N

HAL

open science

Gradual stabilization

Karine Altisen, Stéphane Devismes, Anais Durand, Franck Petit

» To cite this version:

Karine Altisen, Stéphane Devismes, Anais Durand, Franck Petit. Gradual stabilization. Journal of
Parallel and Distributed Computing, 2019, 123, pp.26-45. 10.1016/j.jpdc.2018.09.002 . hal-02420362

HAL Id: hal-02420362
https://hal.science/hal-02420362v1
Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.science/hal-02420362v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Gradual Stabilization *

Karine Altisen Stéphane Devismes Anais Durand
Franck Petit

Abstract

We consider dynamic distributed systems, i.e., distributed systems that
can suffer from topological changes over the time. Following the supersta-
bilizing approach, we assume here that topological changes are transient
events. In this context, we introduce the notion of gradual stabilization
under (7, p)-dynamics (gradual stabilization, for short). A gradually stabi-
lizing algorithm is a self-stabilizing algorithm with the following additional
feature: after up to 7 dynamic steps of a given type p occur starting from
a legitimate configuration, it first quickly recovers to a configuration from
which a specification offering a minimum quality of service is satisfied. It
then gradually converges to specifications offering stronger and stronger
safety guarantees until reaching a configuration (1) from which its initial
(strong) specification is satisfied again, and (2) where it is ready to achieve
gradual convergence again in case of up to 7 new dynamic steps of type
p. A gradually stabilizing algorithm being also self-stabilizing, it still re-
covers within finite time (yet more slowly) after any other finite number
of transient faults, including for example more than 7 arbitrary dynamic
steps or other failure patterns such as memory corruptions. We illus-
trate this new property by considering three variants of a synchronization
problem respectively called strong, weak, and partial unison. We propose
a self-stabilizing unison algorithm which achieves gradual stabilization in
the sense that after one dynamic step of a certain type BULCC (such a
step may include several topological changes) occurs starting from a con-
figuration which is legitimate for the strong unison, it maintains clocks
almost synchronized during the convergence to strong unison: it satisfies
partial unison immediately after the dynamic step, then converges in at
most one round to weak unison, and finally re-stabilizes to strong unison.

keyword: Self-stabilization, synchronization problems, unison, gradual stabi-
lization, superstabilization, safe-convergence

*This study has been partially supported by the ANR projects DEscarTEs (ANR-16-CE40-
0023) and EstaTeE (ANR-16-CE25-0009). A preliminary version of this paper has been pub-
lished in the proceedings of Euro-Par 2016 [1].

1 Introduction

In 1974, Dijkstra [2] introduced self-stabilization, a general paradigm to en-
able the design of distributed systems tolerating any finite number of transient
faults.! Consider the first configuration after all transient faults cease. This
configuration is arbitrary, but no other transient faults will ever occur from this
configuration. By abuse of language, this configuration is referred to as arbi-
trary initial configuration of the system in the literature. Then, a self-stabilizing
algorithm (provided that faults have not corrupted its code) guarantees that
starting from such an arbitrary initial configuration, the system recovers within
finite time, without any external intervention, to a so-called legitimate config-
uration from which its specification is satisfied. Thus, self-stabilization makes
no hypotheses on the nature (e.g., memory corruptions or topological changes)
or extent of transient faults that could hit the system, and the system recovers
from the effects of those faults in a unified manner. Such versatility comes at
a price, e.g., after transient faults cease, there is a finite period of time, called
the stabilization phase, during which the safety properties of the system are
violated. Hence, self-stabilizing algorithms are mainly compared according to
their stabilization time, the maximum duration of the stabilization phase. For
many problems, the stabilization time is significant, e.g., for synchronization
problems [3] and more generally for non-static problems [4] (such as token pass-
ing or broadcast) the lower bound is Q(D) rounds, where D is the diameter of
the network. By definition, the stabilization time is impacted by worst case sce-
narios. Now, in most cases, transient faults are sparse and their effect may be
superficial. Recent research thus focuses on proposing self-stabilizing algorithms
that additionally ensure drastically smaller convergence times in favorable cases.

Defining the number of faults hitting a network using some kind of Hamming
distance (the minimal number of processes whose state must be changed in order
to recover a legitimate configuration), variants of the self-stabilization paradigm
have been defined, e.g., a time-adaptive self-stabilizing algorithm [5] additionally
guarantees a convergence time in O(k) time-units when the initial configuration
is at distance at most k from a legitimate configuration.

The property of locality consists in avoiding situations in which a small num-
ber of transient faults causes the entire system to be involved in a global con-
vergence activity. Locality is, for example, captured by fault containing self-
stabilizing algorithms [6], which ensure that when few faults hit the system, the
faults are both spatially and temporally contained. “Spatially” means that if
only few faults occur, those faults cannot be propagated further than a preset
radius around the corrupted processes. “Temporally” means quick stabilization
when few faults occur.

Some other approaches consist in providing convergence times tailored by
the type of transient faults. For example, a superstabilizing algorithm [7] is self-
stabilizing and has two additional properties when transient faults are limited
to a single topological change. Indeed, after adding or removing one link or

ITransient faults have low frequency and results in perturbing the state of the system.

process in the network, a superstabilizing algorithm recovers fast (typically O(1)
rounds), and a safety predicate, called a passage predicate, should be satisfied
all along the stabilization phase.

Contribution In this paper, we consider distributed systems that can suffer
from topological changes over the time, also referred to as dynamic distributed
systems in [7]. Following the superstabilizing approach, we assume here that
topological changes are transient events. In this context, we introduce a spe-
cialization of self-stabilization called gradual stabilization under (7, p)-dynamics.
An algorithm is gradually stabilizing under (7, p)-dynamics if it is self-stabilizing
and satisfies the the following additional feature. After up to 7 dynamic steps?
of type p? occur starting from a legitimate configuration, a gradually stabiliz-
ing algorithm first quickly recovers a configuration from which a specification
offering a minimum quality of service is satisfied. It then gradually converges to
specifications offering stronger and stronger safety guarantees until reaching a
configuration (1) from which its initial (strong) specification is satisfied again,
and (2) where it is ready to achieve gradual convergence again in case of up to
7 new dynamic steps of type p. Of course, the gradual stabilization makes sense
only if the convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchro-
nization problem respectively called strong, weak, and partial unison. In these
problems, each process should maintain a local clock. We restrict here our
study to periodic clocks, i.e., all local clocks are integer variables whose domain
is {0,...,a—1}, where a > 2 is called the period. Each process should regularly
increment its clock modulo « (liveness) while fulfilling some safety requirements.
The safety of strong unison imposes that at most two consecutive clock values
exist in any configuration of the system. Weak unison only requires that the dif-
ference between clocks of every two neighbors is at most one increment. Finally,
we define partial unison as a property dedicated to dynamic systems, which only
enforces the difference between clocks of neighboring processes present before
the dynamic steps to remain at most one increment.

We propose a self-stabilizing strong unison algorithm SU which works with
any period o > 2 in an anonymous connected network of n processes. SU
assumes the knowledge of two values p and 3, where p is any value greater than
or equal to max(2,n), « should divide 3, and 8 > p?. SU is designed in the
locally shared memory model and assume the distributed unfair daemon, the
most general daemon of the model. Its stabilization time is at most n + (u +
1)D + 1 rounds, where n (resp. D) is the size (resp. diameter) of the network.

We then slightly modify SU to make it gradually stabilizing under (1, BULCC)-
dynamics. In particular, the parameter p should now be greater than or equal
to max(2, N), where N is a bound on the number of processes existing in any
reachable configuration. Our gradually stabilizing variant of SU is called DSU.

2N.b., a dynamic step is a step containing topological changes.

3Precisely, p is a binary predicate over graphs, representing network topologies, such that
p(G,G’) is true if and only if it is possible for the system to switch from topology G to topology
G’ in a single (dynamic) step.

Due to the slight modifications, the stabilization time of DSU is increased by
one round compared to the one of SU. The condition BULCC restricts the
gradual convergence obligation to dynamic steps, called BULCC-dynamic steps,
that fulfill the following conditions. A BULCC-dynamic step may contain several
topological events, i.e., link and/or process additions and/or removals. How-
ever, after such a step, the network should (1) contains at most N processes, (2)
stay connected, and (3) if a > 3, every process which joins the system should
be linked to at least one process already in the system before the dynamic step,
unless all of those have left the system. Condition (1) is necessary to have finite
periodic clocks in DSU. We show the necessity of condition (2) to obtain our
results whatever the period is, while we proved that condition (3) is necessary
for our purposes when the period « is fixed to a value greater than 5. Finally,
we exhibit pathological cases for periods 4 and 5, in case we do not assume
condition (3).

DSU is gradually stabilizing because after one BULCC-dynamic step from a
configuration which is legitimate for the strong unison, it immediately satisfies
the specification of partial unison, then converges to the specification of weak
unison in at most one round, and finally retrieves, after at most (1 + 1)D; + 1
additional rounds (where D; is the diameter of the network after the dynamic
step), a configuration (1) from which the specification of strong unison is satis-
fied, and (2) where it is ready to achieve gradual convergence again in case of
another dynamic step.

Notice that DSU being also self-stabilizing (by definition), it still converges
to a legitimate configuration of the strong unison after the system suffers from
arbitrary other kinds of transient fault including, for example, several arbitrary
dynamic steps. However, in such cases, there is no safety guarantees during the
stabilization phase.

Related Work Gradual stabilization is related to two other stronger forms
of self-stabilization, namely, safe-converging self-stabilization [8] and supersta-
bilization [7]. The goal of a safely converging self-stabilizing algorithm is to
first quickly (within O(1) rounds is the usual rule) converge from an arbitrary
configuration to a feasible legitimate configuration, where a minimum quality of
service is guaranteed. Once such a feasible legitimate configuration is reached,
the system continues to converge to an optimal legitimate configuration, where
more stringent conditions are required. Hence, the aim of safe-converging self-
stabilization is also to ensure a gradual convergence, but only for two specifica-
tions. However, such a gradual convergence is stronger than ours as it should
be ensured after any step of transient faults,* while the gradual convergence
of our property applies after dynamic steps only. Safe convergence is espe-
cially interesting for self-stabilizing algorithms that compute optimized data
structures, e.g., minimal dominating sets [8], approximately minimum weakly
connected dominating sets [9], approximately minimum connected dominating
sets [10, 11], and minimal (f, g)-alliances [12]. However, to the best of our knowl-

4Such transient faults may include topological changes, but not only.

edge, no safe-converging algorithm for non-static problems, such as unison for
example, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the passage
predicate should be ensured only if the system was in a legitimate configuration
before the topological change occurs. In contrast with our approach, supersta-
bilization ensures fast convergence to the original specification. However, this
strong property only considers one dynamic step consisting in only one topo-
logical event: the addition or removal of one link or process in the network.
Again, superstabilization has been especially studied in the context of static
problems, e.g., spanning tree construction [7, 13, 14], and coloring [7]. However,
notice that there exist few superstabilizing algorithms for non-static problems
in particular topologies, e.g., mutual exclusion in rings [15, 16].

We use the general term unison to name several close problems also known
in the literature as phase or barrier synchronization problems. There exist
many self-stabilizing algorithms for the strong as well as weak unison problem,
e.g., [17, 18, 19, 20, 21, 22, 23, 24|. However, to the best of our knowledge, until
now, no self-stabilizing solution for such problems addresses specific convergence
properties in case of topological changes (in particular, no superstabilizing ones).
Self-stabilizing strong unison was first considered in synchronous anonymous
networks. Particular topologies were considered in [20] (rings) and [21] (trees).
Gouda and Herman [18] proposed a self-stabilizing algorithm for strong unison
working in anonymous synchronous systems of arbitrary connected topology.
However, they considered unbounded clocks. A solution working with the same
settings, yet implementing bounded clocks, is proposed in [19]. In [24], an
asynchronous self-stabilizing strong unison algorithm is proposed for arbitrary
connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in ori-
ented trees in [22]. The first self-stabilizing asynchronous weak unison for gen-
eral graphs was proposed by Couvreur et al. [25]. However, no complexity
analysis was given. Another solution which stabilizes in O(n) rounds has been
proposed by Boulinier et al. in [23]|. Finally, Boulinier proposed in his PhD
thesis a parametric solution which generalizes both the solutions of [25] and
[23]. In particular, the complexity analysis of this latter algorithm reveals an
upper bound in O(D.n) rounds on the stabilization time of the Couvreur et al.’
algorithm.

Roadmap The rest of the paper is organized as follows. In the next section,
we define the computational model used in this paper. In Section 3, we recall the
formal definition of self-stabilization, and introduce the notion of gradual stabi-
lization. The three variants of the unison problem considered in this paper are
defined in Section 4. In Section 5, we justify the condition on dynamic steps we
assume for our gradually stabilizing algorithm. We present our self-stabilizing
strong unison algorithm in Section 6. The gradually stabilizing variant of this
latter algorithm is proposed in Section 7. We make concluding remarks in Sec-
tion 8.

2 Preliminaries

We consider the locally shared memory model introduced by Dijkstra [2] enriched
with the notion of topological changes. Thereupon, we follow an approach
similar to the one used by Dolev in the context of superstabilization [26].

2.1 Processes

We consider distributed systems made of anonymous processes. The system
initially contains n > 0 processes and its topology is connected, however it may
suffer from topological changes over the time. Each process p can directly com-
municate with a subset p. N of other processes, called its neighbors. In our
context, p.N can vary over time. Communications are assumed to be bidirec-
tional, i.e., for any two processes p and ¢, ¢ € pN & p € ¢. N at any time.
Communications are carried out by a finite set of locally shared variables at
each process: each process can read its own variables and those of its (current)
neighbors, but can only write into its own variables. The state of a process is
the vector of values of its variables. We denote by S the set of all possible states
of a process.

Each process updates its variables according to a local algorithm. The col-
lection of all local algorithms (one per process) defines a distributed algorithm.
In the distributed algorithm .4, the local algorithm of p, noted A(p), consists of
a finite set of actions of the following form:

(label) :: (guard) — (statement)

The labels are used to identify actions in the reasoning. The guard of an action
is a Boolean predicate involving variables of p and its neighbors. The statement
is a sequence of assignments on variables of p. If the guard of some action
evaluates to true, then the action is said to be enabled at p. By extension, p
is said to be enabled if at least one action is enabled at p. An action can be
executed only if it is enabled. In this case, the execution of the action consists
in executing its statement, atomically.

A configuration 7; of the system is a pair (G, f;). G; = (V;, E;) is a simple
undirected graph which represents the topology of the network in configuration
s, t.e., V; is the set of processes that are in the system in 7; and E; C V; X
Vi represents the communication links between (unordered) pairs of distinct
processes of V; in v;: Vp,q € Vi, {p,q} € E; & p€v(qQ) Ninvy. fi:V; =S
is a function which associates a state to each process of V;. We denote by ~;(p)
the state of process p € V; in configuration ;. Moreover, ~;(p).z denotes the
value of the xz-variable at process p in configuration ;. We denote by C the set
of all possible configurations.

2.2 Steps

The dynamicity and asynchronism of the system are materialized by the (inde-
terministic) choices of an adversary, called daemon, made at each step of the

execution. To perform a step from a configuration ~y;, the daemon can

e activate some processes (of V;) that are enabled in ; — each activated
process executes one of its enabled actions according to its own state and
that of its neighbors in +;, and/or

e modify the topology.

Activation of enabled processes and/or topology modifications are done atomi-
cally, leading to a new configuration «; 1. The set of all possible steps induces
a binary relation over configurations noted — C C x C.

We distinguish two kinds of steps, i.e., — is partitioned into +, and 4.
Relation 4 define all possible static steps, i.e., all steps consisting in activations
of enabled processes only. Relation 4 define all possible dynamic steps, i.e.,
all steps containing topological changes, and possibly some process activations.

2.2.1 Static Steps

Let 7; be a configuration. Let Enabled(v;) be the set of enabled processes in ;.
The daemon can choose to make a static step from ~; only if Enabled(y;) # 0.
In this case, it first selects a non-empty subset S of Enabled(y;). Next, every
process p € S atomically executes one of its enabled actions, leading the system
to a new configuration, say 7;y1. In this case, 7; 5 7,41 with, in particular,
Gi - Gi+1.

2.2.2 Dynamic Steps

Let v; —4 vi+1 be a dynamic step. We have in particular that G; # Giy1.
Precisely, the step 7; +4 7i+1 contains a finite number of topological events
and maybe some process activations (like in static steps). Each topological
event is of the following types.

e A process p can join the system, i.e., p ¢ V; Ap € Vi41. This event is
denoted by join, and triggers the atomic execution of a specific action,
called bootstrap, which initializes p to a particular state, called bootstate,
meaning that the output of p is meaningless for now. This bootstrap is
executed instantly, without any communication. We denote by New;, the
set of processes which are in bootstate in ;. When p joins the system
in y; —q Yit1, we have p € New;1, but p ¢ New,;. Moreover, until p
executes its very first action, say in step 7y, — 7vz+1, it is still in bootstate.
Hence Vj € {i +1,...,2},p € Newj, but p ¢ Newy41.

e A process p can also leave the system, i.e., p € V; Ap & Viqq.

e Finally, some communication links can appear or disappear between two
different processes.

Several joins, leaves, as well as link appearances and disappearances can be
made in the same step v; —q Yit1-

We might make assumptions on possible dynamic steps, i.e., restrict the set
of possible dynamic steps w.r.t. the possible topological changes. To that goal,
we will define a binary predicate p over graphs, called a dynamic pattern. Let
== {(Vi:Yi+1) € C X C : v; —q Yit1 A p(Gi, Gip1)} be the subrelation of 4
induced by p. Every step in — is called a p-dynamic step.

2.3 Executions

An execution is any sequence of configurations ~vg,~1,... such that Gy is con-
nected and Vi > 0, v; — 7;41. For sake of simplicity, we note Gy = G = (V, E),
the initial topology of the network; we also note D the diameter of G and
we recall that |V| = n. Moreover, we define £7 the set of maximal exe-
cutions which contain at most 7 dynamic steps. Any execution e € £7 is
either infinite, or ends in a so-called terminal configuration, where all pro-
cesses in the system are disabled. The set of all possible maximal execu-
tions is therefore equal to £ = U,;>¢€". Notice that Vi,j € IN, 4+ < j im-
plies £ C &7. Let p be a dynamic pattern, we denote by £7* the subset
of all executions in £€" where all dynamic steps follow the dynamic pattern
P, i.e., ETP = {(72)120 e & Vi > 0,’)/1',1 —=d Yi = Yi-1 Hs ’}/Z} For
any subset of configurations X C C, we denote by €% (resp. £Y”) the set of
all executions in &7 (resp. £7F) that start from a configuration of X, i.e.,
;(= {(’yi)izo €& Yo € X} (resp. 5;—(,/0 = {(’yi)izo [SEAALE Yo € X})

2.4 Daemon

As previously explained, executions are driven by a daemon. We assume the
daemon is distributed and unfair. In a static step, a distributed daemon must
activate at least one enabled process (maybe more). In a dynamic step, a
distributed daemon can activate 0, 1, or several enabled processes and decide
of the topological changes. An unfair daemon has no fairness constraint, i.e.,
it might never select a process p during any step unless in the case of a static
step from a configuration where p is the only enabled process. Moreover, at
each configuration, an unfair daemon freely chooses between making a static or
dynamic step, except if no more process is enabled; in this latter case, only a
dynamic step containing no process activation can be chosen.

2.5 Functional Specification and Metrics

A distributed algorithm A is designed to ensure some functional properties called
its specification. A specification SP is a predicate over £.

We measure the time complexity of our algorithms in terms of rounds [27],
which expresses the execution time according to the speed of the slowest process.
The first round of an execution e = (y;);>0 is the minimal prefix e’ of e such that
every enabled process in 7 either executes an action or is neutralized (defined
below). Let v, be the last configuration of €/, the second round of e is the first
round of €’ = (v;)i>;, and so forth.

Neutralized means that a process p is enabled in a configuration 7; but either
p is no more in the system in the next configuration 7; 1, or p is not enabled in
~;+1 but does not execute any action during the step v; — vi11.

3 Stabilization

3.1 Self-stabilization

Below we recall the definitions of some notions classically used in self-stabiliza-
tion. Notice that all these notions are defined by only considering executions free
of topological changes, yet starting from an arbitrary configuration. Indeed, self-
stabilization considers the system immediately after the transient faults cease.
So, the system is initially observed from an arbitrary configuration reached due
to the occurrence of transient faults (including some topological changes maybe),
but from which no faults (in particular, no topological changes) will ever occur.

Let A be a distributed algorithm. Let X, Y C C be two subsets of configura-
tions. X is closed under A if and only ifVvy,v € C,(y € XAy —s7) =+ € X.
Y converges to X under A if and only if Ve € £, 3y € e such that v € X. A
stabilizes from Y to a specification SP by X if and only if

e X is closed under A,
e Y converges to X under A,
e and Ve € £%, SP(e).

Moreover, the convergence time (of A) in steps (resp. rounds) from'Y to X is
the maximal number of steps (or rounds, resp.) to reach a configuration of X
in every execution of &Y.

Self-stabilization has been defined by Dijkstra in 1974 [2] as follows: a dis-
tributed algorithm A is self-stabilizing for a specification SP if and only if
3L C C, such that A stabilizes from C to SP by L.

L (resp. C\ L) is then said to be a set of legitimate configurations (resp.
illegitimate configurations) w.r.t. SP. The stabilization time of A is then the
convergence time from C to L.

3.2 Gradual Stabilization under (7, p)-Dynamics

Below, we introduce a specialization of self-stabilization called gradual stabi-
lization under (7, p)-dynamics. The overall idea behind this concept is to de-
sign self-stabilizing algorithms that ensure additional properties (stronger than
“simple” eventual convergence) when the system suffer from topological changes.
Initially observe the system from a legitimate configuration, and assume that
up to 7 p-dynamic steps occur. The very first configuration after those steps
may be illegitimate, but this configuration is usually far from being arbitrary.
In that situation, the goal of gradual stabilization is to first quickly recover a
configuration from which a weaker specification offering a minimum quality of

service is satisfied and then make the system gradually re-stabilizes to stronger
and stronger specifications, until fully recovering its initial (strong) specification.
Of course, the gradual stabilization makes sense only if the convergence to every
intermediate weaker specification is fast and each of those weak specifications
offers a useful interest.

3.2.1 Definition

Let 7 > 0. For every execution e = (v;);>0 € € (i.e., e contains at most
dynamic steps), we note 7y (e the first configuration of e after the last dynamic
step. Formally, fst(e) = min{i : (v;);>i € £°}. For any subset E of £7, let
FC(E) = {7Vst(e) : € € E} be the set of all configurations that can be reached
after the last dynamic step in executions of F.

Let SPy,SPs, ..., SPg, be an ordered sequence of specifications. Let By, By,
..., By, be (asymptotic) complexity bounds such that By < By < --- < By. Let
p be a dynamic pattern.

A distributed algorithm A is gradually stabilizing under (1, p)-dynamics for
(SPy e By,SP,eBsy,...,SP; e By) if and only if 3L4,..., Ly C C such that

1. A stabilizes from C to SPy by Ly.
2. Vie{l,... k),
e A stabilizes from FC(£;") to SP; by L;, and

e the convergence time in rounds from FC(E.”) to L; is bounded by
B;.

The first point ensures that a gradually stabilizing algorithm is still self-stabiliz-
ing for its strongest specification. Hence, its performances can be also evaluated
at the light of its stabilization time. Indeed, it captures the maximal conver-
gence time of the gradually stabilizing algorithm after the system suffers from
an arbitrary finite number of transient faults (those faults may include an un-
bounded number of arbitrary dynamic steps, for example).

The second point means that after up to 7 p-dynamic steps from a config-
uration that is legitimate w.r.t. the strongest specification SPy, the algorithm
gradually converges to each specification SP; with ¢ € {1,...,k} in at most B;
rounds.

Note that By captures a complexity similar to the fault gap in fault-containing
algorithms [6]: assume a period P1 of up to 7 p-dynamic steps starting from
a legitimate configuration of Lj; By represents the necessary fault-free interval
after P1 and before the next period P2 of at most 7 p-dynamic steps so that
the system converges to a legitimate configuration of £; and so becomes ready
again to achieve gradual convergence after P2.

3.2.2 Related Properties

Gradual stabilization is related to two other stronger forms of self-stabilization:
safe-converging self-stabilization [8] and superstabilization [7].

10

The goal of a safely converging self-stabilizing algorithm is to first quickly
(within O(1) rounds is the usual rule) converge from any arbitrary configura-
tion to a feasible legitimate configuration, where a minimum quality of service is
guaranteed. Once such a feasible legitimate configuration is reached, the system
continues to converge to an optimal legitimate configuration, where more strin-
gent conditions are required. Hence, the aim of safe-converging self-stabilization
is also to ensure a gradual convergence, but for two specifications. However, this
kind of gradual convergence should be ensured after any step of transient faults
(such transient faults can include topological changes, but not only), while the
gradual convergence of our property applies after dynamic steps only.

A superstabilizing algorithm is self-stabilizing and has two additional prop-
erties. In presence of a single topological change (adding or removing one link or
process in the network), it recovers fast (typically O(1)), and a safety predicate,
called a passage predicate, should be satisfied all along the stabilization phase.
Like in our approach, fast convergence, captured by the notion of superstabiliza-
tion time, and the passage predicate should be ensured only if the system was
in a legitimate configuration before the topological change occurs. In contrast
with our approach, superstabilization consists in only one dynamic step satis-
fying a very restrictive dynamic pattern, noted here p;: only one topological
event, i.e., the addition or removal of one link or process in the network. A
superstabilizing algorithm for a specification SP; can be seen as an algorithm
which is gradually stabilizing under (1, p1)-dynamics for (SP,e0, SP; e f) where
S Py is the passage predicate and f is the superstabilization time.

4 Unison

We consider three close synchronization problems included here under the gen-
eral term of unison. In these problems, each process should maintain a local
clock. We restrict here our study to periodic clocks: «, called the period of the
clocks, should be greater than or equal to 2. The aim is to make all local clocks
regularly incrementing (modulo «) in a finite set of integer values {0,...,a—1}
while fulfilling some safety requirements.

All these problems require the same liveness property which means that
whenever a clock has a value in {0,...,a — 1}, it should eventually increment.

Definition 1 (Liveness of the Unison) An ezecution e = (v;)i>0 satisfies
the liveness property LIV E if and only if Vv; € e,Vp € V;,Vz € {0,...,a — 1},
vi(p).clock = x = 3j > i,(Vk € {i+1,...,5—1},p € Ve Ayi(p).clock =) A(p €
Vi Av;j(p).clock = (z 4+ 1) mod «).

The three versions of unison we consider are respectively named strong,
weak, and partial unison, and differ by their safety property. Strong unison is
also known as the phase or barrier synchronization problem [28, 29|. The weak
unison appeared first in [25] under the name of asynchronous unison. We define
the partial unison as a straightforward variant of the weak unison suited for
dynamic systems.

11

Definition 2 (Safety of the Partial Unison) An ezecution e = (7;);>0 sat-
isfies the safety property SAF Ep, if and only if Vv; € e, the following conditions
holds

o Vp € V; \ New;,v;(p).clock € {0,...,a — 1} and

e Vp € Vi\New;,V¥q € v;(p) N\New;, v;(p).clock € {~i(q).clock, (vi(q).clock
+1) mod a, (vi(q).clock —1) mod a}, meaning that the clocks of any two
neighbors which are not in bootstate® differ from at most one increment
(modulo «).

Definition 3 (Safety of the Weak Unison) An ezecution e = (y;);>0 sat-
isfies the safety property SAFE\y, if and only if

e Vy; € ¢, New; = 0, meaning that no process is in bootstate and

o SAFFEg,(e) holds.

In the next definition, we use the following notation: for every configuration
vi, let CV(v;) = {vi(p).clock : p € V;} be the set of clock values present in
configuration ~;.

Definition 4 (Safety of the Strong Unison) An ezecution e = (;)i>0 sat-
isfies the safety property SAF Eg, if and only if Vv; € e, the following conditions
holds

e New; = (), meaning that no process is in bootstate,
e Vp € Vi, 7vi(p).clock € {0,...,a — 1}, and

o |[CV(v)| <2ANCV(vi) ={z,y}=2=(y+1) moda V y=(z+1)
mod «), meaning that there exists at most two different clock values, and
if so, these two values are consecutive (modulo).

Specification 1 (Partial Unison) An execution e satisfies the specification
S Ppy of the partial unison if and only if LIV E(e) A SAF Epy(e).

Specification 2 (Weak Unison) An execution e satisfies the specification S Py,
of the weak unison if and only if LIVE(e) A SAFEwy(e).

Specification 3 (Strong Unison) An execution e satisfies the specification
SPsy of the strong unison if and only if LIV E(e) A SAFEgy(e).

The property below sum up the straightforward relationship between the
three variants of unison we consider here.

Property 1 For every execution e, we have SPsy(e) = SPwy(e) = SPpy(e).

5Recall that while a process is in bootstate, it has not taken any step and so its output,
here its clock value, is meaningless.

12

5 Conditions on the Dynamic Pattern

In Section 6, we provide Algorithm DSU which is gradually stabilizing under
(1, BULCC)-dynamics for (SPey @0, SPyy®1, SPs, e B) (where B is a given com-
plexity bound), starting from any arbitrary anonymous (initially connected)
network and assuming the distributed unfair daemon. The dynamic pattern
BULCC (defined on page 33) requires, in particular, that graphs remain Con-
nected (i.e., the dynamic pattern C below) and, if the period « of unison is
greater than 3, then the condition Under Local Control (i.e., the dynamic pat-
tern ULC below) should hold:

e C(G;,G,) = if graph G; is connected, then graph G; is connected.

Notice that as the initial topology of the system is assumed to be con-
nected, the topology is always connected along any execution of &£ LC,

e ULC(G;,G;) =if V;NV; # 0 and G; is connected, then V; NVj is a
dominating set of G;.

ULC permits to prevent a notable desynchronization of clocks. Namely, if
not all processes leave the system during a dynamic step v 4 ' from
an initially connected topology, then every process that joins the system
during that dynamic step is required to be “under the control of” (that is,
linked to) at least one process which exists in both v and +'.

We now study the necessity of conditions C and ULC. We first show that the
assumption C on dynamic steps is necessary whatever the value of the period
a is (Theorem 1). We then show that the dynamic pattern ULC is necessary
for any period a > 5 (Theorem 2), while our algorithm shows that ULC is not
necessary for each period o < 4 . For remaining cases (periods 4 and 5), our
answer is partial, as we show that there are pathological cases among possible
dynamic steps which satisfy C but not ULC (Theorem 4 and Corollary 1) that
make any algorithm fails to solve our problem. In particular, for the case o = 5,
we exhibit an important class of such pathological dynamic steps (Theorem 3).

General Proof Context To prove the above results, we assume from now on
the existence of a deterministic algorithm .4 which is gradually stabilizing under
(1,p)-dynamics for (SPe, ® 0, SPyy 1, SPs, ® B) starting from any arbitrary
anonymous (initially connected) network and assuming the distributed unfair
daemon, where p is a given dynamic pattern and B is any (asymptotic) strictly
positive complexity bound. Hence, our proofs consist in showing properties
that p should satisfy (w.r.t. dynamic patterns C and ULC) in order to prevent
Algorithm A from failing. In the sequel, we also denote by £}, the legitimate
configurations of A w.r.t. specification S Ps.

SRecall that a dominating set of the graph G = (V, E) is any subset D of V such that
every node not in D is adjacent to at least one member of D.

13

5.1 Connectivity
Theorem 1 For every graph G and G’, we have p(G,G") = C(G,G").

Proof. Assume, by the contradiction, that there exists two graphs G; and G
such that p(G;, G;), G; is connected, and G, is disconnected. Then, there is an
execution e = (7;)i>0 € 5&{) such that Go = G; and G g (e) = Gj. Let A and
B be two connected components of G (). By definition, there exists j > fst(e)
such that v; € E§4U and A and B are defined in all configurations (7;);>;. From
7;, all processes regularly increment their clocks in both A and B by the liveness
property of strong unison. Now, as no process of B is linked to any process of A,
the behavior of processes in B has no impact on processes in A and vice versa.
So, liveness implies, in particular, that there always exists enabled processes in
A. Consequently, there exists a possible execution of 5&{) prefixed by vo...7;

where the distributed unfair daemon only selects processes in A from ;, hence
violating the liveness property of strong unison, a contradiction. a

5.2 Under Local Control
5.2.1 Technical Results

The following property states that, whenever a > 3, once a legitimate config-
uration of the strong unison is reached, the system necessarily goes through a
configuration where all clocks have the same value between any two increments
at the same process.

Property 2 Assume a > 3. For every (vi)izo € &}

every k € {0,...,a — 1}, for every i > 0, if p increments its clock from k to
(k+1) mod a in 7; =5 vit1 and 3j > i + 1 such that v;(p).clock = (k + 2)
mod «, then there exists x € {i + 1,...,j — 1}, such that all clocks have value
(k+1) mod « in v,.

4, for every process p, for
SuU

Proof. Let (7i)izo € €24 and p be a process. Let k € {0,...,a — 1} and
- SuU

i > 0 such that p increments its clock from & to (k 4+ 1) mod « in ~; —s Yit1
and 3j > ¢+ 1 such that v;(p).clock = (k +2) mod c.

Assume, by the contradiction, that there is a process ¢ such that v;(q).clock =
(k —1) mod a. As the daemon is distributed and unfair, there is a possible
static step from ; where p moves, but not ¢ leading to a configuration where
g.clock = (k — 1) mod « and p.clock = (k+ 1) mod «. This configuration vi-
olates the safety of SPs,. Hence, there exists an execution of 52 4 which does
not satisfy SPsy, a contradiction.

Hence, Vq € V,v;(q).clock € {k,(k + 1) mod a}, by the safety of SPsy.
Similarly to the previous case, while there are processes whose clock value is
k, no process (in particular p) can increment its clock from (k + 1) mod « to
(k 4+ 2) mod a. Hence, between ~;;1 (included) and 7;_; (included), there

14

exists a configuration where all processes have clock value (k+ 1) mod «, since
v;(p).clock = (k+2) mod a. O

Since A is gradually stabilizing under (1,p)-dynamics for (SPsy @ 0, SPyy ®
1, SPs, e B), follows.

Remark 1 Every execution in EY° is infinite.

Lemma 1 Let v; —% vi41 be a p-dynamic step such that ~; € £§4U and G; is
connected. For every process p € New;11, p is enabled in v;4+1 and if p moves,
then in the next configuration, p is not in bootstate and p.clock € {0,...,a—1}.

Proof. As~; € £§4U and G; is connected, there is an execution Eé’jf prefixed by
SuU

YiYi+1. Moreover, there are enabled processes in 7; 1, by Remark 1 and the fact
that no more dynamic step occurs from ~; 1. Assume that the daemon makes a
synchronous static step from 7; 1. The step ;41 —s 7Vit2 actually corresponds
to a complete round, by definition. So, the execution suffix from ;s should
satisfy the specification of the weak unison (any execution of Eéf prefixed by

7i7Vi+1 should converge in one round from 7y () = vi+1 to a conﬁséuration that
is legitimate w.r.t. SPyy). Now, if, by the contradiction, p is disabled in 7,41,
or p is not in bootstate in ; o, or v;42(p).clock ¢ {0, ..., a—1}, then the safety
of the weak unison is violated in 7; 2, a contradiction. O

Lemma 2 Let c € {0,...,a — 1}, G be a connected graph of at least two nodes,

and r1 and ro be two nodes of G. If a > 3, then there exists an execution

e e EgA on the graph G which contains a configuration yr where r1 and ro have
SU

two different clock values, one being ¢ mod a and the other (¢ + 1) mod a.

Proof. Consider an execution ¢’ in 52 4 on the graph G. The specification
U

of the strong unison is satisfied in e’ andsby liveness and Property 2, there is
a configuration g in e’ where every clock equals ¢ mod . By liveness again,
from g, eventually there is a step where either r1, or 79, or both increments
to (¢c+ 1) mod «. Consider the first step v,_1 —, 7. after vg, where either rq,
or 19, or both increments to (¢ + 1) mod a. In the two first cases, let vp = 7,
and e = ¢/. For the last case, consider an execution e” of €2§4U with the prefix

Y0 ---Y2—1 common to €', but only r; moves in the step from ~,_;. Let vp be
the configuration reached by this latter step and e = e¢”. In either cases, r; and
ro have two different clock values in 77, one being ¢ mod « and the other (c¢+1)
mod a.]

Lemma 3 Let G be any connected graph. There exists v; € £§4U such that
G;=G.

Proof. A being designed for arbitrary initially connected networks, there
exists at least one execution e = (7;);>0 € €%, where G; = G, Vi > 0. By
hypothesis, at least one configuration of e belongs to ﬁg“u. a

15

(a) yr (b) 741 (€) Y742

Figure 1: Execution e” in the proof of Theorem 2. The hachured nodes are in
bootstate. The value inside the node is the value of its clock. If there is no
value, its clock value is meaningless.

5.2.2 Main Results

Theorem 2 If « > 5, then for every graphs G and G', we have p(G,G’) =
CG,G") ANULC(G,G").

Proof. We illustrate the following proof with Figure 1. Assume a > 5
and let G,_1 and G, be two graphs such that p(G,_1,G;). By Theorem 1,
C(Gz-1,G,) holds. So, assume, by the contradiction, that “ULC(G,—1,Gy).
Then, C(Gz—1,G:) A “ULC(G,—1,G,) implies, in particular, that both G,_1
and G, are connected.

By Lemma 3, there exists a configuration v, 1 € Cg“u, whose topology is
Gy—1. Consider now the configuration v, of topology G, such that v,_1 —/ v,
is a p-dynamic step that contains no process activation. Then, since G, is
connected and V,_; NV, # () is not a dominating set, we have: Ip € V. \ V,_;
such that (1) Vv € v,(p). N, v € V,\ V;_1 and (2) there is a process q € v, (p).N
which has at least one neighbor in V,,_1NV,,, say r. Moreover, p and its neighbors
(in particular ¢) are in bootstate in v,. So, by Lemma 1, they all are enabled
in v, and if they move, they will be no more in bootstate and their clock value
will belong to {0, ...,4} in the configuration that follows v,. Let ¢ be the clock
value of p in the next configuration, if p moves.

By the liveness property of the strong unison, there exists an execution e in
€2§b on the graph G, 1 (n.b., G,_1 is connected) which contains a configuration

~r where r has clock value (¢ +3) mod «, see Figure 1a.
Consider now another execution ¢’ € E’Z’f having a prefix common to e until
SuU

~r. Assume that the unfair daemon introduces a p-dynamic step (it is possible

16

since there was no dynamic step until now). Since Gp = G,_1, the daemon
can choose a step yp —* 741, where no process moves and Gry1 = G,. Now,
Vv € Vroy \ Vi, y7+1(v) = 7.(v), so again, in y741, p and all its neighbors (in
particular ¢) are in bootstate and enabled. Moreover, if they move, they will
be not in bootstate and their clock value will belong to {0,...,4} in vy 4o, by
Lemma 1. Moreover, p is in the same situation as in ., so if it moves, its clock is
equal to ¢ in yp4o. Then, 7 is still a neighbor of ¢ which is still not in bootstate
and still with clock value (¢+3) mod 5, see Figure 1b. By definition, since strong
unison is satisfied in y7 (by assumption), the partial unison necessarily holds all
along the suffix of €’ starting at yr,1. Assume that the daemon exactly selects
p and its neighbors in the next static step yr4+1 —s yr+2. In yr4o (Figure 1c),
r is still not in bootstate and its clock is still equal to (¢c+3) mod 5, since it did
not move. Moreover, p is no more in bootstate and its clock equals ¢. Now, in
~YT4+2, ¢ is no more in bootstate and its clock value belongs to {0,...,4}. That
clock value should differ of at most one increment (mod 5) from the clocks of
p and r since partial unison holds in vy and all subsequent configurations. If
the clock of ¢ equals:

e cor (c+1) mod «, the difference between the clocks of ¢ and r is at least
2 increments (mod «),

e (c+2) mod a, (¢4 3) mod «a, (c+4) mod «, the difference between the
clocks of ¢ and p is at least 2 increments (mod «),

e any valuein {0, ...,a—1}\{c, (c+1) mod «, (¢+2) mod «, (¢c+3) mod «, (c+
4) mod a}, the difference between the clocks of ¢ and r is at least 2 in-
crements (mod «).

Hence, the safety of partial unison is necessarily violated in the configuration
~yri2 of €, a contradiction. |
We now focus on dynamic patterns for which C is true but ULC is false and
that cannot be included into p, unless the specification of A is violated. Such a
pattern is defined below and will be used for the case o = 5.
Let ¢ be the dynamic pattern such that for every two graphs G; and Gj,
¢(Gi, Gj) if and only if the following conditions hold:

e both G; and G are connected,
o ViV =2, and
e Jp € V;\V; such that v;(p) NNV, = 0 and 3q € ~v;(p).N, |v;(¢) NNV;| > 2.

Theorem 3 If o = 5, then for every graphs G and G', we have ((G,G’) =
-0(G,G").

Proof. We illustrate the following proof with Figure 2. Assume, by the
contradiction, that o = 5 but there exists two graphs G,_; and G, such that
C(Gy-1,Gy) and p(Gi-1,Gy).

17

/ /

/(c+3) mod 5 1 [(c+3) mod 5/ \ /(c+3) mod 5/ 1

I)/ | |)/ | I)/ |

\ , ! \ , I \ , I
\ 7 ! \ 7 1 \ 7 1
\ z / \ “ / \ A /
v -7 (e+2)mod 5 4 v _-7(c+2) mod 5 v _-7(c+2) mod 5

< / x 7 x 7
(a) yr (b) Y741 (¢) Y142

Figure 2: Execution ¢’ in the proof of Theorem 3. The hachured nodes are in
bootstate. The value inside the node is the value of its clock. If there is no
value, its clock value is meaningless.

By Lemma 3, there exists a configuration v,_1 € Eg“u (n.b., Gy—1 is con-
nected, by definition). Consider now the configuration +, of topology G, such
that v, _1 '—>Z Yoy Vo—1 |—>g Yz, and no process is activated between 7, 1 and
Va-

Let p and ¢ be two nodes such that (1) p € V, \ Vo—1, (2) ¢ € Vo \ Vi1 and
q € v:(p).N, (3) Vv € v (p). N, v €V, \ Vu_1, (4) q has at least two neighbors
r1 and 79 belonging to V, NV,._1 (by definition of ¢, p, ¢, r1, and 72 necessarily
exist). Then, p and its neighbors (in particular ¢) are in bootstate in 7,. So,
by Lemma 1, they all are enabled in ~, and if they move, they will be not in
bootstate and their clock values will belong to {0,...,4} in the configuration
that follows ~v,. Let ¢ be the clock value of p in the next configuration, if p
moves.

By the liveness of the strong unison and Lemma 2, there exists an execution
e in 52 4 on the graph G,_; which contains a configuration vy where r; and

ro are not in bootstate and have two different clock values, one being (¢ + 2)
mod 5 and the other (¢+3) mod 5. Without the loss of generality, assume that
~yr(r1).clock = (¢+2) mod 5 and vy (re).clock = (¢ + 3) mod 5, see Figure 2a.

Consider now another execution e’ € 52;% having a prefix common to e until

~r. Assume that the unfair daemon introduces a p-dynamic step (it is possible
since there was no dynamic step until now). Since Gp = G,_1, the daemon
can choose a step yp —* 741, where no process moves and Gry1 = G,. Now,
Yo € Vrga \ Vr, yr41(v) = 72 (v), so again, in yr11, p and all its neighbors (in
particular ¢) are in bootstate and enabled. Moreover, if they move, they will
not be in bootstate and their clock values will belong to {0,...,4} in yr42, by

18

Lemma 1. Moreover, p is in the same situation as in ~,, so if it moves, its clock
is equal to ¢ in yp49. Then, r; and ro are both neighbors of ¢ which are still not
in bootstate and still with clock values (¢ + 2) mod 5 and (¢ + 3) mod 5, see
Figure 2b. By definition, since strong unison is satisfied in 7 (by assumption),
the partial unison necessarily holds all along the suffix of ¢’ starting at ypy1.
Assume that the daemon exactly selects p and its neighbors in the next static
step Y141 —s Yre2- In yrio (Figure 2¢), r1 and ro are still not in bootstate
and their clocks are still respectively equal to (¢+2) mod 5 and (¢+3) mod 5,
since they did not move. Moreover, p is no more in bootstate and its clock
equals c¢. Now, in yr49, g is no more in bootstate and its clock value belongs to
{0,...,4}. That clock value should differ of at most one increment (mod 5) from
the clocks of p, r1, and 79 since partial unison holds in vp41 and all subsequent
configurations. If the clock of ¢ equals:

e cor (c+1) mod 5, the difference between the clocks of ¢ and 5 is at least
2 increments (mod 5),

e (c+2) mod 5 or (c+3) mod 5, the difference between the clocks of ¢ and
p is at least 2 increments (mod 5),

e (c+4) mod 5, the difference between the clocks of ¢ and 7 is 2 increments
(mod 5).

Hence, the safety of partial unison is necessarily violated in the configuration
~yr42 of €, a contradiction. a

The previous theorem states that no p-dynamic step can satisfy (, unless
A fails. Now, by definition, for every graphs G and G’, ((G,G’) = C(G,G') A
-ULC(G, G’). Hence, the following corollary holds.

Corollary 1 If « = 5, then there exist graphs G and G’ such that C(G,G") A
-ULC(G,G") N —p(G,G").

The theorem below provides the same kind of results as Corollary 1 for a = 4.

Theorem 4 If o = 4, then there exist graphs G and G’ such that C(G,G’) A
-ULC(G,G") A —p(G,G").

Proof. We illustrate the following proof with Figure 3. Assume, by the
contradiction, that o = 4 but for every two graphs G and G’ we have -C(G,G")V
ULC(G,G") V p(G,G), i.e., C(G,G') A -ULC(G,G’) = p(G,G").

To reduce the number of cases in the proof, we start by fixing a local proof
environment, without loss of generality. To that goal, we consider a configura-
tion 7; in £&}; such that G; is connected and contains at least one node. Consider
also any p-dynamic step, v; —* vi41, that adds five nodes u, v, w, z and y to
G; in such way that the neighbors of v in G;41 is {u,w, z,y} and the respective
degrees of u, w, z, and y are 1, 2, 2, and 4, see for instance Figure 3.(d)). Notice
that from its local point of view, v cannot distinguish configuration ;41 from
any other configuration resulting from the addition of v and its neighbors, since

19

deg.1 -y deg.1

:/@ deg.2 S
degd Cr—) G : () v, deg4

v) deg.2 u, deg.4

(a) After adding v and its (b) A dynamic step in F(G).

neighbors, v is enabled and Claim 0: wu is enabled and the

v.clock is set to 0 if v moves. next value of wu.clock is com-
pletely determined by the local
states of p and q.

p.clock | q.clock | wu.clock
Claim 1 2 3 3
Claim 2 1 2 1
Claim 3 2 2 lor3
(¢) Claim 1, 2, 3: after adding u, v, y, u is (d) Proof of Claim 1, 2, 3
enabled and wu.clock will be fixed by p.clock
and q.clock
Yz Vo4l Yy Yy+1 Yz Yz41
1 1 2 2 2 2 3
T4 1 2 2 2 2 3
1 2 2 2 2 3
T2 1 2 2 2 2
T3 1 2 2 2 2 3
P 1 1 3 3
(e) Claim 3, 4, 5, and end of the proof. (f) Proof of Claim 3.

Figure 3: Proof of Theorem 4. The hachured nodes are in bootstate. The value
inside a node is its clock value. If no value is given, then the clock value is
meaningless. Notation "deg." stands for degree.

20

v and all its neighbors are in bootstate. In ~;41, due to Lemma 1, v is enabled
and if v moves, then v.clock € {0, ...,3} in the next configuration. Without the
loss of generality, we fix the value to 0. Hence, follows.

Local Proof Environment: Let v be a node surrounded by 4 neighbors having
respectively degree 1, 2, 2 and 4 such that v and its neighbors are all in bootstate.
In such a configuration, v is enabled and if v moves in the next step, then v sets
v.clock to 0. See Figure 3.(a). |

Let G = (V, E) be any connected graph of at least two nodes, p, g. Let F(G)
be the family of graphs G’ = (V’, E’) obtained by applying a dynamic step on
G such that (1) C(G,G’) holds, (2) V C V', (3) {u,y,v} CV'\V, and (4) E’
contains at least all links in E plus the following additional links.

e y is a 1-degree node linked to u;
e u has degree 4, it is linked to y, v, and two nodes of V; and

e v has degree 4 and is, in particular, linked to u.

See Figure 3.(b). Notice that for every G’ in F(G), -ULC(G, G’) holds, due to
node y. Hence, any dynamic step that transforms G into G’ is a p-dynamic
step.

Let v € Eg‘u whose topology is G. Let v —* 7' be a p-dynamic step where
no process executes and that transform G into G’ € F(G).

Claim 0: In v/, process u is enabled (by Lemma 1) and, if it executes, the new
value of u.clock is completely determined by ~v(p) and v(q).

Claim 1: If p and q respectively have clock value 2 and 3 in configuration -,
then for every G’ € F(G), u is enabled in 4/ and if it executes, u.clock has value
3 in next configuration.

Proof of Claim 1: By Claim 0, u is enabled at 7' and its next clock value
is fully determined by 7(p) and v(q) whatever the graph G’ of F(G). So, to
determine this value, it is sufficient to compute it from a particular graph G’ of
F(G). We build this graph as follows: V C V', {u,v,w,z,y,z} C V' \ V, and
E’ contains all links in E plus the following additional links.

e u has four neighbors: v, y, p and g,

e v has four neighbors: u, w, x, and z,

e w has two neighbors: v and a node in V,

e 1 has two neighbors: v and a node in V', and
e y and z have degree one.

See Figure 3.(d). Notice that, by definition, G’ € F(G).
We consider 7 as the first configuration of an execution in é’llzj\’ Then, the
SsuU

first step of the execution is the step v —% ~/. Hence in 4/, v and v are both
enabled (see the local proof environment and Claim 0): assume that the daemon

21

exactly selects u and v for next static step 7' +5 +”. In 7", the states of p and
q have not changed, v and u are no more in bootstate and v.clock = 0, from the
local proof environment. The clock value u.clock should differ from the clocks
of p, ¢, and v by at most one increment (mod 4) since partial unison holds in
~" and v”. So, u necessarily has clock value 3 in ~". |

Using a similar reasoning, we obtain the following two claims.

Claim 2: If p and q respectively have clock value 1 and 2 at configuration -,
then for every G’ € F(G), u is enabled in 4/ and if it executes, u.clock has value
1 in next configuration.

Claim 3: If p and ¢ have both clock value 2 in configuration -, then for every
G' € F(G), u is enabled in 4/ and if it executes, u.clock has value either 1 or 3
in next configuration.

Consider now any regular’ connected graph G = (V,E) of at least four
nodes, r1, ro, r3 and 4. Let e = (7;)i>0 € Eg’ff be a synchronous execution of
the algorithm on graph G, such that in g evers}l; process has exactly same state.
As the execution is synchronous, the algorithm deterministic, and the graph
regular, this property is invariant all along the execution: in every configuration
i of e, Vp € V,7vi(p) = 7i(r1)-

Now, by hypothesis, there exists a configuration ; in e such that ~; € Cg“u.
From ~;, every clock in the graph regularly increments (modulo 4). We denote
by vz s Yz+1 some step in e with > ¢ such that clock value increments
from 1 in v, to 2 in v,4+1. Moreover, let v, +>5 7,+1 the next step in e where
clocks increment again, namely clocks increment from 2 in 7, to 3 in y,41. See
Figure 3.(e). Notice that in each configuration between v, (included) and 7,41
(included) every process has the same state. Moreover, in all configurations
between 7,1 (included) and +,