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Abstract—This paper proposes a novel cooperative distributed
control system architecture based on unsupervised and
independent Model Predictive Control (MPC) using discrete-
time Laguerre functions to improve the performance of the
whole system. In this distributed framework, local MPCs
algorithms might exchange and require information from other
sub-controllers via the communication network to achieve their
task in a cooperative way. In order to reduce the computational
burden in the local rolling optimization with a sufficiently large
prediction horizon, the orthonormal Laguerre functions are
used to approximate the predicted control trajectory. Simulation
results show that the proposed architecture could guarantee
satisfactory global performance even under strong interactions
among the subsystems.

Keywords—large-scale interconnected systems, distributed
model predictive control, Laguerre functions.

I. INTRODUCTION

During the past two decades a lot of interest has been
given to the control of a class of large-scale systems which
are composed by many physically or geographically divided
subsystems. However, these subsystems are interconnected
and characterized by significant interactions. Each subsystem
interacts with the other subsystems through their states and
their inputs. At the same time, due to the high performance
requirements, modern control systems are becoming more and
more complex. For these processes, different control solutions
have be developed to achieve some global performance of the
whole system.

In centralized MPC architecture, a control agent is able
to acquire the information of the global system and all the
input sequences are optimized with respect to one given
performance index in a single optimization problem. However,
when the number of the state variables and inputs of the system
becomes larger, the computation burden of the centralized

optimization problem may increase significantly. Therefore,
it is often impractical to apply the centralized MPC to large-
scale systems due to their size and their higher risk of failure
of the MPC controller due to its centralized nature. However,
the centralized control scheme in these industrial process has
gradually given way to decentralized and distributed control
strategies for their remarkable decrease in system dimension-
ality using the local MPC control [1], [7].

The main idea in both decentralized and distributed control
in large interconnected systems is to approximate the overall
system with several separated subsystem models, where each
subsystem is controlled by a local controller. Indeed, each local
controller uses the so-called local performance index. On the
one hand, these control architectures have the advantages of
being flexible to system structure, error-tolerance, less compu-
tational efforts and no global information requirements [11],
[18], [19]. The only difference between them is that distributed
control schemes give due consideration to the external state
and/or control signal information communicated between sub-
controllers from other subsystems while decentralized ones
follow a completely decoupled approach [2], [4], [17].

On the other hand, the development of DCS (Distributed
Control Systems), field-bus, communication network technolo-
gies in process industries allows the control methodologies to
utilize their potentials for improving control performance. In
this case, the improvement of the global control performance
of the entire system using the network information exchange
for large-scale systems is a valuable open problem.

In order to fulfill the global objective for the global sys-
tem, cooperation between the controllers through a digital
communication network might be necessary. Thanks to the
digital network, the required cooperation can be achieved by
means of a proper information exchange between the sub-
controllers. From the control point of view, it is well known



that MPC allows to deal with linear, nonlinear, multivariable
and constrained systems [3]. Moreover, MPC technique bene-
fits greatly from both advances in communication technology
and advances in computational resources.

Recalling that the MPC strategy is based on an on-line
optimization problem and uses a process model to predict
the effect of the control sequence on the behavior of the
plant. Typically, MPC is implemented in a centralized way.
The complete system is modeled and all the control inputs
are computed in one optimization problem. However, for
large interconnected systems, it may be necessary to have a
distributed control scheme as mentioned above, where local
control inputs are computed using local measurements and
small order models of the local dynamics. But with infor-
mation exchange between the controllers, the objective is to
achieve some degree of cooperation between sub-controllers
that are solving MPC problem with locally relevant variables,
costs and constraints.

Previous works on distributed MPC are reported in [6],
[13]–[15]. A preliminary analysis of the control performance
of distributed MPC has been addressed in [13]. Menighed et
al [6] and Razavinasab et al [10] proposed a distributed state
estimation strategy, developed for supporting distributed state
feedback MPC for large-scale interconnected systems. In [15],
two approaches for a coordination between sub-controllers
are proposed leading to the so-called communication and
cooperation based MPC. In the cooperation-based MPC, each
sub-controller knows the global objective in order to im-
prove optimality and stability and makes the decentralized
strategy very close to the centralized one. When only the
local objectives are known, a hierarchical decentralized control
architecture uses a supervisor to compute the global optimum
and to coordinate the sub-controllers, in communication-based
MPC [8].

In this paper, we deal with unconstrained distributed model
predictive control of large-scale interconnected systems to
achieve global performance based on the use of a cooperative
strategy between the sub-controllers. Thanks to the flexibility
and the on-line optimization process inherent to MPC algo-
rithms, we propose a distributed framework based on MPC
with Laguerre functions. In order to reduce the computational
burden in the local rolling optimization with a sufficiently
large prediction horizon, the orthonormal Laguerre functions
are utilized to approximate the predicted control trajectory.
It is worth to emphasize that the MPC/Laguerre approach is
becoming an important topic in modern control theory and
practice [16].

II. COMPLEX PROCESS INTERACTION MODELING

We consider the overall system represented as a discrete,
linear time-invariant (LTI) model of the form

S ,

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(1)

where x(k) ∈ <nx , u(k) ∈ <nu and y(k) ∈ <ny are the
state, the control input and the output, respectively with their

corresponding dimensions, nx, nu, ny .
In the decentralized modeling framework, it is assumed that
subsystem-subsystem interactions have a negligible effect on
system variables, i.e., we suppose that the previous overall
model S is composed of N subsystems Sii, each subsystem
is represented by the following state-space equations

Sii ,

{
xi(k + 1) = Aiixi(k) +Biiui(k)

yi(k) = Ciixi(k) i = 1, 2, . . . , N
(2)

where xi(k) ∈ <nxi , ui(k) ∈ <nui and yi(k) ∈ <nyi are
the local state, control input and output, respectively and
nx =

∑
i nxi , nu =

∑
i nui and ny =

∑
i nyi . Frequently,

the components of the interconnected system are tightly cou-
pled due the material/energy and/or information flow between
them. In such cases, the decentralized assumption leads to a
loss in achievable control performance. It is natural to view
the previous overall model S composed of N subsystems Si

interacting with each other through linear interconnections.
Each subsystem is represented by the following state-space
equations

Si ,

{
xi(k + 1) = Aiixi(k) +Biiui(k) + wi(k)

yi(k) = Ciixi(k) + vi(k) i = 1, 2, . . . , N
(3)

where the state and output interaction vectors wi and vi are
given by

wi(k) ,
N∑

j=1;j 6=i

Aijxj(k) +

N∑
j=1;j 6=i

Bijuj(k)

vi(k) ,
N∑

j=1;j 6=i

Cijxj(k)

(4)

These vectors represent the interaction of subsystem j 6= i on
subsystem i. The proposed distributed control architecture fos-
ters implementation of cooperation-based strategy for several
interacting processes (3)-(4) in order to emulate the benefits
achievable with centralized control.

III. PROBLEM STATEMENT

By means of (3) and (4), the future state and output
prediction over a horizon p are given by

x̂i(k + l|k) = Al
iix̂i(k|k) +

l∑
s=1

As−1
ii Biiui(k + l − s|k)

(5a)

+

l∑
s=1

As−1
ii ŵi(k + l − s|k − 1)

ŷi(k + l|k) = Ciix̂i(k + l|k) + v̂i(k + l|k − 1) (5b)

Given the overall system S composed by N interactive subsys-
tems Si, i = 1, 2, . . . , N , the unconstrained Distributed Model
Predictive Control (DMPC) problem with prediction horizon
p > 0 and control horizon m > 0 two integer values, with
m ≤ p consists of finding, at time k, a set of independent
sub-controllers Ci such that each Ci minimizes the local cost
function Ji.



Ji=

p∑
l=1

‖ ydi (k+l|k)−ŷi(k+l|k) ‖2Qi
+

m∑
l=1

‖ ∆ui(k+l−1|k) ‖2Ri

for i = 1, . . . , N (6)

subject, for l = 1, . . . , p, to

{
model constraints given by(5)
initial condition : x̂i(k|k)=x̂i(k)

where
‖ α ‖2Λ,αT Λαis the norm of vector α induced by matrixΛ.
ydi (k + l|k): the desired output.
∆ui(k + l − 1|k): future control increment at time k, with
ui(k) = ui(k − 1) + ∆ui(k|k).
Qi : a symmetric and positive semi-definite matrix of appro-
priate dimension (Qi ≥ 0).
Ri : a symmetric and positive definite matrix of appropriate
dimension (Ri > 0).
It should be noted that ∆uj(k + l − 1|k) is excluded in the
performance index, since it is independent of the future control
sequence of Sj .

IV. COOPERATION BASED DISTRIBUTED MPC PROBLEM

In order to find an explicit solution to the first version of
DMPC problem, each sub-controller Ci is decomposed into
three connected function blocks: an optimizer, a state predictor
and an interaction predictor.
Assumptions 1
The following assumptions are considered:
• the prediction and control horizons are the same for

all sub-controllers, i.e., mi = mj =, pi = pj = p,
∀i, j = 1, 2, . . . , N, j 6= i;

• all the sub-controllers are synchronous;
• all the sub-controllers communicate only once within a

sampling interval;
• all the communication channel introduces a delay of one

sampling period.

To simplify the mathematical expressions, the following nota-
tions are adopted

• 0a×b is the a× b null matrix ;
• Ia(0a) is the a× a identity (null) matrix;
• diaga{A} is a diagonal block matrix made by a blocks

equal to A;

1) Interaction prediction: Under assumptions 1, at step k,
the predictions of the interaction vectors are given by

Ŵi(k, p|k −1) = ÃiX̂(k, p|k − 1) + B̃iΓ̃iU(k − 1,m|k − 1)

V̂i(k, p|k − 1) = C̃iX̂(k, p|k − 1)
(7)

H̃i ,

[
diagp{Hi,1} . . . diagp{Hi,i−1} 0 diagp{Hi,i+1}

. . . diagp{Hi,N}
]

where H̃i ∈
{
Ãi, B̃i, C̃i

}

2) State predictor: Under assumptions 1, at step k, the local
state prediction for the sub-controller Ci is expressed by

x̂i(k + l|k) = Al
iix̂i(k|k) +

l∑
s=1

As−1
ii Biiui(k + l − s|k)

+

l∑
s=1

As−1
ii ŵi(k + l − s|k − 1) (8)

3) Optimal Control Sequence: Under assumptions 1, at
step k, based on the exchanged information, the interac-
tion prediction together with the local measurement is used
by the optimizer to solve the MPC optimization problem
(without constraints). Once computed the optimal control
sequence

[
∆ui(k|k), . . . ,∆ui(k + m − 1|k)

]
, which mini-

mize the local cost function (6), only the first element of
the optimal sequence ∆ui(k|k) is selected and the control
action ui(k) = ui(k − 1) + ∆ui(k|k) is computed and
applied as control action to the subsystem Si, following the
receding horizon strategy. Generally, the parameters of the
above optimization problem are p and m; these parameters are
directly affecting computational load in MPC. One of the MPC
formulation is the classic approach presented in [5]. In this
approach, for the case of rapid sampling, complicated process
dynamics and/or high demands on closed-loop performance,
satisfactory approximation of the control signal ∆u(k) may
require a very large number of parameters (large m), leading
to poorly numerically conditioned solutions and heavy com-
putational load when implemented on-line. Instead, a more
appropriate technique would be to use Laguerre network in
the design of MPC presented in [9], [16].

V. DESCRIPTION OF THE CONTROL SIGNAL TRAJECTORY

The Z-transforms of the discrete-time Laguerre networks
are written as follows

Γn(z) = Γn−1(z)
z−1 − a
1− az−1

n = 2, 3, . . . ,M (9)

with Γ1(z) =

√
1− a2

1− az−1

where M is the number of Laguerre functions in the network
and a is the pole of the Laguerre network. The scaling factor
a is required to be selected by the user, where 0 ≤ a < 1 for
the stability of the network. Note that the Laguerre networks
are well known for their orthonormality.

With the relation (9), the Laguerre network is illustrated in
Fig.1

z−1−a
1−az−1

√
1−a2

1−az−1
z−1−a
1−az−1

1 Γ1(z) Γ2(z) ΓM (z)

Fig. 1. Illustration of a discrete Laguerre network

The discrete-time Laguerre functions are obtained
through the inverse Z-transform of the Laguerre network.
The set of Laguerre functions can be expressed as
L(k) =

[
l1(k) l2(k) . . . lM (k)

]T
, where li(k) denotes

the inverse Z-transform of Γi(z, a). Taking advantage of the



network realization (9), the set of discrete-time Laguerre
functions satisfies the following difference equation

L(k + 1) = AlL(k) (10)

where Al ∈ <M×M and is a function of the parameters a and
β = (1− a2), and the initial condition is given by

L(0)T =
√
β
[
1 − a a2 − a3 . . . (−1)M−1aM−1

]
The orthonormality can be expressed by

∞∑
k=0

li(k)lj(k) = 0 for i 6= j (11a)

∞∑
k=0

li(k)lj(k) = 1 for i = j (11b)

The orthonormal property of the Laguerre functions will be
used in the design of MPC. The key idea in MPC based
on Laguerre functions lies in the approximating member of
control sequence by a set of Laguerre functions as

∆u(k + l|k) =

M∑
n=1

ln(l)cn(k) = L(l)T η(k)

for l = 0, 1, . . . ,m− 1

where ∆u(k|k) = u(k|k)− u(k − 1|k)

(12)

with k being the initial time of the moving horizon window
and l being the future sampling. The parameter vector η
comprises M Laguerre coefficients: η = [c1 c2 . . . cM ]T and
L(l)T is the transposed Laguerre functions vector as defined
in the difference equation (10).

By using this approximation, the optimization problem (6)
can be expressed in terms of coefficient vector η, instead of
∆u(k) as in the classic approach. Thus, the coefficient vector
η will be optimized and computed in the design. With this
design framework, the control horizon m from the classical
MPC approach has vanished. Instead, the number of terms
M (M < m) is used to describe the complexity of the trajec-
tory in conjunction with the free parameter a. Furthermore, a
long control horizon m can be achieved without using a large
number of parameters, leading to low computational burden
and memory storage. In this paper, the MPC based on Laguerre
functions is used in the proposed DMPC scheme.

VI. USE OF LAGUERRE FUNCTIONS IN DMPC DESIGN

A. Modified-State predictor

1) For SISO subsystem Si, i = 1, 2, . . . , N : Under assump-
tions 1, at step k, the future state prediction over the horizon
p are given by

x̂i(k + l|k) = Al
iix̂i(k|k) +

l∑
s=1

As−1
ii Biiui(k + l − s|k)

+

l∑
s=1

As−1
ii ŵi(k + l − s|k − 1) (13)

let us denote ui(k) = ui(k−1) + ∆ui(k) and ui(k+ l−s) =
ui(k − 1) +

∑l−s
r=0

∆ui(k + r) for l = 1, 2, . . . , p. Then, the
prediction of the future state variables at time l becomes

x̂i(k + l|k) = Al
iix̂i(k|k) +

l∑
s=1

As−1
ii Biiui(k − 1)

+

l∑
s=1

[ l∑
h=s

Al−h
ii Bii

]
Li(s−1)T ηi+

l∑
s=1

As−1
ii ŵi(k+l−s|k−1)

for l = 1, 2, . . . , p (14)

where the function ∆ui(k+s−1) is replaced by Li(s−1)T ηi
for s = 1, 2, . . . , l.
The prediction of the plant output will be

ŷi(k + l|k) = CiiA
l
iix̂i(k|k) + Cii

l∑
s=1

As−1
ii Biiui(k − 1)

+ Cii

l∑
s=1

[ l∑
h=s

Al−h
ii Bii

]
Li(s− 1)T ηi

+ Cii

l∑
s=1

As−1
ii ŵi(k + l − s|k −1) + v̂i(k + l|k − 1) (15)

With this formulation, both predictions of state and output
variables are expressed in terms of the coefficient vector ηi
of the Laguerre network, instead of ui as in the classical
approach. Thus, the coefficient vector ηi will be optimized and
computed in the control design. To compute the prediction, the
convolution sum

Sci(l) =

l∑
s=1

[ l∑
h=s

Al−h
ii Bii

]
Li(s− 1)T (16)

needs to be computed. To this end, note that

Sci(1) = BiiLi(0)T

Sci(2) =
[
AiiBii +Bii

]
Li(0)T +BiiLi(1)T

=
[
Aii + I

]
BiiLi(0)T +BiiLi(0)TAT

li

= Sci(1) +AiiSci(1) + Sci(1)AT
li

Sci(3) = Sci(2) +A2
iiSci(1) +AiiSci(1)AT

li + Sci(1)(A2
li)

T

Sci(4) = Sci(3) +A3
iiSci(1) +A2

iiSci(1)AT
li +AiiSci(1)(A2

li)
T

+ Sci(1)(A3
li)

T

(17)
Continuing the recursion in (17) reveals that for l = 2, 3, . . . , p

Sci(l) = Sci(l − 1) +

l∑
h=1

Ah−1
ii Sci(1)

(
A(l−h)

li

)T
with Sci(1) = BiiLi(0)T

(18)

The difference equation Li(k + 1) = AliLi(k) is used for
generating the set of Laguerre functions, whereAli ∈ <Mi×Mi

and is a function of the parameters ai and βi = (1− a2
i ).

2) For MIMO subsystem Si, i = 1, 2, . . . , N : To extend
the description to MIMO subsystem, with full flexibility in
the choice of ai and Mi parameters, let ∆ui(k) be

∆ui(k) =
[
∆u1

i (k) ∆u2
i (k) · · · ∆u

nui
i (k)

]T



and the input matrix be partitioned to

Bii =
[
B1

ii B2
ii · · · B

nui
ii

]
where nui

is the number of inputs and Bg
ii for g =

1, 2, . . . , nui
is the gth column of the Bii matrix. We express

the gth control signal ∆ugi (k) by choosing a scaling factor
agi and order Mg

i , where agi and Mg
i are selected for this

particular input, such that

∆ugi (k) = Lg
i (k)T ηgi for g = 1, 2, . . . , nui

where ηgi and Lg
i (k) are the Laguerre network description of

the gth control, namely

Lg
i (k)T =

[
lgi(1)(k) lgi(2)(k) . . . lg

i(Mg
i )

(k)

]
Based on the partition of the input matrix and given the state

variable information at x̂i(k), the prediction of the future state
at time l can be written as

x̂i(k+ l|k)= Al
iix̂i(k|k) + Ψi(l)ui(k−1) + Φi(l)

T ηi + Ωi(l)
(19)

with

Ψi(l) =

l∑
s=1

As−1
ii Bii ,Φi(l)

T =

l∑
s=1

[ l∑
h=s

Al−h
ii Bii

]
Li(s− 1)T

Ωi(l) =

l∑
s=1

As−1
ii ŵi(k + l − s|k − 1)

where the parameter vector ηi and the data matrix Φi(l)
T

consist of the following individual coefficient vectors

ηTi = [η1
i η2

i . . . η
nui
i ]T

Φi(l)
T=

l∑
s=1

[ l∑
h=s

Al−h
ii

[
B1

iiL
1
i (s)T B2

iiL
2
i (s)T . . . B

nui
ii L

nui
i (s)T

]]
for i = 1, 2, . . . , N and g = 1, 2, . . . , nui

.
Note that the kth block matrix

Φk
i (l)T =

l∑
s=1

l∑
h=s

Al−h
ii Bk

iiL
k
i (s− 1)T

has an identical structure as the single-input case defined by
Sci(l), thus it can be computed recursively using (18). From
here on, the convolution sum in each multi-input subsystem
Si is decomposed into computing the subsubsystems, and the
computed results are put together block by block to form
the multi-input structure. It is worth stressing that in the
formulation of the multivariable problem, the scaling factors
agi and the number of terms Mg

i can be chosen independently
for each input signal of subsystem Si.

B. Modified-Optimizer

Under assumptions 1, since the discrete Laguerre functions
are orthonormal for a sufficiently large prediction horizon p,
the cost function (6) is equivalent to the modified local cost
function defined as

Ji =

p∑
l=1

‖ ydi (k + l|k)− ŷi(k + l|k) ‖2Qi
+ηTi RLi

ηi (20)

where RLi
∈ <Mi×Mi is a diagonal matrix with the weighting

matrix Ri on its diagonal. Therefore, the objective is to
find the coefficient vector ηi that minimizes Ji. Without any
constraints, by substituting (15) into (20), the optimal solution
of the parameter vector η̂i is

η̂i = ηopti =

(
p∑

l=1

Φi(l)QiΦi(l)
T +RLi

)−1

×
(

p∑
l=1

Φi(l)Qi

(
ydi (k+ l|k)−Θi(l)x̂i(k|k)−Ψi(l)ui(k−1)

− Ωi(l)− v̂i(k + l|k − 1)
))

(21)

with
Θi(l) = CiiA

l
ii , Ψi(l) = CiiΨi(l)

Φi(l)
T = CiiΦi(l)

T , Ωi(l) = CiiΩi(l)

Upon obtaining the optimal parameter vector η̂i, the control
increment at time k is as follows

∆ui(k) =


L1
i (0)T 0T2 . . . 0Tnui

0T1 L2
i (0)T . . . 0Tnui

...
...

. . .
...

0T1 0T2 . . . L
nui
i (0)T

 η̂i (22)

where 0Tr , for r = 1, 2, . . . , nui , represents a zero block
row vector with identical dimension of Lr

i (0)T .
Consequently, the control signal ui(k) can be calculated as

ui(k) = ui(k − 1) + ∆ui(k) (23)

1) Modified Interaction prediction: Under assumptions 1,
at step k, the predictions of the new interaction vectors are
given by
Ŵi(k, |k −1) = ÃiX̂(k|k − 1) + B̃iŨ(k − 1|k − 1)

V̂i(k, |k − 1) = C̃iX̂(k|k − 1)
(24)

F̃i ,
[
Fi,1 . . . Fi,i−1 0 Fi,i+1 . . . Fi,N

]
where F̃i ∈

{
Ãi, B̃i, C̃i

}
VII. NC-MPC ALGORITHM

For the ith sub-controller Ci, where the desired output
ydi (k + l|k) is provided by a proper reference generator, the
algorithm for the novel distributed MPC is outlined in detail:

1) Set k = 1
2) Acquire by network the predicted future state trajectories

X̂j(k|k − 1) and control inputs Uj(k − 1|k − 1) from
sub-controllers Cj .



3) Build X̂(k|k −1) and U(k− 1|k − 1) by combining
the local state trajectory x̂i(k|k − 1) and control input
ui(k − 1|k − 1) with the acquired information, and
compute the corresponding predictions of the interac-
tions according to (24).

4) Acquire the measures x̂i(k) and the desired trajectory
ydi (k + l|k) over the horizon p.

5) Compute the optimal control ui(k) and broadcast it by
network to sub-controllers Cj , cf. (21), (22) and (23).

6) Apply the control input ui(k) to subsystem Si.
7) Compute the future state trajectory of subsystem Si

over the horizon p and broadcast it by network to sub-
controllers Cj , cf. (19).

8) Increment the sample time index k ← k+1 and iterates
by going to step 2.

VIII. SIMULATION AND RESULTS

In this section, the performance of the proposed NC-DMPC
is investigated and compared to the centralized MPC. Consider
the following unstable-non minimum phase plant S introduced
in [12] discretized with a sampling time Ts = 0.2 s. A state-
space realization of S has the form (1), with the following
matrices

A=

[
A11 0
0 A22

]
, B=

[
B11 0
0 B22

]
, C=

[
C11 C12

C21 C22

]
The examination of the process model S leads to decompo-
sition into two interconnected subsystems S1 and S2. The
corresponding state-space realizations of S1 and S2 have the
form (2), with matrices {A11, B11, C11} and {A22, B22, C22},
respectively. The constant parameter α is used to study the
effect of the interactions between S1 and S2.

A11=


2.859 −1.335 0.409 0

2 0 0 0
0 1 0 0
0 0 0 0.819

 , B11=


0.063

0
0

0.125


A22 =

 0.819 0 0
0 1.637 −0.67
0 1 0

 , B22 =

 0.125
0.250

0


C11=

[
−0.0153−0.029−0.007 0

]
, C12 = α

[
0.145 0 0

]
C22 =

[
0 −0.193 0.292

]
, C21 = α

[
0 0 0 0.145

]
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Fig. 2. Control performance with α = 1, p = 10
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Fig. 3. Control performance with α = 3.5, p = 10

In the proposed test, the stability performances depend on
the choice of the tuning parameters α and p. The control
performance of the resulting closed-loop system is plotted in
Figs 2, and 3, where the black lines correspond to the desired
outputs, the red solid lines correspond to the system outputs
using Centralized MPC (C-MPC) based on Laguerre functions,
and the blue solid lines represent the system outputs using
the proposed NC-DMPC. In Fig 2, the performance of ND-
DMPC is comparable to the one of C-MPC. However, for
strong interactions with α = 3.5, Fig 3 shows that the ND-
DMPC strategy can achieve a better global performance of the
closed-loop system than C-MPC.

To sum up, for the given example, the NC-DMPC can
achieve a satisfactory global performance even whether the
interactions among subsystems are strong or not. Furthermore,
the cost of computation is very small as compared with the
classical centralized controller.

IX. CONCLUSION

In the present study, a formulation of a novel distributed
model predictive control for a class of large-scale systems is
proposed, in which the whole system is divided into many
small scale subsystems interacting with each other by both
their states and inputs. The NC-DMPC solution, was proposed
for improving the global performance of closed-loop system;
it is based on Laguerre functions used in MPC formulation.
The proposed methodology is demonstrated on an example
for a set-point tracking. Compared to the C-MPC scheme,
the proposed NC-DMPC allowed to achieve an improved
performance of the whole system through using a local index
in optimization.
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