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Shock capturing procedures are required to stabilise numerical simulations of gas dynamics problems featuring non-isentropic discontinuities. In the present work, particular attention is focused on the expected non-monotonicity of the entropy profile across shock waves. A peculiar physical property which was not considered so far in the evaluation of shock capturing techniques. In the context of high-order spectral difference methods and using most recent discontinuity sensors based on the decay rate of the modes of the amplitude of characteristic waves, results show how the choice of a physical-based procedure (additional viscosity) returns a better description of shocks compared to approaches relying on the direct addition of a Laplacian term in the solved equations. Various canonical compressible flows are simulated, in one-, two-, and three-dimensional setups, to illustrate the performance and flexibility of the proposed approach.

It is shown that the addition of a well-calibrated bulk viscosity is capable of smoothing out discontinuities without an excessive damping of vortical structures, preserving also specific compressible flow physics, as the non-monotonic entropy profiles through the shocks.

Introduction

Compressible gas dynamics has motivated many studies [START_REF] Clavin | Combustion Waves and Fronts in Flows[END_REF] and shock capturing techniques have been developed since the very beginning of the appli-cation of computational fluid dynamics. This research field is still extremely active due to the necessity of a proper description of compressibility effects in various complex engineering applications. Many different available numerical schemes are particularly susceptible to the treatment of discontinuous solutions, especially when high-order approximations are employed. In this case, the persistency of numerical oscillations in the proximity of a shock (commonly known as Gibbs phenomenon) can lead to unstable solutions implying accuracy and robustness reduction. Within the framework of high-order discontinuous finite element (DFE) methods, many different procedures have been constructed to mitigate this issue. In particular, two of the most utilised approaches involve the use of limiters [START_REF] Zhang | On maximum-principle-satisfying high order schemes for scalar conservation laws[END_REF][START_REF] Lamouroux | A high-order compact limiter based on spatially weighted projections for the spectral volume and the spectral differences method[END_REF][START_REF] Krivodonova | Limiters for high-order discontinuous Galerkin methods[END_REF][START_REF] Burbeau | A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods[END_REF]-including weighted essentially non-oscillatory (WENO) schemes [START_REF] Qiu | Runge-Kutta discontinuous Galerkin method using WENO limiters[END_REF][START_REF] Qiu | Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case[END_REF][START_REF] Luo | A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids[END_REF][START_REF] Zhu | Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes[END_REF][START_REF] Liang | Discontinuous Galerkin method with WENO limiter for flows with discontinuity[END_REF]-or the injection of artificial viscosity (AV) [START_REF] Vonneumann | A method for the numerical calculation of hydrodynamic shocks[END_REF][START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF][START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF][START_REF] Klöckner | Viscous shock capturing in a time-explicit discontinuous Galerkin method[END_REF]. The former approach is based on the proper numerical limitation of the amplitude of the gradients of the solution, whereas the latter consists in the local addition of an ad-hoc amount of numerical dissipation. Both methods intend to limit or damp the presence of oscillatory behaviours near shocks and discontinuities.

Depending on the geometrical, physical and mathematical setting, one approach can be more suitable than the other: artificial viscosities terms are usually highly compact and can be easily computed even in higher dimensions, whereas limiters and WENO schemes cannot preserve the DFE scheme compactness and an appropriate and efficient generalisation to multiple dimensions on unstructured grids can be extremely cumbersome, both theoretically and computationally. On the other hand, the use of artificial viscosity does not provide full control on local minima and maxima of the solution and can lead to the occurrence of negative densities or pressures. Under such circumstances, it is necessary to couple the artificial viscosity with a positivity preserving scheme [START_REF] Zhang | Positivity-preserving high order discontinuous Galerkin schemes for compressible euler equations with source terms[END_REF].

Regardless of which class of methods is employed, the identification and localisation of sharp features in the fluid flow is of fundamental importance for the correct description of the physical system. To this end, the use of shock sensors is widely diffused: these are designed to detect if a discontinuity is present or not in a certain region of the domain. Shock development and dynamics could sometimes be extremely difficult to predict, leading to a strong interest in the development of very accurate and highly automated sensors. The detection of such structures can be directly performed using nodal values of the solution (for example the divergence of the velocity [START_REF] Ducros | Large-eddy simulation of the shock/turbulence interaction[END_REF]) or it can rely on modal sensors, which are based on the decay rate of the expansion coefficients of the approximated solution [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF][START_REF] Persson | Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems[END_REF]. In the context of high-order approximations, the latter procedure is clearly more attractive, as it basically exploits intrinsic information provided by the spatial discretisation itself. Possible approaches include the use of the ratio between the energy of highest mode and the energy of the whole spectrum [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF], or a least-square power fit of the modal coefficients decay [START_REF] Klöckner | Viscous shock capturing in a time-explicit discontinuous Galerkin method[END_REF]. It is worthwhile noting that an obvious limitation of the use of modal sensors is the necessity of a sufficiently high order approximation to get a meaningful modal spectrum. In the present work, the recently proposed characteristic-based sensor is implemented [START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF].

Once the discontinuity is identified the operative procedure to smooth out or limit the shock can be applied locally, stabilising the solution. However a careful attention should be paid on how spurious terms or numerical manipulations could affect the physical phenomena. Different shock capturing methods could lead to a similar mean behaviour of the solution but damage, or eventually completely destroy, some key characteristic of the governing equations.

On this particular regard, in the present paper, a detailed comparison is presented between shock capturing approaches based either on the addition of Laplacian terms in the Navier-Stokes equations or on the addition of an amount of bulk viscosity in the stress tensor. Five canonical compressible flows are considered, namely: the one-dimensional shock collision; the two-dimensional inviscid strong-vortex/shock-wave interaction; the inviscid Taylor-Green vortex; the decaying compressible isotropic turbulence and the shock/wavy-wall interaction. Both direct numerical simulation (DNS) and large-eddy simulation (LES) are performed depending on the selected test case.

The novelty of the work lies in the particular emphasis put in the assessment of the shock capturing procedure in correctly reproducing the theoretically expected non-monotonic behaviour of the entropy across the shock and on the capacity of the artificial viscosity to deal with turbulence, when present, and to interact with relevant models-i.e., the sub-grid scale (SGS) model in the case of LES-such as to provide physically accurate results.

Shock capturing in high-order discretisation of the Navier-Stokes equations

The usual Navier-Stokes equations [START_REF] Kollmann | Fluid Mechanics in Spatial and Material Description[END_REF] for the density ρ, the momentum ρu, u being the velocity vector, and the specific total energy E (internal + kinetic) are solved in their compressible form using the high-order spectral difference (SD) method [START_REF] Kopriva | A conservative staggered-grid Chebyshev multidomain method for compressible flows[END_REF][START_REF] Sun | High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF][START_REF] Jameson | A proof of the stability of the spectral difference method for all orders of accuracy[END_REF]. The SD scheme enables arbitrary high-order computations over unstructured meshes and provides high resolution of the flow with minimal numerical dissipation [START_REF] Jameson | A note on the numerical dissipation from highorder discontinuous finite element schemes[END_REF][START_REF] Chapelier | A study on the numerical dissipation of the spectral difference method for freely decaying and wallbounded turbulence[END_REF]. It is worthwhile noting that, the shock capturing formalisms discussed herein is based on the original work of Persson and Peraire [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF] and subsequent developments [START_REF] Persson | Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems[END_REF][START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF][START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF], and can be applied to any discretisation relying on a modal approximation of the solution.

Laplacian viscosity

The Laplacian viscosity represents a very robust approach [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF][START_REF] Persson | Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems[END_REF][START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF][START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF][START_REF] Moro | Dilation-based shock capturing for high-order methods[END_REF][START_REF] Yu | Localized artificial viscosity stabilization of discontinuous Galerkin methods for nonhydrostatic mesoscale atmospheric modeling[END_REF][START_REF] Denet | Model equation for the dynamics of wrinkled shock waves. comparison with DNS and experiments[END_REF][START_REF] Lodato | Numerical study of smoothly perturbed shocks in the Newtonian limit[END_REF] in which the right-hand-side of each advection-diffusion equation (including mass conservation) is augmented by a Laplacian term in the form

∇ • (ε AV ∇ϕ) , ( 1 
)
where ϕ is the relevant transported quantity-either the density, the momentum, or the total energy-and ε AV is the added artificial viscosity by the shock capturing scheme. It is worth stressing that this approach treats each equation in the same way and the same amount of diffusion is added to every transported quantity.

Physical artificial viscosity

The physical artificial viscosity approach, on the other end, formally introduces artificial viscous fluxes in strict analogy to those representing molecular viscosity. An artificial viscosity µ AV , an artificial bulk viscosity β AV and an artificial thermal conductivity κ AV are then added to the molecular viscosities and to the flow thermal conductivity. 1 In particular, according to previous works on physical models for the artificial viscosity [START_REF] Fernandez | A physics-based shock capturing method for unsteady laminar and turbulent flows[END_REF][START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF], in the present study an additional bulk viscosity is applied without any artificial shear viscosity. Hence, using index notation and Einstein summation convention, the viscous tensor and heat flux vector read, respectively,

τ ij = µ ∂u i ∂x j + ∂u j ∂x i - 2 3 
∂u k ∂x k δ ij + β AV ∂u k ∂x k δ ij H - ∂u k ∂x k , ( 2 
)
q j = -(κ + κ AV ) ∂T ∂x j , with κ AV = β AV c p Pr β , (3) 
where Pr β is the artificial viscosity Prandtl number and c p the constant-pressure heat capacity. Notice that, to prevent the artificial viscosity from being triggered in flow regions undergoing expansions (i.e., where the divergence of the velocity is positive), an additional switch based on H (•), the Heaviside function, is embedded in the artificial bulk viscosity expressed by (2) [START_REF] Mani | Suitability of artificial bulk viscosity for largeeddy simulation of turbulent flows with shocks[END_REF][START_REF] Kawai | Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows[END_REF].

For the majority of the presented simulations, a constant value of Pr β = Pr = 0.71 is used, whereas, for the three-dimensional cases featuring quite strong fluctuations of the local Mach numbers, the expression proposed in [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF] 1 It is worth noting that a previous work on modal detection approaches for discontinuous Galerkin schemes [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF] seem to suggest the use of the artificial shear viscosity only, µ AV , while keeping the Stokes's hypothesis valid for the artificial viscous stresses (β AV = 0). Such a choice, which would prevent any artificial dissipation in the momentum equation in the onedimensional case, appears-to the authors-to be in conflict with the one-dimensional results presented in the same paper, where the physical model provides sufficient robustness even at relatively high Mach numbers. Indeed, in a subsequent recent works [START_REF] Fernandez | A physics-based shock capturing method for unsteady laminar and turbulent flows[END_REF][START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF], not only the artificial bulk viscosity is retained, but it is the artificial shear viscosity which is set to zero because, as the authors emphasise, "shock waves are stabilized through β * and κ * 1 only" (the * superscript is adopted therein for artificial viscosity terms). is adopted:

Pr β = Pr {1 + exp [-4 (Ma -Ma thr )]} , ( 4 
)
where Ma is the local Mach number computed from the velocity magnitude and Ma thr = 3 is a fixed threshold. This formulation avoids adding unnecessary thermal dissipation for low Mach number regions of the flow and provides a value of Pr β that would tend asymptotically to Pr, the flow Prandtl number for hypersonic problems. Concerning the suppression of the shear AV term in favour of a bulk viscosity only, as it will be discussed in more details in the results section, the addition of a shear viscosity implies an extra dissipative term on vorticity equation, whereas the bulk viscosity adds a similar term in the dilatation equation only. As a result, the former affects vorticity modes, while the latter acts on dilatational modes. The use of bulk viscosity only appears to be very well suited for shock capturing for two main reasons. First of all because, being multiplied by the divergence of velocity, its functional form has an intrinsic compressible nature: even if shock detection is not perfect, the additional bulk viscosity is still proportional to a term which is big only in presence of strong compressibility effects. Secondly, the shear viscosity being linked to vorticity, it is more suited for turbulence modelling, as it is well established by widely popular eddy-viscosity models for LES. In this sense an additional artificial shear viscosity would lead to unnecessary vorticity dissipation and, more importantly, it could lead to unexpected interactions between an eddy-viscosity SGS model and the AV model.

Discontinuity sensor

Within the context of high-order methods, discontinuities are usually detected from the decay rate of the expansion coefficients of the solved signals (the reader is referred to the original works in [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF][START_REF] Persson | Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems[END_REF][START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF] for additional details). In the current implementation, a recently proposed modal sensor based on the acoustic characteristics and the density is used [START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF]. Let ψ and ψ be, respectively, the signal adopted for shock detection and its truncated polynomial expansion:

ψ(ξ) = n i=1 ψi P i-1 (ξ), ψ(ξ) = n-1 i=1 ψi P i-1 (ξ), (5) 
where P k is a polynomial of degree k from a suitable polynomial basis, ψk is the relevant kth mode and n is the discretisation order. Then, the modal sensor s e can be computed as:

s e (ψ) = log 10 (ψ -ψ, ψ -ψ) e (ψ, ψ) e , ( 6 
)
where (•, •) e is the standard L 2 inner product within the element. 2 Depending on the adopted approach-namely, Laplacian or physical modelthe artificial viscosities, ε AV or β AV , are triggered in the neighbourhood of discontinuities using a sinusoidal function of the modal sensor s e :

f (s e ) =              0 for s e < s 0 -l, ε 0 2 1 + sin π(s e -s 0 ) 2l for s 0 -l ≤ s e ≤ s 0 + l, ε 0 for s e > s 0 + l, (8) 
with f being either ε AV or β AV /ρ in the case of Laplacian or physical model, respectively. The quantities s 0 and l are, respectively, a threshold and the sensor tolerance, whereas the nominal maximum value of the artificial viscosity, ε 0 , is computed from the spectral radius of the flux Jacobian and the mesh element size h as

ε 0 = C ε λ max h/(n -1), (9) 
where λ max is the maximum wave speed in the whole domain. Unless explicitly stated otherwise, in the following computations, an automatic calibration algo- 2 In the case an orthonormal polynomial base is adopted (e.g., normalised Legendre polynomials), the inner products in the sensor definition assume the particularly simple form

(ψ, ψ)e = n ∑ i=1 ψ2 i and (ψ -ψ, ψ -ψ)e = ψ2 n , ( 7 
)
where the modes are obtained from nodal values via matrix multiplication with the inverse Vandermonde matrix of the selected polynomial basis [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF].

rithm based on manufactured solutions [START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF][START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF] is adopted to determine optimal values of the shock capturing parameters (s 0 , κ, C ε ).

On non-monotonicity of entropy profile across an inviscid shock

Back in 1949, Morduchow and Libby [START_REF] Morduchow | On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas[END_REF] used an analytic solution for the profile of a weak shock in a viscous, heat-conducting, compressible flow to demonstrate that the equilibrium thermodynamic entropy has a maximum inside the propagating wave. Such overshoot of entropy within a shock layer was then further investigated for inviscid flows using weak solutions of partial differential equations based on distribution theory and integral conservation form of the equations [START_REF] Smoller | Shock waves and reactiondiffusion equations[END_REF][START_REF] Salas | Entropy jump across an inviscid shock wave[END_REF][START_REF] Colombeau | Multiplication of distributions[END_REF][START_REF] Colombeau | Multiplications of distributions in elasticity and hydrodynamics[END_REF].

In the context of the Euler equations and Hugoniot jump conditions [START_REF] Hugoniot | Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits[END_REF],

the underlying idea is that, since the (normalised) entropy s = ln(p/ρ γ ) is defined using two functions (pressure and density) which are discontinuous across the shock, it cannot be defined by a single jump for, in such a case, some information would be unavoidably lost. Along these lines, Salas and Iollo [START_REF] Salas | Entropy jump across an inviscid shock wave[END_REF] have discussed a more adequate form for the entropy function built from two Heaviside functions (Fig. 1)

s(ξ) = s l + (s * -s l )H(ξ) + (s r -s * )H(ξ), (10) 
where ξ is the coordinate in a frame moving with the shock. The subscript 'r' denotes the shocked (compressed) gases and 'l' the gases upstream of the propagating interface, whereas s * is the maximum level of entropy approximated as

s * = ln(p r ) p r p r -1 -1 + γ ln(v r ) v r v r -1 -1 , ( 11 
)
where p denotes the pressure and v = 1/ρ is the specific volume and the left relevant values of p l and v l , without any loss of generality, have been set equal to unity. The above relation provides the value of the theoretical peak of entropy which is expected in the case of a shock in the inviscid limit. Such entropy peak is practically unattainable when the Euler equations are numerically solved because, no matter how accurate is the scheme or how fine is the mesh, a certain amount of numerical dissipation is unavoidable. Such (numerical) departure from the inviscid limit is even more pronounced when an artificial viscosity is adopted in the neighbourhood of shocks and discontinuities to guarantee a sufficient resolution of the solution. Under such circumstances and in the absence of a viscous counterpart of Eq. ( 11), this last can be used to asses the entropy preserving nature of the numerical scheme and the artificial viscosity approach, the most performing ones being those that provide the best approximation of the theoretical entropy profile across the shock. This is a crucial point which, to the authors' knowledge, has not been considered in detail so far in the archival literature. On this regard, however, it is worth noting that non-monotonic profiles in the entropy across one-dimensional shocks were reported in [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF] when using the physical artificial viscosity model with nonzero artificial thermal conductivity κ AV , whereas, this behaviour was lost when κ AV = 0 or in the case the Laplacian viscosity model was used. In view of the present analysis, these two particular choices in dealing with shocks would rise questions concerning their physical consistency in terms of entropy.

It is finally worth pointing out that overheating errors which were observed in [START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF] when performing one-dimensional shock collisions-and for which no remedy could be identified-are indeed, as it will be shown in the next sections, a direct consequence of the use of a Laplacian viscosity model and the resulting error in the entropy across the shocks.

Flow configurations and computational set-up

Five canonical test cases are considered to evaluate the two shock capturing approaches and their physical consistency in term of entropy behaviour: (a) stationary one-dimensional weak shock; (b) the collision of one-dimensional shocks;

(c) the interaction between a two-dimensional strong-vortex and a shock-wave;

(d) the inviscid Taylor-Green vortex; (e) the compressible, decaying, homogeneous, isotropic turbulence and (f) the interaction between a shock and a wavywall. Time integration is performed using a three step explicit Runge-Kutta scheme. The order of accuracy of the SD spatial discretisation varies with the cases. Whenever needed depending on the test cases, the Spectral-Element Dynamic Model (SEDM) for turbulence modelling has been employed [START_REF] Chapelier | A spectral-element dynamic model for the large-eddy simulation of turbulent flows[END_REF]. It is worth noting that this SGS model features a modal turbulence sensor to detect flow under-resolution and locally activate the eddy-viscosity when needed.

Stationary one-dimensional weak shock

The simulation of a weak one-dimensional shock of Ma = 1.1 is here considered. The domain is 0.02 units long, equivalent to approximately 650λ, with λ the mean free path. The initial value of density, pressure and velocities are defined through Rankine-Hugoniot conditions and the system is let evolve toward the expected stationary solution. A very refined, shock-resolving simulation is here considered as reference: a uniform grid of 405 8th-order elements has been used, leading to approximately 90 solutions points located within the shock. For this level of resolution, shock capturing models are not needed. A dynamic behaviour of shear viscosity according to Sutherland's law has been assumed:

µ(T ) = µ 0 T T 0 3/2 T 0 + T S T + T S , (12) 
where µ 0 = 1.827 × 10 -5 kg m -1 s -1 , T S = 120 K and T 0 = 291.15 K. Finally, a Specific heat ratio γ = 1.4 and a Pr = µ 0 c P /κ = 0.71 are assumed. Coarser 8-th order inviscid simulations have been performed on a 45 element grid with the two models active. For this discretization, approximately 8 solutions points are located in the inner part of the shock.

One-dimensional shock collision

Let a unitary long one-dimensional domain be initialised with two identical shocks moving towards each other, initialised respectively at x = 0.2 and x = 0.8. Two Mach numbers, Ma = 5 and Ma = 10 are considered. The domain is discretised in 60 uniformly distributed elements and Euler equations are solved using a 6th-order SD scheme. The initial values of density, pressure and velocity upstream the shocks, defined by the Rankine-Hugoniot conditions, along with the reflected shocks properties are summarised in Table 1.

For all one-dimensional test cases, a slightly higher activation value has been chosen for the physical model in order to make it more sensitive to shock detection and, consequently, more aggressive in damping oscillations. Regarding the Laplacian approach, nominal parameters have been used.

Two-dimensional inviscid strong-vortex/shock-wave interaction

The physical domain is Ω = (0, 2L) × (0, L) and a stationary shock is located at x s = L/2, where L is a reference length scale (unity in the present case).

The inflow Mach number is Ma ∞ = 1.5 and a compressible, isothermal, zerocirculation vortex with external radius b = 0.175L and inner core a = 0.075L is initially centred at (x, y) = (L/4, L/2). The initialisation procedure of velocity, temperature, density and pressure can be found in multiple articles [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF][START_REF] Ellzey | The interaction of a shock with a vortex: shock distortion and the production of acoustic waves[END_REF][START_REF] Guichard | Two-dimensional weak-shock vortex interaction in a mixing zone[END_REF][START_REF] Rault | Shock-vortex interactions at high mach numbers[END_REF],

based on isothermal, isochoric or isentropic conditions. As in [START_REF] Ellzey | The interaction of a shock with a vortex: shock distortion and the production of acoustic waves[END_REF], an isothermal initial condition is prescribed and the vortex Mach number Ma v is set to 0.9 (based on the maximum tangential velocity in the vortex' inner core). Considering a reference frame with the origin in the initial position of the vortex centre, the initial velocity vector field upstream of the shock is obtained as the superposition of a uniform horizontal velocity corresponding to upstream shock conditions and the vortex velocity field, namely, u(r) = u θ (r)ê θ + u ∞ êx , where êθ is a unitary vector in the tangential direction around the centre and u θ is the relevant tangential velocity component. The velocity components then read

u ∞ = Ma ∞ γRT 0 , ( 13 
)
u θ (r) = Ma v γRT 0              r/a for r ≤ a, η 2 r b - b r for a ≤ r ≤ b, 0 for r > b, (14) 
where

η = 2(b/a)/[1 -(b/a) 2 ].
The thermodynamic variables in the vortex zone are evaluated combining the balance of the pressure gradients with the centripetal force and isothermal condition for ideal gases,

dp dr = ρ u 2 θ r , p = ρRT 0 , ( 15 
)
leading to

ln p p ∞ =                γMa 2 v 2 r a 2 + η b a + η 2 ln b a for r ≤ a, γMa 2 v 2 η 2 (r/b) 4 -1 4(r/b) 2 -ln r b for a ≤ r ≤ b, 1 for r > b, (16) 
The spatial domain is subdivided in 256 × 128 uniform quadrilateral elements with a 5th-order SD discretisation. Free-slip and adiabatic walls are imposed on the top and bottom sides of the domain and characteristic-based, non-reflecting boundary conditions are applied on the inflow and outflow [START_REF] Lodato | Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows[END_REF][START_REF] Lodato | Optimal inclusion of transverse effects in the nonreflecting outflow boundary condition[END_REF].

Inviscid Taylor-Green vortex

The Taylor-Green Vortex (TGV) constitutes a well-established test case to study vortex dynamics, turbulent transition, turbulent decay and energy dissipation processes in a three-dimensional setting [START_REF] Taylor | Mechanism of the production of small eddies from large ones[END_REF]. The problem consist of a cubic domain [-Lπ, Lπ] 3 with periodic boundary conditions applied to all faces starting from the smooth initial condition

                               ρ = ρ 0 , u 1 = U 0 sin x L cos y L cos z L , u 2 = -U 0 cos x L sin y L cos z L , u 3 = 0, p = P 0 + ρ 0 U 0 16 cos 2x L + cos 2y L cos 2z L + 2 . ( 17 
)
Unity has been assigned to both U 0 and ρ 0 , the reference velocity and density, respectively, and the initial value of the pressure P 0 has been chosen such that the corresponding initial Mach number is equal to 0.1. For this value of the Mach number, the flow is practically incompressible. The objective of the present simulation is thus to evaluate how dissipative are the two artificial viscosity models discussed in Section 2 when they are applied to an inviscid flow free from shocks. The flow domain is subdivided in 32 3 uniform cubic elements and discretised with a 6th-order SD scheme. The solution obtained without artificial viscosity will serve as reference. In all the simulations, considering the actual resolution of the employed mesh, the SEDM model has been activated due to turbulent nature of the developed flow field in later times of the simulation.

Under-resolved compressible isotropic turbulence

The objective of this test case is to investigate the performance of Laplacian 

where a is the speed of sound and ⟨•⟩ denotes spatial averaging, whereas

u rms,0 = 1 3 ⟨u i u i ⟩ t=0 and λ 0 = ⟨u 1 2 ⟩ ⟨(∂u 1 /∂x 1 ) 2 ⟩ t=0 (19)
are, respectively, the initial root-mean-square velocity fluctuations and the Taylor micro-scale. A power-law is assumed for the dynamic viscosity,

µ = µ 0 (T /T 0 ) 3/4 .
It's easy to show that the initial condition is such that λ 0 = 1/k M . The domain has been discretised using 16 3 hexahedra elements with a 6-th order polynomial approximation. Considering state-of-the-art LES of compressible isotropic turbulence [START_REF] Fernandez | A physics-based shock capturing method for unsteady laminar and turbulent flows[END_REF] [48] [START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for les of low speed flows[END_REF] this resolution gives a purposely slightly under-resolved simulation in order to enhance the impact of numerical dissipation, this last including the dissipation coming from the numerical discretization, the artificial It shall be noticed that this resolution corresponds, in terms of DoF, to the one used in [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF] for 3rd-order computation of the same test case. Results have been compared with a DNS on 256 3 DoF [START_REF] Hillewaert | Assessment of high-order DG methods for LES of compressible flows[END_REF]. According to [START_REF] Hillewaert | Assessment of high-order DG methods for LES of compressible flows[END_REF], higher resolution data (384 3 DoF) have been employed to evaluate kinetic energy contributions.

The simulation is performed from t = 0 to t = 4τ 0 , with τ 0 = λ 0 /u rms,0 .

Shock/wavy-wall interaction

The interaction between a shock wave and a sinusoidal wavy wall is a more challenging test case, simultaneously featuring complex shock reflections and a background low-Mach number flow with very specific small scale patterns [START_REF] Lodato | Numerical study of smoothly perturbed shocks in the Newtonian limit[END_REF][START_REF] Denet | Model equation for the dynamics of wrinkled shockwaves: comparison with dns and experiments[END_REF][START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF].

The problem has been chosen to match the experiment reported in [START_REF] Denet | Model equation for the dynamics of wrinkled shockwaves: comparison with dns and experiments[END_REF]. In this experiment, a vertical planar shock propagating at Mach number 1.5 in air is reflected on a sinusoidal wall with amplitude 1.0 mm and wavelength 2.0 cm. The Navier-Stokes equations are integrated over a computational domain 10 cm long and 2 cm high with 600 × 140 unstructured quadrilateral elements. A 5thorder SD scheme is adopted and the total number of degrees of freedom is 2.1 × 10 6 . The left wall is characterised by a no-slip condition while top and bottom boundaries are set as periodic. The initial setup is schematically represented in Fig. 2. The typical properties for air have been used in the simulation, hence the specific heat ratio γ is set equal to 1.4, while the Prandtl number is set equal to 0.72. The dynamic viscosity is modelled using a Sutherland's law, namely,

µ(T ) = µ 0 T T 0 3/2 T 0 + T S T + T S , ( 20 
)
where µ 0 = 1.827 × 10 -5 kg m -1 s -1 , T S = 120 K and T 0 = 291.15 K. A second, more challenging, situation has been considered where the incident shock Mach number is increased up to 5.0 and the specific heat ratio γ is reduced down to 1.15, thus approaching the Newtonian limit [START_REF] Lodato | Numerical study of smoothly perturbed shocks in the Newtonian limit[END_REF]. The other physical parameters are the same as in the Mach 1.5 case. All the main computational and physical parameters are listed in Table 2 for convenience.

Results and discussion

Stationary one-dimensional weak shock

This particular test case is focused on the shock-shape across a viscous weak shock. It is well-known that a non-monotonic behaviour should be observed whenever a viscous-thermal conductive fluid is considered [START_REF] Morduchow | On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas[END_REF]. Moreover, even if this property can be observed for strong shocks as well, a weak shock allows to easily run shock-resolved simulations, which do not need any shock capturing procedure. Accordingly, a highly resolved simulation of a weak shock has been performed and considered here as a reference. In order to evaluate the capability of the two shock capturing models to describe the physical properties of the shock, two coarser inviscid simulations have been tested. An example of coarse grid solution is shown in Fig. 3, where approximately 8 solution points are contained within the shock. The density and the entropy profiles from the coarse grid computations are compared to the reference solution in Fig. 4 From the observation of the reference solution, the non-monotonic behaviour of the entropy is clearly evident, with a very strong overshoot located almost exactly at x/λ = 0; cf. Fig. 4 s r -s l . In particular, s max -s l ≈ 23∆s, which is slightly higher than the expected value given by Eq. ( 11), namely, s max -s l ≈ 15∆s. This is not really surprising: the presence of thermal conductivity gives an additional increase of entropy within the shock, which adds to the inviscid overshoot. Regarding the two coarser simulations, non-monotonicity is preserved by the physical model while the Laplacian AV gives an almost flat profile. Moreover, concerning the Laplacian approach, the small, persisting, numerical oscillations close to the shock force the entropy to take values smaller than s l . In other words, the use of the Laplacian model leads, for this test case, to a local decrease of entropy, which is clearly unphysical. The Physical artificial viscosity gives the expected behaviour of entropy across the shock, even if it is not able to reach the exact peak of entropy production.

One-dimensional shock collision

The present analysis focuses mainly on three aspects which are strictly connected to the accuracy and reliability of the shock capturing scheme: (a) the correct reproduction of the theoretically expected behaviour of entropy across the shock front, (b) the presence of spurious post-collision oscillations and (c) the onset of overheating errors in the solution and their connection to entropy preservation.

In Fig. 5(a), the density field is shown before collision. No particular difference is present between the Laplacian and physical models, which both smooth adequately the shocks. Looking at the normalised entropy profile in Fig. 5(b), however, more marked differences between the two approaches appear. Using the physical model, the behaviour of the entropy across the shock is non- indicates the theoretical maximum in the inviscid limit (cf. Eq. ( 11)).

monotonic, whereas the Laplacian artificial viscosity produces a simple entropy jump. Hence, the expected non-monotonic theoretical profile of entropy is preserved by the physical model due to its capability to secure the proper physical coupling between the viscous work, the thermal dissipation and the entropy itself. In Fig. 5(b) the entropy jump is compared with the theoretical value obtained from the inviscid Eq. [START_REF] Vonneumann | A method for the numerical calculation of hydrodynamic shocks[END_REF]. The purely numerical nature of the Laplacian approach becomes evident, with the lack of knowledge on the energy transfers within the shock (without mentioning the artificial diffusion of density).

Turning the attention to the behaviour of the two models after the shock collide, the relevant density and entropy profiles are depicted in Figs. 6(a) and 6(b), respectively. At the location of the impact between the shocks, another notable difference between physical and Laplacian viscosities is visible. In particular, when the Laplacian approach is adopted, an unphysical decrease of density is generated. This phenomena is commonly known as overheating error, which motivated multiple studies [START_REF] Stiriba | A numerical study of postshock oscillations in slowly moving shock waves[END_REF][START_REF] Liou | Unresolved problems by shock capturing: Taming the overheating problem[END_REF][START_REF] Liou | Open problems in numerical fluxes: proposed resolutions[END_REF][START_REF] Rider | Revisiting wall heating[END_REF][START_REF] Liou | Why is the overheating problem difficult: The role of entropy[END_REF][START_REF] Donat | Capturing shock reflections: an improved ux formula[END_REF]. It was concluded that the onset of overheating errors is directly related to the numerical scheme and its inability to preserve exactly the entropy convection at the moment of collision. The consequent increase in entropy would then be the main responsible of these spurious effects. This is readily confirmed by looking at Fig. 6(b), where the two shock capturing approaches report very different entropy behaviours.

As already mentioned, the same type of overheating errors were observed in [START_REF] Lodato | Characteristic modal shock detection for discontinuous finite element methods[END_REF] for the same test case when using the Laplacian model. However, overheating errors can be observed in multiple other test cases, even in absence of shocks, such as in the case, for example, of the receding flow [START_REF] Liou | Open problems in numerical fluxes: proposed resolutions[END_REF][START_REF] Liou | Why is the overheating problem difficult: The role of entropy[END_REF]. This phenomenon is not directly related to the shock capturing procedure unless, of course, this last impacts, negatively, entropy conservation. On the contrary, a wise choice of artificial viscosity can lead to the mitigation, or even to the complete removal, of overheating errors. It is clear from Fig. 6(b) that the physical approach appears as a better option, simply because the physical model uses an artificial thermal conductivity related to the bulk viscosity, which features an elliptic/diffusive nature. Therefore, every temperature gradient (in the absence of any forcing term) tends to be dissipated due to thermal conduction.

The damping of the overheating error is quantitatively evaluated in Fig. 7,

where the time history of the density and the entropy at two different locations (x = 0.5 and x = 0.58) is shown. These plots provide additional evidence of differences in the value of the density and the entropy at the point of impact (x = 0.5) and away from it (x = 0.58). A gap between the two lines can be clearly noticed when using the Laplacian model: under-estimation of the density and over-estimation of the entropy. The physical model, on the other hand, does not produce overheating errors and no difference is visible between the relevant values recorded at x = 0.5 and x = 0.58.

Finally, a more challenging situation is considered increasing the Mach number up to 10. Results are reported in Fig. 8, where the density and entropy profiles after collision are shown. Overall, no major differences between the Ma = 5

and the Ma = 10 test cases are found.

Two-dimensional inviscid strong-vortex/shock-wave interaction

In the shock-vortex interaction, particular attention will be paid on the locality of the artificial viscosity and on the low dissipative character of the physical model. To evaluate the accuracy of the shock capturing procedure, snapshots of the density field are shown in Fig. 10(a), right after the vortex traverses the shock, and in Fig. 10(b), when the vortex splits into two smaller vortices as a result of its interaction with the shock front.

After the interaction, complex acoustic structures arise. Some interesting after interaction and at the moment the vortex breaks down. As it can be seen, the artificial bulk viscosity is zero almost everywhere, except in the shock region. This is, of course, of paramount importance to avoid the injection of AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. ( 11)).

unnecessary dissipation in the system away from the shock.

Finally, as already mentioned in the mono-dimensional test case, entropy shocks should be non-monotonic. This characteristic property is clearly satisfied by the physical model in this two-dimensional case too (see Fig. 13).

Inviscid Taylor-Green Vortex

Despite the rather idealized and simple initial flow field, the TGV problem contains many different interesting features of turbulence. As the time advances, the vortex stretching process leads to a natural transition to isotropic turbulence. Due to the absence of physical viscosity (inviscid flow), the energy of the fluctuating field cascades to smaller and smaller scales without any viscous dissipation, making it a stringent test case for calibrating artificial numerical dissipation. Different phases of turbulence transition and development can be recognised. Before reaching the characteristic time t ≈ 4L/U 0 , the flow is laminar and it is fully resolved by the mesh. After a transitional period, at t ≈ 7L/U 0 the vortex stretching process breaks down and sub-grid scales mechanisms start to affect the solution. 

L 2 ω i ω i /U 2 0 , the temperature variance c 2 v ⟨T ′ T ′ ⟩/U 2 0
(where c v is the specific heat at constant volume) and the dilatation variance L 2 ⟨θ ′ θ ′ ⟩/U 2 0 with θ = ∂u i /∂x i . Note that the prime denotes deviations from the mean value over the whole domain, namely, given any generic quantity ϕ, ϕ ′ = ϕ -⟨ϕ⟩.

In this inviscid flow, the mean kinetic energy should stay constant. As it can be seen in Fig. 14(a), this is observed when the physical artificial viscosity is used. The Laplacian model, on the other hand, is found to be too dissipative and promotes a rapid decay of the kinetic energy. Similarly, applying the Laplacian artificial viscosity, the mean-square vorticity is not increasing as it should in this inviscid flow (cf. Fig. 14(b)), whereas the physical artificial viscosity allows for the vorticity to raise as expected. The temperature variance also suffers from a too rapid decay with the Laplacian formulation, which is not the case with the physical formulation (Fig. 15(a)). Turning to the compressible character of the flow (cf. Fig. 15(b)), the Laplacian form of the artificial viscosity does not allow for the variance of dilatation to grow in a significant manner. Because of the bulk character of the physical model for the artificial viscosity, part of this variance is unavoidably damped; nonetheless, a significant growth is yet captured. 

Under-resolved compressible isotropic turbulence

To further progress on the evaluation of artificial viscosity in the presence of both turbulence and compressibility effects, results with the compressible isotropic turbulent test case are now examined. The unstable initial configuration leads quickly to the development of strong vortical, entropy and acoustic modes in the whole domain. Weak shock waves, commonly known as eddy shocklets [START_REF] Zeman | Dilatation dissipation: The concept and application in modeling compressible mixing layers[END_REF], appear spontaneously from the turbulent motions as well. An example of a shocklet is shown in Fig. 16, where the relevant profiles of dilatation, density and Mach number are plotted.

Simulations performed without artificial viscosity and using the Laplacian or physical models are compared to DNS results. The relevant results are reported in It shall be noted that the simulation performed without artificial viscosity, due to the accumulation of kinetic energy at the unresolved scales, became unstable at a normalised time of about 0.56. This notwithstanding, the relevant (partial) curves are retained for reference in all plots. Concerning the SEDM model, it is worth pointing out that, due to the actual order of accuracy of the employed discretization and due to the relevant enhanced resolution of the SD scheme, the SEDM turbulence sensor seldom detected any appreciable under-resolution. As a consequence, negligible amounts of eddy-viscosity were injected throughout the computation. This indicates that the numerical dissi- pation from the spatial discretization operators sufficiently describes the energy transfers between resolved and under-resolved scales.

Using the physical artificial viscosity, the time evolution of the normalised mean kinetic energy (Fig. 17(a)) is in perfect agreement with the reference DNS [START_REF] Hillewaert | Assessment of high-order DG methods for LES of compressible flows[END_REF], while the Laplacian form overestimates the dissipation, which confirms once again the over-dissipative character of the Laplacian model. The mean-square vorticity is also well reproduced with the physical artificial viscosity (dashed line in Fig. 17(b)), while the Laplacian form misses the vorticity response and returns a constant decay (dotted line in Fig. 17(b)).

Turning the attention to quantities more related to compressibility effects, such as the variance of temperature (Fig. 17 which suggests a slight overestimation of thermal dissipation. Unfortunately, the bulk viscosity is known to damp acoustic modes [START_REF] Mani | Suitability of artificial bulk viscosity for largeeddy simulation of turbulent flows with shocks[END_REF] and this is clearly visible in Fig. 17(d). The use of divergence-based sensors should improve the results [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF][START_REF] Mani | Suitability of artificial bulk viscosity for largeeddy simulation of turbulent flows with shocks[END_REF].

The kinetic energy balance (under the periodic boundary condition applied here) can be written as where the dissipation term ε contains the three contributions stemming from the sub-grid scale model, the artificial viscosity and the numerical dissipation:

- d dt 1 2 ρu i u i dV Variation of kinetic energy = 2µS ij S ij - 2 3 µ ∂u j ∂x j 2 dV Viscous -p ∂u j ∂x j dV Dilatation +ε, (21) 
ε = ε SGS + ε AV + ε num . ( 22 
)
Fig. 18(a) shows the viscous dissipation from Eq. ( 21), which is well reproduced by the physical artificial viscosity due to the small damping of vortical modes, which is not the case when using the Laplacian form. As far as the dilatation term is concerned (see Fig. 18(b)), this is not perfectly reproduced due to the use of the bulk viscosity. Even if acoustic damping using bulk viscosity is clearly visible and theoretically known, it is worth noticing that using a Laplacian approach gives no advantage at all for this test case.

In Fig. 19, the additional spurious dissipation is analysed. The difference in energy, which is artificially dissipated in the system between Laplacian and physical approach, becomes here clearly evident and further confirms the lower dissipation overall promoted by the use of the physical model. Concerning the influence of the shock capturing parameters, these can be changed within reasonable limits, yet the main results of our discussion remain unchanged: the Laplacian viscosity tends to be more dissipative overall and cannot preserve the expected entropy behaviour. Finally it should be pointed out that similar results have been shown in [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF], where some drawbacks when using an artificial bulk viscosity were pointed out. The presence of a bulk viscosity implies a certain amount of dissipation on dilatational modes. Such dissipation is more or less strong depending on the specific parameters chosen, as clearly confirmed in Fig. 17 

Shock/wavy-wall interaction in the Newtonian limit

The interaction between a shock wave and a wavy-wall involves a rather broad range of scales: the complex flow patterns arising in proximity of the wall are characterised by velocities many order of magnitudes smaller than the macroscopic shock speed. This wide spectrum of scales implies challenging difficulties in the experimental detection of such structures. On the other hand, numerical experiments are computationally very expensive in order to get a sufficient level of detail. A more detailed analysis on the peculiar physical features of this particular test case at an initial Mach number of 1.5, based on the companion experiment by Biamino [START_REF] Denet | Model equation for the dynamics of wrinkled shockwaves: comparison with dns and experiments[END_REF], can be found in [START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF]. Other similar computations at higher Mach numbers (3.0 and 5.0) are reported in [START_REF] Lodato | Numerical study of smoothly perturbed shocks in the Newtonian limit[END_REF]. The present study focuses on the 1.5 and 5.0 Mach number tests only. Compared to the results reported in [START_REF] Lodato | Numerical study of smoothly perturbed shocks in the Newtonian limit[END_REF][START_REF] Lodato | Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns[END_REF] the present simulation has been performed with the physical shock capturing procedure instead of the Laplacian based approach.

A first validation for the lower Mach number case is reported in Fig. 20, where experimental Schlieren photography images are compared with numerical results at times 120µs, 200µs and 280µs giving a qualitatively good agreement with respect to experimental data. Clearly, even the physical model for the shock capturing procedure is able to stabilise the numerical simulation without damaging the complex pattern of reflections arising from the collision with the wavy wall. As in the one-dimensional case no particular difference can be noticed between the two models: they both represent accurately shocks reflection and collision. The only characteristic feature preserved by the physical approach is the shape of entropy across the shocks both before the impact, at t = 0s (Fig. 21) and after, at t = 120 µs (Fig. 22).

A more challenging situation as been studied as well, considering an incident Mach number Ma i = 5.0 and a specific heat ratio γ = 1.15. These choices lead to stronger reflected shocks and to even more complex patterns into the shocked gas region. In these extreme conditions the divergence switch has been turned off while instead all the other AV parameters are the same as in onedimensional tests. It is worth mentioning that the additional divergence check affects only partially the results: it implies less dilatational modes dissipation but other quantities are only slightly affected. In this particular test case, more marked differences between Laplacian and physical approaches can be noticed.

First of all, in Fig. 23 it is evident the tendency of the Laplacian approach to englobe many smaller vorticity structures and over-smooth the velocity field while instead the physical artificial viscosity gives sharper profiles. Furthermore, higher values of vorticity have been computed using the physical approach in agreement with previous tests results, indicating a different influence on vortical modes. More interesting, is the peculiar loss of symmetry in the shocked gas: in the very first instants after the impact the boundary layer near the wall gets unstable and a strong burst of vorticity is injected in the far-wall region (Fig. 24).

This phenomenon propagates in time affecting larger and larger regions of the domain. Both numerical and laboratory experiments of this particular test case are very rare so the detailed physics is still not completely known. In this sense, it is still premature to say if this phenomenon is just a numerical artefact or rather a physically realistic hydrodynamic instability of the flow. On the other hand, results exposed in this paper suggest a certain level of physical reliability regarding the proposed artificial viscosity procedure. 11)).

Conclusions

Shock capturing with artificial bulk viscosity procedures have been investigated coupled with characteristic-based discontinuities sensors. The main results obtained in [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF] are reproduced. Particular attention has been focused on the shape of entropy across a shock wave in one-dimensional and twodimensional tests. Even in the cases where the Laplacian approach seems to describe properly the flow (in a qualitative way), the non-monotonicity of entropy shock is lost while instead it is not affected using the physical shock capturing model. Main issue about the present model is the over-dissipation of acoustic modes which is mainly related to the sensor choice. Multiple articles state that a divergence-based sensor should be developed in order to avoid such damping. Nevertheless, even if Fernandez et al. [START_REF] Fernandez | A physics-based shock capturing method for large-eddy simulation[END_REF] used a divergence-based sensor [START_REF] Ducros | Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low mach number[END_REF], similar deviations from DNS data in the description of acoustic modes are still present. In this sense the objective of the authors is the devel- 
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 1 Figure 1: Sketch of the entropy profile across an inviscid shock layer.

  and physical shock capturing models when shocks and turbulence coexist and both the SGS model and the shock capturing viscosity are activated. The computational domain consists in a periodic cube Ω = [-Lπ, Lπ] 3 containing decaying homogeneous and isotropic turbulence. Pressure, temperature and density fields are initially constant and the velocity is solenoidal with a turbulent kinetic energy spectrumE(k) ∼ k 4 exp[-2(k/k M ) 2 ],where k is the wavenumber and k M corresponds to the most energetic wavenumber (in this case k M = 4/L). The initial turbulent Mach number and Taylor-scale Reynolds number are evaluated on the initial flow filed as: Ma t,0 = u rms,0 √ 3 ⟨a⟩ = 0.6, and Re λ,0 = ⟨ρ⟩u rms,0 λ 0 ⟨µ⟩ = 100,

Figure 2 :

 2 Figure 2: Geometrical set-up and initial conditions for shock/wavy-wall interaction.

Figure 3 :

 3 Figure 3: Example of coarse grid with ≈ 8 solution points in the shock region. The x-axis is normalized with respect to the mean free path λ. Dashed lines indicate element interfaces; symbols indicate the location of the solution points.

Figure 4 :

 4 Figure 4: Density and entropy shock profiles: solid line, reference solution; dashed line, physical AV model; dotted line, Laplacian AV model; the black dot on the entropy profile

Figure 5 :

 5 Figure 5: Ma = 5 shocks before collision: solid line, physical artificial viscosity model; dotted line, Laplacian AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. (11)).

Figure 6 :

 6 Figure 6: Ma = 5 shocks after collision: solid line, physical AV model; dotted line, Laplacian AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. (11)).

Figure 7 :

 7 Figure 7: Mach = 5 shock collision. Density (a, b) and entropy (c, d) time history profiles. Solid line, x = 0.5; dotted line x = 0.58

Figure 8 :

 8 Figure 8: Ma = 10 shocks after collision: solid line, physical AV model; dotted line, Laplacian
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 149 Figs. 14 and 15 show the time evolutions of four main quantities, namely

  (a) t 1 = 0.085s (b) t 2 = 0.245s

Figure 10 :

 10 Figure 10: Shock-vortex interaction. Density field.

Figure 11 :

 11 Figure 11: Shock-vortex interaction. Density field detail at t 2 = 0.245s.

(a) t 1

 1 = 0.085s (b) t 2 = 0.245s

Figure 12 :

 12 Figure 12: Shock-vortex interaction. Physical artificial viscosity. Image resolution is low due to the lack of smoothness of the artificial viscosity itself (which is only linear).

Figure 13 :

 13 Figure 13: Shock-vortex interaction. Entropy field at t 1 = 0.085s (see Fig. 10(a) for vortex position) along the line y=0.4L. Solid line, physical AV model; dotted line, Laplacian AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. (11)).

  (c)) and the variance of dilatation (Fig.17

Figure 15 :

 15 Figure 14: Inviscid Taylor-Green Vortex. Kinetic energy and vorticity.

Figure 16 :

 16 Figure 16: Example of shocklet occurring at normalised time t ≈ 0.557 at (x, y) ≈ (4.3, π) plotted along z direction.

Figure 17 :

 17 Figure 17: Under-resolved isotropic compressible turbulence.

  Fig.17(d). Nonetheless, whenever moderately compressible turbulent flows are considered, the use of a bulk viscosity over a shear viscosity shall be preferred, as the latter could lead to an excessive dissipation on vorticity modes, affecting energy transfers of turbulence. Moreover, the coexistence of a shear artificial viscosity and an eddy-viscosity SGS model could lead to unpredictable outcomes in both shock stabilization and turbulence modelling.

Figure 18 :

 18 Figure 18: Under-resolved isotropic compressible turbulence.

Figure 19 :

 19 Figure 19: Under-resolved isotropic compressible turbulence. Spurious dissipation (in absolute value scaled by -Ėk ).

Figure 20 :

 20 Figure 20: Qualitative comparison between experimental (left) and numerical Schileren using physical AV model (right) at times 120µs, 200µs and 280µs (up to bottom).

Figure 21 :

 21 Figure 21: Entropy field at t = 0.0s along y=0. Solid line, physical AV model; dotted line, Laplacian AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. (11)).

Figure 22 :

 22 Figure 22: Entropy field at t = 120µs along y=0. Solid line, physical AV model; dotted line, Laplacian AV model; the black dot on the entropy profile indicates the theoretical maximum in the inviscid limit (cf. Eq. (11)).

  opment of finer sensors able to describe in a more accurate way the presence of shocks and smooth them properly. The ultimate goal would be the construction of a generalised LES model for compressible flows capable of dealing with both turbulence under-resolution and discontinuities automatically.els

  

Table 1 :

 1 One-dimensional shock collision (all the quantities are normalised with respect to the initial density and pressure of the fluid at rest between the initial shocks).

		Ma	5	10
		ρ	5.000	5.714
	Incident	|u|	4.733	9.762
		p	29.000 116.500
		Ma r	2.408	2.579
	Reflected	ρ r	16.110	19.550
		|u s |	5.916	10.946
		p r	191.400 884.500

Table 2 :

 2 

	Domain size	L × H	10.0 × 2.0	cm 2
	Number of elements	N x × N y	600 × 140	-
	Discretisation order	n	5		-
	Degrees of freedom	DoF	2.1 × 10 6	-
	Wavy-wall amplitude	A ww	1.0	mm
	Wavy-wall wavelength	λ ww	2.0	cm
	Specific heat ratio	γ	1.4	1.15	-
	Incident shock Mach	Ma i	1.5	5.0	-
	Incident shock speed	D i	-514.0	-1553.0	m s -1
	Reflected shock Mach	Ma i	1.43	3.16	-
	Incident shock speed	D r	324.9	271.5	m s -1
		ρ 1	1.208	kg m -3
	Initial left state	u 1	0.0	m s -1
		p 1	101.325	kPa
		ρ 2	2.25	11.29	kg m -3
	Initial right state	u 2	-237.96 -1386.88	m s -1
		p 2	249.091 2703.344	kPa

(b)

. It can be noted how the relative jump in the entropy overshoot is extremely large compared to the shock-generated entropy, ∆s = Physical and computational set-up of shock wavy-wall interaction. Velocities are indicated on the laboratory reference frame.
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