 1 + \{0}, we have f (0) = 0. Thus f (η 1 ) f (η 2 ) = f (η 1 + η 2 ) f (0), ∀η 1 , η 2 ≥ 0.
This is true if and only if f (η) = e -ipη f (0), for some p ∈ C such that Imp < 0. Thus we have f (x) = A x-p , for some A ∈ C. We conclude by

I (2) 2 (f ) = I (2)
2 (f λ,µ,θ,y ), with f λ,µ,θ,y (x) = λe iθ f (µx + y).

For every c > 0, we prove the orbital stability of traveling wave u(t, x) = e 

√ 8π 2 , 6 3πc 2 √ 2 ) = {x → 2 4 √ 2c 2 e iθ cx+2i+y ∈ H 1 + : ∀θ, y ∈ R}. If Q c ∈ G (2) 2 ( 4 √ 8π 2 , 6 3πc 2 √ (2) 2 ( 4 
2 ), then we have

Q c 4 L 2 = 8π 2 , ∂ x Q c 2 L 2 = πc 2 2 √ 2 , |D| 1 2 Q c 2 L 2 = πc √ 2 , Q c 6 L 6 = 3πc 2 √ 2 (3.9)
Proof of theorem 1.8. Fix c > 0, for every n ∈ N, we choose

u n 0 ∈ H 1 + and Q n c ∈ G (2) 2 ( 4 √ 8π 2 , 6 3πc 2 √ 2 ) such that u n 0 -Q n c H 1 → 0, as n → +∞. Let u n solve (1.1) with initial datum u n (0) = u n 0 . We shall prove that inf Ψ∈G (2) 2 ( 4 √ 8π 2 , 6 3πc 2 √ 2 ) u n (t n ) -Ψ H 1 → 0, as n → +∞, (3.10) 
up to a subsequence, for every temporal sequence (t n ) n∈N ⊂ R. We use the same procedure as the proof of theorem 1.6 to obtain that (u n (t n )) n∈N is a minimizing sequence of

I (2) 2 . We set v n (x) := λ n u n (t n , µ n x) such that v n L 2 = v n L 6 = 1, with λ n , µ n > 0 and lim n→+∞ I (2) 2 (v n ) = lim n→+∞ I (2) 2 (u n (t n )) = J (2) 2 . Ĩ(v n ) = Ĩ(u n (t n )) → 1, as n → +∞. Since u ∈ L ∞ (R; H 1 + ), we have r ∈ L 6 loc (R + , L 6 (R))
. Recall that Π is bounded L p → L p , for all 1 < p < +∞. Applying Strichartz inequality to formula (4.2), then there exists a constant C * > 0 such that

r L 6 (T,T ;L 6 (R)) ≤C * r(T ) L 2 + |u| 4 u L 6 5 (T,T ;L 6 5 (R)) ≤C * r(T ) L 2 + 5 k=0 v k L 6 (T,T ;L 6 (R)) r 5-k L 6 (T,T ;L 6 (R))
holds for all 0 ≤ T < T . Set δ = min{1,

1 2C * (2+C * ) 4 }, there exists T > 0 such that v L 6 (T,+∞;L 6 (R)) ≤ δ and r(T ) L 2 ≤ δ. We choose T 1 := sup{S ∈ [T, +∞) : r L 6 (T,S;L 6 (R)) ≤ 1 2+C * }. For every T ∈ (T, T 1 ), we have r L 6 (T,T ;L 6 (R)) ≤ C * δ + δ 5 + (2 + C * ) -5 + 4δ r L 6 (T,T ;L 6 (R)) . Then we have r L 6 (T,T ;L 6 (R)) ≤ 2δC * + 1 (2 + C * ) 4 ≤ 1 (2 + C * ) 3 < 1 2 + C * .
Thus T 1 = +∞ and r L 6 (T,+∞;L 6 (R)) < 1 2+C * , which yields that u ∈ L 6 (0, +∞, L 6 (R)).

Set ũ+ :

= u 0 + i +∞ 0 e -iτ ∂ 2 x Π(|u(τ )| 4 u(τ ))dτ . Since u ∈ L 6 (R t × R x ), Strichartz inequality implies that u(t) -e it∂ 2 x ũ+ L 2 Π(|u| 4 u) L 6 5 (t,+∞;L 6 5 (R)) u 5 L 6 (t,+∞;L 6 (R)) → 0, as t → +∞. (4.3) 
Thus ũ+ = u + . Since the momentum P

(u) = -i∂ x u, u L 2 = |D| 1 2 u 2 L 2 is conserved, we have sup t∈R ∂ x u(t) 2 L 2 E(u 0 ) + |D| 1 2 u 0 4 L 2 u 0 2 L 2 . (4.4) Thus ∂ x • Π(|u| 4 u) ∈ L ∞ (R; L 2 + ) → L 1 loc (R; L 2 + )
. The Strichartz estimate yields that ∀T > 0, we have

∂ x u L 6 (0,T ;L 6 (R)) ∂ x u 0 L 2 + T 0 ∂ x Π(|u(τ )| 4 u(τ )) L 2 dτ < +∞. (4.5) Since u ∈ L 6 (R t × R x )
, there exists T 0 > 0 such that u 4 L 6 (T0,+∞;L 6 (R)) ≤ 1 2C * . For all T > T 0 , we have

∂ x u L 6 (T0,T ;L 6 (R)) ≤C * ( ∂ x u 0 L 2 + |∂ x u||u| 4 L 6 5 (T0,T ;L 6 5 (R)) ) ≤C * ( ∂ x u 0 L 2 + u 4 L 6 (T0,+∞;L 6 (R)) ∂ x u L 6 (T0,T ;L 6 (R)) ) Thus ∂ x u L 6 (T0,+∞;L 6 (R)) ≤ 2C * ∂ x u 0 L 2 and ∂ x u ∈ L 6 (0, +∞; L 6 (R))
. Consequently, we use Strichartz estimate to obain

∂ x (u(t) -e it∂ 2 x u + ) L 2 u 4 L 6 (t,+∞;L 6 (R)) ∂ x u L 6 (t,+∞;L 6 (R)) → 0, as t → +∞.
Similarly, we have the following proposition for scattering backward in time.

Proposition 4.2. If u 0 ∈ H 1 + and there exists u -∈ L 2 + such that lim t→-∞ u(t) -e it∂ 2 x u -L 2 = 0, where u is the unique solution of (1.1), then we have u -= u 0 -i 0 -∞ e -iτ ∂ 2

x Π(|u(τ )| 4 u(τ ))dτ ∈ H 1 + and lim t→+∞ u(t) -e it∂ 2

x u -H 1 = 0.
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The L r -norm of a solution of linear Schödinger equation decays as t → ±∞, for all 2 < r ≤ +∞.

Lemma 4.3. If f ∈ H 1 (R) and 2 < r ≤ +∞, then e it∂ 2 x f L r → 0, as |t| → +∞.

Proof. We set w(t) := e it∂ 2 x f and q = 4r r-2 , then 2 q + 1 r = 1 2 and w ∈ L ∞ (R, H 1 + ) L q (R; L r (R)) by Strichartz estimate. Gagliardo-Nirenberg inequality yields that w(t) -w(s) L r ≤ ∂ x w(t) -∂ x w(s) 2 q L 2 w(t) -w(s)

1-2 q L 2 ≤ 2 ∂ x f 2 q
L 2 w(t) -w(s)

1-2 q L 2 .
Since sup t∈R ∂ t w(t) H -1 (R) = sup t∈R ∂ 2

x w(t) H -1 (R) ≤ f H 1 , the mapping t → w(t) is Lipschitz continuous R → H -1 (R). Therefore, w(t) -w(s) L 2 ≤ w(t) -w(s) H 1 w(t) -w(s)

H -1 f H 1 |t -s| 1 2
and w(t) -w(s) L r f H 1 |t -s| q-2 2q . The mapping t → w(t) is uniformly continuous R → L r (R). Since w ∈ L q (R; L r (R)), we have e it∂ 2

x f L r = w(t) L r → 0, as |t| → +∞.

This lemma yields that a traveling wave u(t, x) = e iωt Q(x) does not H 1 -scatter neither L 2 -scatter, with ω > 0 and

Q (0) ∈ G (0) 2 ( 4 3J (0) 2 , ( 3 3J 
(0) 2 ω 2 ) 1 6 ). Together with theorem 1.6, we can prove corollary 1.10.

Open problem of uniqueness of ground states

The problem of classification of ground states of I 

. 1 )

 1 remains as an open problem. Due to lack of Galilean invariance, we cannot use the Morawetz estimate here. We do not know whether the scattering mass threshold of equation (1.1) is equal to the scattering mass threshold of equation(1.3).

  (2.1) and (2.2) hold and lim l→+∞ lim sup n→+∞ r (l) n L 2m+2 → 0.

3c 2 it 8 Q 4 √ 2c 2 cx+2i.

 842 * c (x+ct) of equation (1.1), with Q * c (x) = 2 Proposition 1.7 yields that G

  general γ, since it is difficult to solve the non local equation (1.7). However, for every m ∈ N, if f is a ground state of I (γ) m , then so is P (f ), where P (f )(x) = 1 2π +∞ 0 | f (ξ)|e ixξ dξ. Precisely, we have the following proposition.

Proposition 4 . 4 .m

 44 For every m ∈ N and γ ≥ 0, if f ∈ G (γ) m , then P (f ) ∈ G (γ) m and there exist a, b ∈ R such that f (ξ) = | f (ξ)|e i(ax+b) , for every ξ ≥ 0.Proof. Parseval identity implies that|D| s P (f ) 2 L 2 = 1 2π +∞ 0 |ξ| 2s | f (ξ)| 2 dξ = |D| s f 2 L 2 , ∀0 ≤ s ≤ 1.However, since P (f )(ξ) = |f (ξ)|, for every ξ > 0, we have P (f ) m+1 ≥ | f m+1 |, for every m ∈ N and , for all γ ≥ 0 and m ∈ N.So P (f ) ∈ G (γ)m and all precedent inequalities become equalities. In particular, P (f ) m+1 = | f m+1 |. We set h(ξ) = f (ξ), then the Euler-Lagrange equation(1.11) reads in Fourier modes as(A m (f ) + B m,γ (f )ξ + C m (f )ξ 2 )h(ξ) = D m,γ 1 ξ≥0 T (h, h, • • • , h)(ξ),(4.6)

  Definition 1.1. Fix s ≥ 0, a global solution u ∈ C(R; H s + ) of equation (1.1) is said to H s -scatter forward in time if there exists u + ∈ H s

	+ such that
	lim t→+∞	e it∂ 2 x u + -u(t) H s = 0.

A global solution u ∈ C(R; H s + ) of equation (1.1) is said to H s -scatter backward in time if there exists u

(2) 2 is unique up to scaling, phase rotation and spatial translation.
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Theorem 1.4 yields that there exists a profile V ∈ G

(2) 2 (1, 1) and a sequence of real numbers (y n ) n∈N+ such that v n -V (• -y n ) H 1 → 0, as n → +∞ up to a subsequence, still denoted by (v n ) n∈N+ . Similarly, we have (3.7) for V .

Since all the ground states are completely classified by proposition 1.7, we obtain the values of λ ∞ and µ ∞ from (3.9) and the conservation law

2 ), leading to (3.10) up to a subsequence.

Appendices

In the first appendix, we prove that if a H 1 -solution of equation (1.1) L 2 -scatters, then it also H 1 -scatters. Then we discuss the problem of uniqueness of ground states of the functional

2 , for general γ ≥ 0.

Persistence of regularity for scattering

The persistence of regularity for scattering can be established by Strichartz estimates and a bootstrap argument.

Proposition 4.1. If u 0 ∈ H 1 + and there exists u + ∈ L 2 + such that lim t→+∞ u(t) -e it∂ 2 x u + L 2 = 0, where u is the unique solution of (1.1), then we have u

Proof. We claim that u ∈ L 6 (0, +∞; L 6 (R)). In fact [START_REF] Dodson | Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state[END_REF][START_REF] Dodson | Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state[END_REF]) is 1-admissible. Set v(t, x) := e it∂ 2 x u + (x) and r(t, x) = u(t, x) -v(t, x), then we have v ∈ L 6 (R t × R x ) by Strichartz inequality and

where A m (f ), B m,γ (f ), C m (f ), D m,γ > 0 and T : L 1 (R + ) 2m+1 → L 1 (R + ) is (2m + 1)-linear defined as

We claim that if h(ξ) = 0 for some ξ ∈ R + then h ≡ 0. In fact, assume by contradiction that h(ζ) = 0, for some ζ ≥ 0. Since

m , we replace h by |h| in equation (4.6) in order to get the following implication:

We construct an iterative sequence ξ 0 = ξ and ξ n+1 = mζ+ξn m+1 , ∀n ∈ N. Then we have h(ξ n ) = 0 and lim n→+∞ ξ n = ζ. The continuity of h gives that h(ζ) = 0, contradiction. Thus h ≡ 0.

Since h = f and f = 0, then h is continuous R → C * . Thus there exists a continuous function α : R + → S 1 such that

The lifting theorem yields that there exists a unique continuous function ϕ : R + → R such that

for some continuous function β : R + → R. We set φ(ξ) = ϕ(ξ) -ϕ(0) then we have

Consequently, ϕ(ξ) = φ(1)ξ + ϕ(0) = (ϕ(1) -ϕ(0))ξ + ϕ(0), for every ξ ≥ 0.

Thus it suffices to study the uniqueness of ground states modulo the positive Fourier transformation.

We compare theorem 1.6 and theorem 1.8. Since we do not know the uniqueness of ground states of the functional I (γ) 2 , the conservation law P (u) = |D| 1 2 u 2 L 2 can not be completely used to determine the L 6 -norm of the final profile that approaches u(t). However, if the ground state is unique up to scaling, phase rotation and spatial translation, then we can determine the L 6 -norm of the profile that approaches u(t). So we have the actual orbital stability in the case γ = 2.