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A non-controllability result for the half-heat equation on
the whole line based on the prolate spheroidal wave

functions and its application to the Grushin equation

Pierre Lissy∗ †

February 1, 2020

Abstract

In this article, we revisit a result by A. Koenig concerning the non-controllability of the
half-heat equation posed on R, with a control domain that is a measurable set whose exterior
contains an interval. The main novelty of the present article is to disprove the corresponding
observability inequality by using as an initial condition a family of prolate spheroidal wave
function (PSWF) translated in the Fourier space, associated to a parameter c that goes to
∞. The proof is essentially based on the dual nature of the PSWF together with direct
computations, showing that the solution “does not spread out” too much during time, with
respect to the parameter c. As a consequence, we obtain a new non-controllability result on
the Grushin equation posed on R× R.

Keyworlds: Controllability, observability, fractional parabolic equations, prolate spheroidal
wave functions.

MSC 2010 Classification: 93B05, 93B07, 35R11, 33E10.

1 Introduction
Let T > 0, and let ω be a mesurable subset of R, such that ω 6= R (which means that R \ ω

contains at least a nonempty interval). We are interested in the following control problem, that
we will call half-heat equation with distributed control:{

∂ty (t, x) + (−∆)
1
2 y (t, x) = 1ωv(t, x) in (0, T )× R,
y (0, x) = y0 (x) in R.

(1)

The operator (−∆)
1
2 is defined as a Fourier multiplier: for any h ∈ H1(R) and any ξ ∈ R, we have

̂
(−∆)

1
2 h(ξ) = |ξ|ĥ(ξ).

Here and in what follows, for h ∈ L2(R), ĥ is the Fourier transform of h given by

ĥ(ξ) =

∫
R
e−ixξf(x)dx.
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Note that (−∆)
1
2 can be also defined equivalently (and also in many other ways, see e.g. [26]) as

a singular integral operator by the following formula: for any h ∈ H1(R),

(−∆)
1
2 (h) =

1

π

∫
R

h(x)− h(y)

|x− y|2
dy.

It is well-known that as soon as v ∈ L2((0, T )×R) and y0 ∈ L2 (R), there exists a unique solution
y to (1) verifying moreover y ∈ C0([0, T ], L2(R)), and there exists C(T ) > 0 such that for any
v ∈ L2((0, T )× R) and any y0 ∈ L2 (R), we have

||y||C0([0,T ],L2(R)) 6 C(T )
(
||y0||L2(R) + ||v||L2((0,T )×R)

)
(see e.g. [15, Theorem 2.37]). Our main result is the following.

Theorem 1.1 System (1) is not null-controllable for no time T > 0, in the following sense:
for any T > 0, there exists at least one initial condition y0 ∈ L2(R) such that there exists no
v ∈ L2((0, T )× R) for which the solution y of (1) verifies y(T ) = 0.

Our second result concerns the following Grushin equation on R2. We consider Ω = R × ω. We
are interested in the following Grushin equation, controlled on Ω:{

∂tf (t, x, y)− ∂2
xxf(t, x, y)− x2∂2

yyf(t, x, y) = 1Ω(t, x, y)g(t, x, y) in (0, T )× R2,

f (0, x, y) = f0 (x, y) in R2.
(2)

As for the previous equation, it is easy to prove that for g ∈ L2((0, T ) × R2) and f0 ∈ L2
(
R2
)
,

there exists a unique solution f to (1) verifying moreover f ∈ C0([0, T ], L2(R2)), and there exists
C(T ) > 0 such that for any g ∈ L2((0, T ), L2(R2)) and any f0 ∈ L2

(
R2
)
, we have

||f ||C0([0,T ],L2(R)) 6 C(T )
(
||f0||L2(R2) + ||g||L2((0,T )×R2)

)
.

Our second main result is the following.

Theorem 1.2 System (2) is not null-controllable for no time T > 0.

1.1 Comparison with the existing literature
Controllability properties of fractional heat equations have been an increasing subject of inter-

est these last years. The most well-understood case is the fractional heat equation on a bounded
interval of R and scalar control, for the so-called spectral Laplace operator (i.e. obtained by
functional calculus from the decomposition of the Dirichlet-Laplace operator in its basis of eigen-
functions). The framework of a scalar control encompasses most of the 1D situations where we
have either a boundary control, or a distributed control that is imposed to be with separated vari-
ables, i.e. under the form u(t, x) = v(t)f(x), where f(x) is a fixed profile (with some conditions
on its support and the behavior of its Fourier coefficients), and v(t) is a one-dimensional control
living for example in a L2-space. In this context, null-controllability turns out to be essentially
equivalent to the construction of appropriate bi-orthogonal functions to a family of exponential
and strongly relies on the applications of the generalized Müntz theorem given in [47] (see also [1]
and [43, Appendix]). To be more precise, the first positive result for 1D fractional heat equations
(of exponent α > 1/2) on a bounded interval with scalar control was provided in [19] thanks to
the celebrated moment method (see also [11] for a close result with a definition of the fractional
Laplace operator similar to the one used in the present article). Precise estimates on the cost of
controllability in this case have been obtained in [43, 44, 35, 36]. Negative results in the case of
exponents α 6 1/2 have been obtained in [18] and made more precise in [40]. We also mention
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[43] for Neumann boundary conditions instead of Dirichlet boundary conditions. See also [43,
Appendix] for some extensions in the case where the control belongs to a finite-dimensional space.

The multi-dimensional setting has been less explored for fractional heat equations, even if the
case of the usual heat equation on a bounded domain of Rn or on a smooth compact Riemannian
manifold with or without boundary has been known since the seminal works [33] and [23]. Positive
results for distributed control on compact manifolds for exponents α > 1/2 are given in [43], with
precise estimates on the cost of controllability.

The case of unbounded domains is also not well-understood for the moment. In [43], a positive
result is given for exponents α > 1/2 when the control set is the exterior of a compact set. For the
usual heat equation, related works are also [41] and [42], for some counterexamples on the half-line
and the half-space, with boundary controls. Let us mention that for the heat equation on Rn,
the optimal controllability results have been only recently obtained in [53] and [17], the main tool
being the Logvinenko-Sereda uncertainty principle proved in [38] (see also [24]) and the use of the
Lebeau-Robbiano strategy (see [33] and [34]). The only known negative results for α < 1/2 on Rn
(n ∈ N∗) are given in [29]. An extension to the half-heat equation (1) is provided in [28, Chapter
2] (note that in the two previous references, a little bit more general model is studied here, the
“rotated fractional heat equations”). The proof of [28, Chapter 2] is based on the study of some
inequalities for precise classes of holomorphic functions, but turns out to give a less precise result
than ours. Notably, it cannot be applied to the Grushin operator.

Note that proving negative controllability results for fractional heat equations and distributed
control is much more difficult than the case of scalar input controls. For instance, for equation
(1), at almost each time t ∈ [0, T ], the control lives in the infinite-dimensional space L2(ω), hence,
there is no reason that we can restrict to a scalar (or finite-dimensional) input control as one
could think for positive controllability results. Notably, the application of the generalized Müntz
Theorem is not enough to deduce negative controllability results.

On the other hand, controllability properties of evolution equations involving hypoelliptic
operators have recently become an active field of study (see [6, 7, 8, 9, 10, 32] for hypoelliptic
diffusions different that the Grushin ones, which will be discussed into details later on), due to
the specific difficulties arising in this context, namely geometric conditions on the control region
together with the appearance of minimal times of controllability. One simple example (but of
interest) of such equations is the Grushin equation, that has been widely studied in the literature
but is still not completely understood. The example of the Grushin plane can be seen as a first
step to study the controllability properties of more general heat equations on singular Riemannian
manifolds, which explains the interest of understanding deeply this case. Since the seminal work
[2], some improvements have been obtained in [4, 5, 27, 16]. Notably, for the Grushin equation
posed on (−1, 1)× (0, 1), the situation is the following:

— If the control set is a vertical strip that does not touch the singularity {x = 0}, control-
lability holds only in large time. The minimal control time can be exactly characterized
and depends on the distance between the vertical strip and the singularity. Notably, if
the vertical strip touches the singularity, we have controllability in arbitrary small time
([2, 4, 5]).

— On the contrary, if the control set is the exterior of a horizontal strip, we never have null
controllability ([27]).

— To finish, if the control regions is the neighbourhood of a curve coming from the “bottom”
of (−1, 1) × (0, 1) and going to the top of (−1, 1) × (0, 1), we also have a result of null-
controllabiltiy in sufficiently large time ([16]).

For some generalizations in higher dimension, see [3]. See also [45, 13] for a study of the Grushin
operator with a singular potential, and [37] for generalizations in the case of measurable sets
of controls. Remark that most of the above results concern controllability regions that have a
rectangular structure. This is due to the fact that one of the main ingredients of the results
described above is the use of Fourier series in one direction in order to reduce the problem to
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the study of a family of one-dimensional PDEs with a parameter (the Fourier coefficient). Trying
to generalize the above results to other geometrical situations (general control domain, global
geometry that is not cartesian) seems to be a very difficult challenge. Note that some of the above
results can be extended to the case (−1 − 1) × T, R × T or R × (0, 1) (see notably [28, Chapter
2]). However, to our knowledge, the case where the variable y belongs to the whole space R has
not been investigated so far. This is one of the motivations of the present work.

We also mention [14, 20, 21, 39] for other examples of control problems of parabolic type with
interior degeneracy in one space dimension.

Concerning the PSWF, since the seminal works [49, 30, 31, 50], they have been widely studied
from a theoretical and numerical point of view. They also turned out to have many applications,
notably in sampling and signal or image processing. For more explanations on the PSWF and
their applications, we refer to the surveys [51, 52], the books [46, 25] and the references therein.
However, as far as the author knows, this is the first time that they are used in the context of
controllability properties of PDEs.

1.2 Heuristic and outline of the paper
Here, our goal is to give a different proof of the results given in [28, Chapter 2], relying on

an explicit construction of a family of counter-examples given by the PSWF. Another advantage
of our technique is that it enables to give a corresponding result on the Grushin equation on
R × R, and it is more likely to be extendable in the multi-dimensional case or on more general
non-compact manifolds (see our concluding Section 4).

More precisely, we use the first PSWF as initial condition in order to disprove some observabil-
ity inequality for the free half-heat equation (15). Our approach seems quite natural: as we will
see, the first PSWF are bandlimited functions that saturate the Logvinenko-Sereda uncertainty
principle outside of the interval (−1, 1). Notably, they strongly concentrate in (−1, 1), and they
become more and more concentrated (at an exponential rate) as soon as the band-limit increases.
Hence, they are very natural candidates in order to disprove some observability inequality when the
observation is outside of (−1, 1). Of course, because of the dissipativity of the half-heat equation,
one cannot expect that the associated solution to the free half-heat equation keeps the same con-
centration properties. However, it can be proved (and this is the main point of the present study)
that during time, the associated solution still remains “quite concentrated”. This will enable us to
conclude that the observation on (0, T )× ω will be “small” by comparaison to the whole L2-norm
of the associated solution at time T . The extension to the Grushin plane is quite straightforward,
using the particular form of our control set ω and an appropriate Fourier decomposition.

The paper is organised as follows. In Section 2.1, we recall some known properties of the
PSWF that we will need. In Section 2.2, we reduce the problem to the disproof of an adequate
observability on a dual problem. In Section 2.3, we give some properties of the particular family
of solutions of the adjoint problem we will consider. Section 2.4 is the core of the paper: we give
two main Lemmas 2.5 and 2.6 that express the fact that our family of solutions, which is very well
concentrated at initial time, does not “spread out” too much during time. We can then conclude to
the proof of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2 (which will mainly be
a consequence of the already proved estimates in Section 2). In Section 4, we give some concluding
remarks.

2 Proof of Theorem 1.1

2.1 Preliminaries on the PSWF
In this section, we regroup some basic facts on the first PSWF. For the sake of clarity, we

follow closely the presentation given in [46, Section 2.4] and we refer as often as possible to [46],
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even if many results have been in general known for a longer time. Let c > 0, destined to tend to
+∞. We introduce the following operator

Fc : ϕ ∈ L2 (−1, 1) 7→
(
x 7→

∫ 1

−1

eicxξϕ (ξ) dξ

)
∈ L2 (−1, 1) .

It is easy to prove that Fc is a compact and normal operator in L2(−1, 1), with distinct
eigenvalues (see [46, Theorem 2.3]). We call λc the largest eigenvalue of Fc. We will call ψc “the”
(up to a normalization and orientation that will be detailed afterwards) first eigenvector of Fc.
ψc is called the first (the one of index 0) PSWF with parameter c. By definition, ψc verifies, for
almost all x ∈ (−1, 1),

λcψc (x) =

∫ 1

−1

eicxξψc (ξ) dξ.

Hence, ψc is a bandlimited function with bandlimit c, and its Fourier transform is in L2(−c, c) by
the Plancherel Theorem and an easy change of variable. From the Paley-Wiener Theorem (see
e.g. [48, Theorem 19.3, Page 370]), we deduce that ψc can be extended on the entire place C, and
ψc is an entire function of exponential type c which lies in L2(R), Moreover, the above expression
can be extended in the complex plane as follows: for any x+ it ∈ C,

ψc (x+ it) =
1

λc

∫ 1

−1

eic(x+it)ξψc (ξ) dξ. (3)

We have the following properties on ψc (see [46, Theorem 2.3]).

Proposition 2.1 ψc is real and even on R (and hence ψc is even also on C), and has no roots
on (−1, 1).

From (3) and Proposition 2.1, a straightforward computation gives the following property on ψc
on C.

Proposition 2.2 ψc is hermitian on C: for any z ∈ C,

ψc(z) = ψc(z). (4)

Now, we explain how we normalize ψc. We choose ψc such that ψc is normalized in L2 (R)−norm
and ψc > 0 in (−1, 1) (it has no roots on (−1, 1) by Proposition 2.1).

In what follows, we will also need to consider the operator

Qc : ϕ ∈ L2(−1, 1) 7→
(
x 7→ 1

π

∫ 1

−1

sin (c (x− ξ))
x− ξ

ϕ (ξ) dξ

)
∈ L2(−1, 1).

Remark that Qc = Pc ◦E, where E is the extension operator (by 0) from L2(−1, 1) to L2(R), and

Pc : ϕ ∈ L2(R) 7→
(
x 7→ 1

π

∫ ∞
−∞

sin (c (x− ξ))
x− ξ

ϕ (ξ) dξ

)
∈ L2(R).

Pc turns out to be exactly the celebrated projection in L2(R) on its closed subspace of bandlimited
functions with bandlimit c. By [46, Corollary 2.1], we have

FcF
∗
c = F ∗c Fc =

2π

c
Qc.

As in [46, (3.48)], we introduce
µc =

c

2π
|λc|2. (5)
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ψc is then clearly an eigenvector for Qc associated to the eigenvalue µc:

µcψc (x) =
1

π

∫ 1

−1

sin (c (x− ξ))
x− ξ

ψc (ξ) dξ. (6)

From [46, Theorem 7.6] and our choice of normalization (as explained in [46, Page 236], the
authors chose a normalisation in L2 (−1, 1)-norm, which explains the difference of expression with
[46, Theorem 7.6]), we have the following equality.

Lemma 2.1 We have ∫ 1

−1

ψc (x)
2
dx = µc

(
= µc

∫
R
ψc (x)

2
dx

)
. (7)

An important feature of the first PSWF is the following concentration property (see [46, The-
orem 3.53]): any other function f which is c-bandlimited and has L2(R)-norm equal to 1 is such
that ∫

R\[−1,1]

f2(x)dx > 1− µc. (8)

It means that ψc is the c-bandlimited function which concentrates the most on [−1, 1]. Note that
(8) is a version of the Logvinenko-Sereda uncertainty principle for c-bandlimited functions given in
[38], in the very particular case where the observation is made on the thick set R \ [−1, 1]. Hence,
1 − µc is the “best constant” in the Logvinenko-Sereda uncertainty principle for c-bandlimited
functions for an observation on the thick set R \ [−1, 1], reached only for the first PSWF ψc.

From [22, Theorem 1] applied with a =
√
c and n = 0 (see the introduction of [22]), we also

deduce the following crucial estimate for what follows.

Lemma 2.2 We have
1− µc ∼ 4

√
πc

1
2 e−2c as c→∞. (9)

Let us now explain the dual nature of the PSWF, that are both eigenfunctions for an integral
and a differential operator. Let us call Lc the differential operator

Lc : ϕ ∈ C2 (−1, 1) 7→
(
x 7→ −

(
1− x2

)
ϕ′′ (x) + 2xϕ (x) + c2x2ϕ (x)

)
∈ C0 (−1, 1) .

Then, it can be proved (see [46, Theorem 2.8]) that Fc and Lc commute. Hence, ψc is also an
eigenvector of Lc, with associated eigenvalue χc. Moreover, by [46, (3.4)], we have

0 < χc < c2. (10)

We also have the following asymptotic formula (see [46, Theorem 2.6])

χc ∼ c as c→∞. (11)

By definition, ψc verifies: for any x ∈ (−1, 1),

−
(
1− x2

)
ψ′′c (x) + 2xψ′c (x) + c2x2ψc (x) = χcψc (x) .

By analyticity, this expression can be extended on the whole complex plane, so that ψc verifies:
for any z ∈ C,

−
(
1− z2

)
ψ′′c (z) + 2zψ′c (z) + c2z2ψc (z) = χcψc (z) . (12)

To conclude, let us now give an equivalent on |ψc (1) |2 as c→∞.

Lemma 2.3
|ψc (1) | ∼ 2π

1
4 c

3
4 e−c as c→∞. (13)
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Proof of Lemma 2.3. We remark that by (6), ψc verifies, for any x ∈ (−1, 1),

µcψc (x) =
1

π

∫ 1

−1

sin (c (x− ξ))
x− ξ

ψc (ξ) dξ.

Hence, ψc
(
·√
c

)
verifies, for any x ∈ (−

√
c,
√
c),

µcψc

(
x√
c

)
=

1

π

∫ 1

−1

sin (
√
cx− cξ)

x/
√
c− ξ

ψc (ξ) dξ.

Making the change of variable ξ′ =
√
cξ, we obtain

µcψc

(
x√
c

)
=

1√
cπ

∫ √c
−
√
c

sin (
√
c (x− ξ′))

x/
√
c− ξ′/

√
c
ψc

(
ξ′√
c

)
dξ′ =

1

π

∫ √c
−
√
c

sin (
√
c (x− ξ′))
x− ξ′

ψc

(
ξ′√
c

)
dξ′.

Hence, ψc
(
·√
c

)
is exactly the first eigenfunction of the operator

ϕ ∈ L2
(
−
√
c,
√
c
)
7→

(
x 7→

∫ √c
−
√
c

sin (
√
c (x− ξ′))
x− ξ′

ϕ (ξ′) dξ′

)
∈ L2(−

√
c,
√
c),

which is exactly the setting of [22] with
√
c = a and n = 0. Let us set

f (x) =
1

c
1
4
√
µc
ψc

(
x√
c

)
. (14)

Then, we have by the definition of µc given in (7) that∫ √c
−
√
c

f (x)
2
dx =

1√
cµc

∫ √c
−
√
c

ψc

(
x√
c

)2

dx =
1

µc

∫ 1

−1

ψc (y)
2
dy = 1.

We can now apply [22, III, Page 329] since we are in the correct normalization setting, and we
obtain that

|f
(√
c
)
| ∼ 2π

1
4 c

1
2 e−cµc as c→∞.

Going back to ψc thanks to (14) and taking into account that µc → 1 as c→∞ by (9), we deduce
that (13) holds.

2.2 Reduction to the disproof of an observability inequality
Our proof mainly relies on a classical duality argument: the null-controllability of (1) at time

T > 0 is equivalent to the following property: there exists C(T ) > 0 such that for any u0 ∈ L2(R),
the solution u of {

∂tu (t, x) + (−∆)
1
2 u (t, x) = 0 in (0, T )× R,
u (0, x) = u0 (x)

(15)

verifies the following inequality, called observability inequality:∫
R
|u(T, x)|2dx 6 C(T )

∫ T

0

∫
ω

|u(t, x)|2dxdt. (16)
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For more explanations, see e.g. [15, Theorem 2.44, Page 56]. Hence, in order to prove Theorem
1.1, it is sufficient to exhibit a family of initial conditions u0

c depending on some parameter c > 0
such that the corresponding family of solutions uc to (15) make the quotient∫ T

0

∫
ω
|uc(t, x)|2dxdt∫

R |uc(T, x)|2dx

go to 0 as c→∞.

2.3 A particular family of solutions
First of all, let us give the following crucial lemma.

Lemma 2.4 Let t > 0. If u0 (x) = ψc (x) eicx, then the solution u of (15) is given for any t ∈ R
and any x ∈ R by

u (t, x) = eic(x+it)ψc (x+ it) . (17)

Moreover, its Fourier transform in space is given by

û (t, ξ) =
2π

cλc
1[−c,c] (ξ − c) e−t|ξ|ψc

(
ξ − c
c

)
. (18)

Proof of Lemma 2.4. First of all, we have

û (t, ξ) = e−t|ξ| ̂ψc (·) eic· (ξ) = e−t|ξ|ψ̂c (ξ − c) .

Due to the expression of the PSWF given in (3) for t = 0, an easy change of variable and the fact
that ψc is even on R by Proposition 2.1, we deduce that

ψc (x) =
1

cλc

∫ c

−c
e−ixξ

′
ψc

(
ξ′

c

)
dξ′ =

1

cλc

∫
R
1[−c,c] (ξ′) eixξ

′
ψc

(
ξ′

c

)
dξ′.

Hence, the Fourier inversion formula of the Fourier transform gives

ψ̂c (ξ) =
2π

cλc
1[−c,c] (ξ)ψc

(
ξ

c

)
.

We deduce that (18) holds.
Using one more time the Fourier inversion formula and the change of variable ξ′ = ξ−c

c , we
obtain

u (t, x) =
1

cλc

∫
R
e−t|ξ|+ixξψc

(
ξ − c
c

)
1[−c,c] (ξ − c) dξ

=
1

λc

∫ 1

−1

e−ct|ξ
′+1|+icx(ξ′+1)ψc (ξ′) dξ′

=
1

λc

∫ 1

−1

e−ct(ξ
′+1)+icx(ξ′+1)ψc (ξ′) dξ′

=
1

λc
e−ct+icx

∫ 1

−1

e−ctξ
′+icxξ′ψc (ξ′) dξ′.

We conclude by remarking that −ct+ icx = ic (x+ it) and by applying identity (3).
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We will also need the following estimate in large time.

Proposition 2.3 Let u0 ∈ L2(R) given in Lemma 2.4 and u the corresponding solution to (15).
There exists a constant C > 0 (depending only on u0, and so depending on c) such that∫

R
|u(t, x)|2dx ∼ C

t
as t→∞. (19)

Proof of Proposition 2.3. This is a classical application of the Laplace method. First of all,
we remark that using the Plancherel Theorem,∫

R
|u(t, x)|2dx =

1

2π

∫
R
e−2t|ξ||û0(ξ)|2dξ =

1

4π

∫
R+∗

e−t|ξ
′|

(∣∣∣∣û0

(
ξ′

2

)∣∣∣∣2 +

∣∣∣∣û0

(
−ξ
′

2

)∣∣∣∣2
)
dξ′.

Formula (18) taken at point x = t = 0 gives

û0 (0) =
2π

cλc
ψc (−1) .

Using that ψc is even by Proposition 2.1, we deduce that

∣∣û0 (0)
∣∣2 =

4π2

c2λ2
c

|ψc (1) |2.

By [46, (7.62)], we know that for every c > 0, ψc(1) 6= 0. Hence, the Laplace method directly
gives that as t→∞, ∫

R
|u(t, x)|2dx ∼ 1

4πt
2|û0(0)|2 =

|û0(0)|2

2πt
.

2.4 Proof of the non-controllability result
Let ω be some measurable subset of R such that ω 6= R. Then, since R \ω is an open subset of

R which is not empty, there exists some ball B (x0, ε) in R\ω with ε > 0 and x0 ∈ R. Without loss
of generality, we can assume that x0 = 0 (this is just a question of translating in space the initial
condition of (15)). Moreover, we assume without loss of generality that ω = R \ [−ε, ε]. Indeed,
if (15) were controllable on ω, it would be also controllable on R \ [−ε, ε] since ω ⊂ R \ [−ε, ε].
Hence, we will disprove the observability on R \ [−ε, ε]. In fact, it is enough to consider the case
of one particular value of ε, which will be here chosen as ε = 3 for reasons that will become clear
later on. We will explain at the end of the reasoning how to go back to any ε > 0 thanks to an
easy rescaling argument.

First step: the case ε = 3.

Let T > 0. We consider the solution u given in (17) and the quotient

Q(c, T ) =

∫ T
0
||u (t, ·) ||2L2(R\[−3,3])dt

||u (T, ·) ||2L2(R)

. (20)

As already explained in Section 2.2, our goal is to prove that at fixed T , Q(c, T ) → 0 as c → ∞,
which will exactly mean that the observability inequality (16) cannot be true.

We first estimate from above the numerator. This is the purpose of the following Lemma.

9



Lemma 2.5 We have, for any t > 0 and any c large enough (independently on t),

||u (t, ·) ||2L2(R\[−3,3])(1 + t)
3
4 6 (1− µc) . (21)

Remark 1 — The term “(1 + t)
3
4 ” will be particularly useful in the proof of Theorem 1.2.

— Numerical tests seem to indicate that the same result seems to be true by replacing R \
[−3, 3] by the natural set R \ [−1, 1]. However, the author was not able to prove (2.5) with
observation on R \ [−1, 1].

Proof of Lemma 2.5. We remark that by the definition of u given in (17), we have

||u (t, ·) ||2L2(R\[−3,3]) =

(∫
R\[−3,3]

|ψc (x+ it) |2dx

)
e−2ct.

Let us prove that

g : t > 0→
(∫ ∞

3

|ψc (x+ it) |2dx
)
e−2ct+

3 log (t+1)
4

is decreasing, which will give immediately (21). Indeed, by using (4),

||u (t, ·) ||2L2(R\[−3,3])(1 + t)
3
4 = 2g (t)

and 2g (0) = 1− µc since ψc is even on R by Proposition 2.1.
Differentiating the expression of g, we remark that

g′ (t) = 2

(∫ ∞
3

Re
(
ψc (x+ it)∂tψc (x+ it)

)
+

(
3

8 (1 + t)
− c
)
|ψc (x+ it) |2dx

)
e−2ct+

3 log(1+t)
4 .

Let s ∈ (0, 1) be some parameter (not depending on c) to be chosen later on. We remark that

g′ (t) 6 2

(∫ ∞
3

Re
(
ψc (x+ it)∂tψc (x+ it)

)
+

(
3

8
− sc

)
|ψc (x+ it) |2dx

)
e−2ct+

3 log(1+t)
4 .

We introduce

g̃(t) =

(∫ ∞
3

Re
(
ψc (x+ it)∂tψc (x+ it)

)
+

(
3

8
− sc

)
|ψc (x+ it) |2dx

)
e−2ct+

3 log(1+t)
4 . (22)

Using the Cauchy-Riemann relations and the fact that ψc is real on the real axis by Proposition
2.1, we have, as soon as c > 3

8s ,

g̃ (0) =

(
−
∫ ∞

3

Im
(
ψc (x)∂xψc (x)

)
+

(
3

8
− sc

)
|ψc (x) |2dx

)
=

(
3

8
− sc

)∫ ∞
3

|ψc (x) |2dx

< 0.

Moreover, using the Young’s inequality and the Cauchy-Riemann relations, we have that for any
t > 0,

|g̃ (t) | 6
∫ ∞

3

(
1

2
|∂xψc (x+ it)|2dx+

(
sc+

7

8

)∫ ∞
3

|ψc (x+ it) |2dx
)
e−2ct+

3 log(1+t)
4 .
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Let us remark that by x 7→ ψc (x+ it) is an entire function of exponential type c. Moreover, since
for any (t, x) ∈ R+×R, we have |ψc(x+ it)| = e2ctu (t, x), it is clear that x 7→ ψc (x+ it) ∈ L2 (R)
(since u (t, ·) ∈ L2 (R) as a solution of (15)). Hence, Bernstein’s inequality (see e.g. [12, Theorem
11.3.3]) applied to the function x 7→ ψc (x+ it) provides∫ ∞

3

|∂xψc (x+ it)|2dx 6
∫
R
|∂xψc (x+ it)|2dx 6 c2

∫
R
|ψc (x+ it)|2dx.

We deduce that
|g̃ (t) | 6

(
(1 + t)

3
4

(
1

2
c2 + sc+

7

8

))∫
R
|u (t, x) |2dx.

Hence, using the dissipativity property of the solutions of (15) given in (19), we deduce that
g̃ (t)→ 0 as t→∞.

Now, we want to prove that g̃ (and so g′) remains non-positive on the whole time interval
[0,∞[. To prove that, we introduce the following auxiliary function

h (t) =

∫ ∞
3

(
Re
(
ψc (x+ it)∂tψc (x+ it)

)
+

(
3

8
− sc

)
|ψc (x+ it) |2

)
dx. (23)

We differentiate the expression of h. We obtain

h′ (t) =

∫ ∞
3

|∂tψc (x+ it) |2dx+

∫ ∞
3

Re
(
ψc (x+ it)∂ttψc (x+ it)

)
dx

+ 2

(
3

8
− sc

)∫ ∞
3

Re
(
ψc (x+ it)∂tψc (x+ it)

)
dx.

(24)

Let us look at the second term of the right-hand side of (24). First of all, using the fact that
ψc is harmonic, we obtain∫ ∞

3

Re
(
ψc (x+ it)∂ttψc (x+ it)

)
dx = −

∫ ∞
3

Re
(
ψc (x+ it)∂xxψc (x+ it)

)
dx.

Now, we use (12) and we call z = x+ it, in order to obtain∫ ∞
3

Re
(
ψc (z)∂ttψc (z)

)
dx =

∫ ∞
3

Re

((
c2z2 − χc

)
z2 − 1

)
|ψc (z) |2dx

+

∫ ∞
3

Re
(

2z

z2 − 1
ψc (z)∂xψc (z)

)
dx.

(25)

Let us investigate the behaviour of Re
(

(c2z2−χc)
z2−1

)
. An explicit computation gives

Re
(
c2z2 − χc
z2 − 1

)
=

χc (t− x) (t+ x) + χc

2 (t2 − 1)x2 + (t2 + 1)
2

+ x4

+
c2
(
t4 + t2

(
2x2 + 1

)
+ x4 − x2

)
2 (t2 − 1)x2 + (t2 + 1)

2
+ x4

.

We call

j (x) = Re
(
c2z2 − χc
z2 − 1

)
. (26)
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Then, it is easy to see that

j′(x) =
2x
(
c2 − χc

) (
3t4 + 2t2

(
x2 + 1

)
−
(
x2 − 1

)2)(
2 (t2 − 1)x2 + (t2 + 1)

2
+ x4

)2 .

By (10), we deduce that j′ has the same sign as 3t4 +2t2
(
x2 + 1

)
−
(
x2 − 1

)2. Let us introduce
the auxiliary variable y = x2 and introduce the function

k (y) = 3t4 + 2t2 (y + 1)− (y − 1)
2
.

Then, expanding in y, we find

k (y) = 3t4 +
(
2t2 + 2

)
y + 2t2 − y2 − 1.

k is a polynomial of order 2 with negative dominant coefficient. Moreover, it is easy to see that
its roots are given by

1 + t2 ± 2
√
t4 + t2.

Notably, the smallest root is always smaller that 1 and the largest root is always larger than 1.
Hence, for y > 1 (which is equivalent to x > 1 since we restrict to positive x), k is firstly positive
and then negative. We deduce that on (1,∞), j is firstly increasing and then decreasing. Hence,
we deduce that for any x ∈ (1,∞), we have

j(x) > min(j(1), j(+∞)) = min

(
c2
(
t2 + 3

)
+ χc

t2 + 4
, c2

)
.

Notably, for any t > 0, we have

j(x) >
3c2

4
.

Hence, going back to (26), we deduce that for t > 0 and any x > 1, we have

Re
(
c2z2 − χc
z2 − 1

)
>

3c2

4
.

Hence, for the moment, using (24), (25) and the above inequality, we have that for any x > 1
and any t > 0,

h′ (t) >
∫ ∞

3

|∂tψc (z) |2dx+
3c2

4

∫ ∞
3

|ψc (z) |2dx+

∫ ∞
3

Re
(

2z

z2 − 1
∂xψc (z)ψc (z)

)
dx

+ 2

(
3

8
− sc

)∫ ∞
3

Re
(
ψc (z)∂tψc (z)

)
dx.

Now, we use the Cauchy-Riemann relations and the triangular inequality to deduce that

h′ (t) >
∫ ∞

3

|∂xψc (z) |2dx+
3c2

4

∫ ∞
3

|ψc (z) |2dx−
∫ ∞

3

∣∣∣∣ 2z

z2 − 1

∣∣∣∣ |∂xψc (z) | |ψc (z)|dx

+ 2

(
3

8
− sc

)∫ ∞
3

Re
(
ψc (z)∂tψc (z)

)
dx.

(27)

An explicit computation gives that∣∣∣∣ 2z

1− z2

∣∣∣∣2 =
4
(
t2 + x2

)
t4 + 2t2 (x2 + 1) + (x2 − 1)

2 .
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Setting u = t2, we introduce the auxiliary function

l (u) =
4
(
u+ x2

)
u2 + 2u (x2 + 1) + (x2 − 1)

2 .

Its derivative is given by

l′ (u) = −
4
((
u+ x2

)2
+ 4x2 − 1

)
(
u2 + 2u (x2 + 1) + (x2 − 1)

2
)2 .

It is clear that this quantity is always negative if x > 1. Hence, we deduce that for x > 1,

l (u) 6 l (0) =
4x2

(x2 − 1)
2 .

The above quantity is clearly decreasing on (1,∞). Hence, we deduce that for any t > 0 and any
x > 3, ∣∣∣∣ 2z

1− z2

∣∣∣∣2 6
9

16
.

Hence, from (27) and the above inequality, we deduce that for any t > 0,

h′ (t) >
∫ ∞

3

|∂xψc (z) |2dx+
3c2

4

∫ ∞
3

|ψc (z) |2dx− 3

4

∫ ∞
3

|∂xψc (z) | |ψc (z)|dx

+

(
3

4
− 2sc

)∫ ∞
3

Re
(
ψc (z)∂tψc (z)

)
dx.

Since c is large enough such that 3
4−2sc < 0, we deduce by using the Cauchy-Riemann relations

and the Cauchy-Schwarz inequality that

h′ (t) >
∫ ∞

3

|∂xψc (z) |2dx+
3c2

4

∫ ∞
3

|ψc (z) |2dx− 2sc

√∫ ∞
3

|ψc (z) |2dx

√∫ ∞
3

|∂xψc (z) |2dx.

This quantity is always non-negative as soon as s is chosen small enough independently on c (for
instance, s =

√
3

2 ), so that we can deduce that h′ (t) > 0 on (0,∞). This means that h is increasing
on (0,∞). By comparing expressions (23) and (22), h has the same sign as g̃. Moreover, g̃(0) < 0
and g̃(t) → 0 as t → ∞, which means that g̃ is always non-positive. Hence, g′ is also always
non-positive and g is decreasing, which concludes the proof.

Now we estimate the denominator.

Lemma 2.6 There exist K(T ) > 0 and C ′ (T ) > 0 depending only on T such that for any
c > K(T ), we have ∫

R
|u (T, x) |2dx > C (T ) |ψc (1) |2. (28)

Proof of Lemma 2.6.
Using (18) and the Plancherel Theorem, we have∫

R
|u (T, x) |2dx =

2πe−2cT

cλ2
c

∫ 1

−1

|ψc (ξ) |2e−2cTξdξ

>
2πe−2cT

cλ2
c

∫ 0

−1

|ψc (ξ) |2e−2cTξdξ.
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We introduce the auxiliary function f defined on (−1, 0) given by

f (ξ) = ψc (ξ) e−cTξ.

We remark that
f ′ (ξ) = (ψ′c (ξ)− cTψc (ξ)) e−cTξ.

Using (12) at point x = −1 and t = 0, we know that ψ′c (−1) = c2−χc
2 ψc (−1). Hence, we have

f ′ (−1) =

(
c2 − χc

2
− cT

)
ψc (−1) e−cTξ.

Moreover, using (11) and the fact that for any c > 0, ψc(1) > 0 by [46, (7.62)], we deduce that
for c larger than a constant depending only on T , f ′(−1) > 0, so that f ′ > 0 on a neighbourhood
of −1 (depending on c). If f ′ > 0 on (−1, 0), we call ξ0 = 0. Otherwise, let us call ξ0 the smallest
point of (−1, 0) where f ′ (ξ) = 0, i.e. the first point ξ0 verifying

ψ′c (ξ0) = cTψc (ξ0) . (29)

ξ0 is well-defined since f ′ is analytic on C, so it has a finite number of zeros on (−1, 0). It is
clear that at this point, one must have f ′′ (ξ0) > 0. Using (29), if we compute f ′′(ξ0), we obtain

f ′′ (ξ0) =
(
ψ′′c (ξ0)− 2cTψ′c (ξ0) + c2T 2ψc (ξ0)

)
e−cTξ0 =

(
ψ′′c (ξ0)− c2T 2ψc (ξ0)

)
e−cTξ0 .

Using (12) together with (29) in the above expression, we obtain that(
1− ξ2

0

)
f ′′ (ξ0) ecTξ0 =

(
c2ξ2

0 − χc −
(
1− ξ2

0

)
c2T 2ξ0

)
ψc (ξ0) + 2ξ0ψ

′
c (ξ0)

=
(
c2ξ2

0 − χc −
(
1− ξ2

0

)
c2T 2 + 2cTξ0

)
ψc (ξ0) .

The smallest root of the polynomial (in the variable ξ0) is given by

ξ1 =
−cT −

√
c4T 4 + c4T 2 + c2T 2χc + c2T 2 + c2χc

c2T 2 + c2
.

Estimate (11) together with easy computations show that ξ1 → −T√
1+T 2

as c → ∞. Hence, for
c larger than some constant depending on T , since we must have f ′′ (ξ0) > 0, we are sure that
ξ0 > − 1

2 −
T

2
√

1+T 2
.

We have finally proved that for any c > K(T ) ( where K(T ) depends only on T ), f is increasing
on
(
−1,− 1

2 −
T

2
√

1+T 2

)
. We deduce that for c > K(T ),

∫
R
|u (T, x) |2dx >

2πe−2cT

cλ2
c

∫ − 1
2−

T

2
√

1+T2

−1

|ψc (ξ) |2e−2cTξdξ

>
2πe−2cT

cλ2
c

(
1

2
− T

2
√

1 + T 2

)
|ψc (−1) |2e2cT .

By using (5), (9), and the parity of ψc, the conclusion easily follows.

Proof of Theorem 1.1.
We are now able to conclude. Fix some T > 0. From (20), (21) and (28), we deduce that there

exist K(T ) > 0 and C (T ) > 0 depending only on T such that for any c > K(T ), we have

Q(c, T ) 6 C ′ (T )
(1− µc)
|ψc (1) |2

.
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Hence, using (9) together (13), we deduce that for c > K(T ) and some constant C ′′ (T ) > 0
depending only on T ,

Q(c, T ) 6 2C ′ (T )
4
√
πc

1
2 e−2cT

4π
1
2 c

3
2 e−2c

6
C ′′ (T )

c
.

This ends the proof of the non-observability result by making c go to ∞ in the case ε = 3.

Remark 2 The family of initial conditions (and then the family of solutions) we use are complex-
valued. It is then quite natural to try to find counter-examples in the case of real initial conditions
and real-valued solutions. However, since the half-Laplace operator is a real Fourier multiplier, it
can be proved that either Re(u) or Im(u) gives a real counterexample to inequality (16). Indeed,
assume that we decompose the initial condition u0 in real and imaginary part as

u0 (x) = f0(x) + ig0(x).

Then, since (−∆)
1
2 is a real Fourier multiplier, one easily see that in any time t > 0,

u(t, x) = f(t, x) + ig(t, x),

where f is the solution to (15) with initial condition f0 and g is the solution to (15) with initial
condition g0. Hence, the quotient (20) can be rewritten as

Q(c, T ) =

∫ T
0

(
||f (t, ·) ||2L2(R\[−3,3]) + ||g (t, ·) ||2L2(R\[−3,3])

)
dt

||f (T, ·) ||2L2(R) + ||g (T, ·) ||2L2(R)

. (30)

Our goal is to prove that either ∫ T
0

(
||f (t, ·) ||2L2(R\[−3,3])

)
dt

||f (T, ·) ||2L2(R)

or ∫ T
0

(
||g (t, ·) ||2L2(R\[−3,3])

)
dt

||g (T, ·) ||2L2(R)

has a subsequence that goes to 0 as c → ∞. By positivity and by passing to the inverse, it is
enough to prove that either

InvQr(c) =
||f (T, ·) ||2L2(R)∫ T

0

(
||f (t, ·) ||2L2(R\[−3,3]) + ||g (t, ·) ||2L2(R\[−3,3])

)
dt

or

InvQi(c) =
||g (T, ·) ||2L2(R)∫ T

0

(
||f (t, ·) ||2L2(R\[−3,3]) + ||g (t, ·) ||2L2(R\[−3,3])

)
dt

has a subsequence that goes to ∞ as c → ∞. If it was not the case, it would mean that both
sequences are bounded and so is InvQr(c) + InvQi(c). This is impossible since this quantity is
supposed to go to +∞: InvQr(c) + InvQi(c) = 1

Q(c,T ) where Q(c, T ) is given in (30) and goes to
0.

Second step: going back to ε > 0.

Let us call ε′ = ε
3 . We choose as an initial condition

u0
ε′ (x) = ψε′c

( x
ε′

)
eicx.
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Similar computations as in the proof of Lemma 2.4 show that the solution uε′ of (15) with initial
condition u0

ε′ is given by

uε′ (t, x) = eic(x+it)ψε′c

(
x+ it

ε′

)
.

Let us look at the new quotient

Qε =

∫ T
0
||uε′ (t, ·) ||2L2(R\[−ε,ε])dt

||uε′ (T, ·) ||2L2(R)

.

The change of variable in space x′ = x
ε′ and in time t′ = t

ε′ (in the numerator) gives

Qε(c, T ) = ε′

∫ T
ε′

0
e−2ε′ct

∫
R\[−3,3]

|ψε′c (x′ + it) |2dx′dt′

e−2(cε′)( Tε′ )
∫
R |ψε′c

(
x′ + i Tε′

)
|2dx′dt′

= ε′Q

(
ε′c,

T

ε′

)
,

where Q is the quotient defined in (20). Hence, we are exactly in the same situation as in the case
ε = 3, except that c is replaced by ε′c and that T is replaced by T/ε′. We deduce that according
to (21), (28), and the computations made for Q,

Qε 6 ε′
(1− µε′c)
C
(
T
ε′

) |ψε′c(1)|2 6
C (T, ε′)

c
,

for some constant C (T, ε′) depending only on T and ε′. Since ε′ does not depend on c, we also
deduce that Qε → 0 as c→∞, and the proof is completed.

3 Proof of Theorem 1.2
We only give the main ingredients, since the proof is very close to the one of Theorem 1.1.

Let T > 0. As for the half-heat equation (1), we can restrict our study to disprove the null-
controllability of (2) on the control set ω = R × (R \ [−3, 3]). As for the half-heat equation,
the null-controllability of (2) at time T > 0 is equivalent to the following property: there exists
C(T ) > 0 such that for any v0 ∈ L2(R2), the solution v of{

∂tv (t, x, y)− ∂2
xxv(t, x, y)− x2∂2

yyv(t, x, y) = 0 in (0, T )× R2,

v (0, x, y) = v0 (x, y) in R2,
(31)

verifies ∫
R

∫
R
|v (T, ·) |2dydx 6 C(T )

∫ T

0

∫
R

∫
R\[−3,3]

|v (t, x, y) |2dydxdt. (32)

If we consider the Fourier transform in the second space variable y that we still call ,̂ we obtain{
∂tv̂ (t, x, ξ)− ∂2

xxv̂(t, x, ξ) + x2|ξ|2v(t, x, y) = 0 in (0, T )× R2,

v̂ (0, x, ξ) = v̂0 (x, ξ) in R2.

The elliptic operator −∂2
xx + x2|ξ|2 is exactly the harmonic oscillator. Notably, the first eigen-

function is given by the first Hermite function, correctly rescaled, namely x 7→ e−
|ξ|x2

2 . Hence, if
we consider the initial condition given in the Fourier variable corresponding to y by

v̂0 (x, ξ) =
2π

cλc
e−

x2|ξ|
2 ψc

(
ξ − c
c

)
1[−c,c] (ξ − c) ,

16



Straightforward computations similar to the proof of Lemma (2.4) show that the corresponding
solution of (31) is given by

v (t, x, y) = e
−c

(
t+ x2

2

)
+icy

ψc

(
y + i

(
t+

x2

2

))
. (33)

Hence v(t, x, y) = u
(
t+ x2

2 , y
)
, where u is the solution of (15) used in Section 2. It is now quite

straightforward to conclude. Indeed, according to the inequality (32) that we want to disprove,
we introduce the quotient

Q′(c, T ) =

∫ T
0

∫
R
∫
R\[−3,3]

|v (t, x, y) |2dydxdt∫
R
∫
R |v (T, x, y) |2dydx

. (34)

Let us look at the numerator. Using (33), (17) and (21), we have∫ T

0

∫
R

∫
R\[−3,3]

|v (t, x, y) |2dydxdt 6 T

∫
R

1

(1 + x2

2 )
3
4

(1− µc) dx

6 T

√
2πΓ

(
1
4

)
Γ
(

3
4

) (1− µc) .

Concerning the denominator, we have by (33), (17) and (28) that∫
R

∫
R
|v (T, x, y) |2dydx =

(∫
R
e−cx

2

dx

)∫
R
|u(T, y)|2dy > C (T )

|ψc (1) |2√
c

.

Hence, using the same computations as for u in Section 2 and going back to expression (34), we
deduce that for some constant C ′(T ) depending only on T , for any c > 0 large enough, we have

Q′(c, T ) 6
C ′(T )

√
c

c
6
C ′(T )√

c
.

Hence, Q′(c, T )→ 0 as c→∞, which gives the desired non-controllability result.

4 Conclusion
In this article, we explained how we can use the PSWF in order to obtain negative controlla-

bility results for the half-heat equation on the whole line R and the Grushin plane on the whole
plane R2. Since PSWF are functions that are naturally bandlimited and that concentrate very
strongly on (−1, 1), they are quite natural candidates as initial conditions in order to disprove ob-
servability inequalities. Our hope is that this natural idea can be exploited in order to derive other
non-controllability results for weakly diffusive equations on general geometries. Using the results
given in [50], we hope to extend our results in the case of the whole space Rn, n > 2. A more
ambitious goal would be the following. If we consider some smooth Riemannian manifoldM (that
can be unbounded), can we use some generalized PSWF that saturate some Logvinenko-Sereda
uncertainty principle in order to obtain non-null controllability results for the half-heat equation
onM? Now, if we consider a non-compact complete singular manifold for instance with an interior
singularity that is an hypersurface, is it possible to use arguments similar to the one developed in
Section 1.2 to derive some non-controllability results for the corresponding hypoelliptic diffusion?

However, one major limitation is that our study relies strongly on what Slepian calls in [51]
“the lucky accident”: the integral operator Fc commutes with the differential operator Lc. Note
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that this property is crucial in our proof, since it is used both in the proof of Lemmas 2.5 and 2.6.
In some particular cases, such a lucky accident still happens (notably in Rn for concentration on
a ball, see [50]). It seems that in more complex geometries, one cannot expect to exhibit some
adequate differential operator Lc, making impossible to reproduce the proof given here.
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