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HITTING TIMES FOR THE PERTURBED REFLECTING
RANDOM WALK

LAURENT SERLET

Abstract. We consider a nearest neighbor random walk on Z which is
reflecting at 0 and perturbed when it reaches its maximum. We compute
the law of the hitting times and derive many corollaries, especially in-
variance principles with (rather) explicit descriptions of the asymptotic
laws. We obtain also some results on the almost sure asymptotic behav-
ior. As a by-product one can derive results on the reflecting Brownian
motion perturbed at its maximum.

1. Introduction and statement of the results

Processes with reinforcement have already generated an important amount
of literature. Pemantle gives in [Pe] a very pleasant survey with lots of ref-
erences. Reinforced random walks on a graph where introduced by Diaconis
in 1987 with an edge reinforcement scheme. Other reinforcement schemes
were introduced later, for instance sequence-type reinforcement as in [Da90].
Many questions remain open concerning reinforced random walks, especially
in dimension greater than 1. In the present paper we stay in dimension 1
and we concentrate on the simplest case : the once reinforced random walk
which is a random walk perturbed when reaching its extrema and more
particularly its variant obtained by reflection at 0. This walk will be called
perturbed reflecting random walk (PRRW). Let us give a precise definition.

For any real valued process (Xn)n≥0, we denote FXn the σ-algebra gener-
ated by X0, X1, . . . , Xn and we set Xn = max{X0, X1, . . . , Xn}. The PRRW
with reinforcement parameter r ∈ (−1, 1) is a process (Xn)n≥0 taking its val-
ues on Z+ = {0, 1, 2, . . .} such that, for every n ≥ 0, Xn+1 ∈ {Xn−1, Xn+1}
and the transition probability P

(
Xn+1 = Xn + 1

∣∣FXn ) is equal to

• 1/2 if 0 < Xn < Xn

• (1− r)/2 if Xn = Xn and n ≥ 1
• 1 if Xn = 0

and moreover we suppose X0 = 0. Of course the case r = 0 corresponds to
the reflecting standard random walk (RSRW). We will also use the quantity
β = (1 + r)/(1− r) to simplify some formulas. We interpret the case r > 0
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2 LAURENT SERLET

as a self attractive walk called in the literature a reinforced random walk–
whereas for r < 0 the walk is self repulsive and often called a negatively
reinforced random walk. We summarize in the array below.

(1)

r −1↗ 0 0 0↗ 1
β = (1 + r)/(1− r) 0↗ 1 1 1↗ +∞

Terminology negatively reinforced standard reinforced
Interpretation self repellent self attracting

Davis ([Da96], [Da99]) has shown that a random walk perturbed when
reaching its extrema converges, after the same rescaling as in Donsker’s
Theorem, toward a continuous time process called perturbed Brownian mo-
tion. This process has been studied by many authors, see for instance [LY],
[CPY], [W], [Da96], [Da99], [PW], [CD99], [CD00] and the references therein.
In our case where reflection at 0 is added, the continuous time limit is the
solution of the equation

(2) Wt = Bt + α sup
s≤t

Ws +
1
2
LWt

where (LWt )t≥0 is the local time process at level 0.
The goal of the present paper is to study the PRRW via an excursion

point of view. Since the PRRW behaves as a standard random walk when
it is below the maximum, we concentrate on the study of the maximum
process. This leads to the study of the hitting time process (Tn)n≥0 defined,
as usual, by Tn = inf{k ≥ 0; Xk = n}. Our starting point is an elementary
representation of these hitting times using the excursions below the already
visited levels (see section 3). Most of the results in the paper are in fact
derived from this representation and we will state them in the rest of this
section.

We start with an invariance principle for the rescaled hitting time process.
For a process with trajectories in the space D([0,+∞),R) of càdlàg func-

tions, “convergence in law” means weak convergence of probability laws on
this space endowed with the usual Skorohod topology.

Theorem 1. Let (τnt )t≥0 be the rescaled process of the hitting times of the
PRRW defined by

(3) τnt =
1
n2

T[nt]

where [·] denotes the integer part.
Then, as n → +∞, the process (τnt )t≥0 converges in law to a process

(τt)t≥0 with independent non-negative increments whose laws are given, for
0 < s < t, by the Laplace transform

(4) E
[
e−

µ2

2
(τt−τs)

]
=
(

cosh(µ s)
cosh(µ t)

)β
.
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This process has strictly increasing trajectories and is self-similar :

(5) ∀a > 0, (τa t)t≥0
(d)
= (a2 τt)t≥0.

Moreover, for any t > 0, the density of τt on (0,+∞) is equal to

(6) φτt(x) =
2β√
2π

+∞∑
k=0

(
−β
k

)
(β + 2k) t
x3/2

e−
(β+2k)2 t2

2 x

(see (40) for the definition of generalized binomial coefficients). The process
(τt)t≥0 can be represented as

(7) τt =
∫ t

0

∫
R+

x N (ds dx)

where N (ds dx) is a Poisson point measure on R+ × R+ with intensity
fs(x) ds dx where

(8) fs(x) =
π2

4 s3
β

+∞∑
n=1

(2n− 1)2 e−
(2n−1)2π2

8
x
s2 .

The proof of this theorem is given in section 4. Note that in the case
β = 1 of the RSRW, (τt)t≥0 is the hitting times process of a reflecting
Brownian motion. Formulas (4) and (6) are given for instance in [BS] as
Formulas 3.1.1.2 and 3.1.1.4. For the latter note that the binomial coefficient
appearing in (6) equals simply (−1)k in that case.

Since the maximum process (Xn)n≥0 can be obtained by inversion of the
hitting times (Tn)n≥1, we will be able to state later an invariance principle
for the rescaled maximum and the limit will be the inverse of (τt)t≥0. In
preparation for this result let us introduce and study this process.

Proposition 2. Let (Ys)s≥0 be the non-decreasing process defined by

(9) Ys = inf{t; τt > s}
where (τt)t≥0 is defined in Theorem 1. This process has continuous trajec-
tories. It is self-similar :

(10) ∀a > 0, (Ya s)s≥0
(d)
= (
√
a Ys)s≥0.

Concerning the marginal laws, we have

(11) ∀s > 0, Ys
(d)
=

√
1

τ1/
√
s

(d)
=
√

s

τ1

and, for any s > 0, the variable Ys admits the density on R+ given by :

φYs(x) =
2 s
x3

φτ1

( s
x2

)
(12)

=
2β+1

√
2π

+∞∑
k=0

(
−β
k

)
(β + 2k)√

s
e−

(β+2k)2 x2

2 s .(13)
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The occupation measure of (Ys)s≥0 has the following Laplace transform : for
any measurable non-negative function ϕ,

(14) − log E
(
e−

R +∞
0 ϕ(Ys) ds

)
= β

∫ +∞

0

√
2ϕ(s) tanh

(
s
√

2ϕ(s)
)
ds.

For any s ≥ 0, the variable Ys admits moments of every order p ≥ 1 and for
β < p this moment is given by the formula

(15) E[Y p
s ] =

2β+ p+1
2

√
2π

Γ
(
p+ 1

2

) (+∞∑
k=0

(
−β
k

)
1

(β + 2k)p

)
sp/2.

A corollary of Theorem 1 is an invariance principle for the maximum of
the PRRW.

Theorem 3. Let (Xn)n≥1 be a PRRW as before. Denote (Y n
t )t≥0 the

rescaled maximum process, defined as :

Y n
t =

1√
n
X [nt].

Then the process (Y n
t )t≥0 converges in law to the process (Yt)t≥0 defined in

Proposition 2.

This result can be extended to the whole rescaled process (Xn
t )t≥0 defined

by Xn
t = 1√

n
X[nt], as proved in [Da99]. In our approach we could reobtain

this result by proving that the couple (Y n
t , Y

n
t −Xn

t )t≥0 converges in law to
(Yt, Zt)t≥0 where the conditional law of (Zt)t≥0 knowing (Yt)t≥0 is that of
a Brownian motion on [0,+∞), reflecting at Yt and conditioned to return
at 0 at the increasing times of Yt. This process can be constructed in the
following way : introduce D = {d; τ−d 6= τd}; define (ed, d ∈ D) such
that ed is a Brownian excursion between 0 and τd − τ−d reflecting at d and
theses excursions are mutually independent; for any s > 0 and d such that
s ∈ (τ−d , τd], set Zs = ed(s − τ−d ). However developing completely the
argument seems too lengthy and we will not do it in the present paper.

Note that Theorem 3 above is a consequence of the results of [Da99],
however one interest of our approach lies in the description of the limit
(Yt)t≥0. A consequence is a better understanding of the solution of (2) as
stated below. Concerning the equation (2) one can refer for instance to
[CD99] for existence and unicity results.

Theorem 4. Let (Wt)t≥0 be a solution of (2) for α ∈ (−∞, 1) and, for
s ≥ 0, W s = supt≤sWt. Then the process (W s)s≥0 has the same law as the
process (Ys)s≥0 studied in Proposition 2 with β = 1− α.

The estimates we have obtained for the previous theorems can be used to
describe–at least partially– the almost sure behaviour of the PRRW. As it
is well known, the almost sure asymptotic behavior of a RSRW is given by



HITTING TIMES FOR THE PERTURBED REFLECTING RANDOM WALK 5

the famous law of the iterated logarithm and the so called Chung’s law of
the iterated logarithm ([Ch]). The latter states that, for a RSRW (Xn)n≥0,

(16) lim inf
n→+∞

Xn√
n

log(2) n

=
π√
8

almost surely. We used the notation log(2) x = log(log(x)) for the iterated
natural logarithm. A comparison argument –such as the one formalized in
Proposition 18– entails that the inequality ≥ holds for the PRRW in the
self-repulsive case r ∈ (−1, 0] and that the inequality ≤ holds in the self
attractive case r ∈ [0, 1). We do not know if equality still holds in the self
repulsive case–we conjecture no– but we can show it in the self attractive
case as stated in the following result which is proved in section 6.

Theorem 5. For any r ∈ [0, 1) the PRRW with reinforcement parameter r
satisfies Chung’s law of the iterated logarithm as stated in (16).

The “classical” law of the iterated logarithm says –as it is well known–
that for a RSRW (Xn)n≥0, almost surely,

(17) lim sup
n→+∞

Xn√
n log(2) n

=
√

2.

For the PRRW the same remark as above applies i.e. the inequality ≥
holds in the self-repulsive case and that the inequality ≤ holds in the self
attractive case. We go a little further with the following result which is
obviously upgradeable. It shows in the self attractive case that in contrast
to Chung’s law, the behavior is different from the standard case, at least
when the reinforcement is strong enough.

Proposition 6. For any r ∈ (1/9, 1) i.e. β > 5/4, the PRRW (Xn)n≥0

with such reinforcement parameter r satisfies,

(18) lim sup
n→+∞

Xn√
n log(2) n

≤ 1√
2 (β − 1)

.

For any r ∈ (−1, 0) i.e. β ∈ (0, 1), the PRRW (Xn)n≥0 with such reinforce-
ment parameter r satisfies, for every ε > 0,

(19) lim sup
n→+∞

Xn√
n log(2) n (log(3) n)ε

= 0.

Note that (18) is still true for β ∈ (1, 5/4) but in that case the bound on
the right hand side is not as good as the obvious bound

√
2.

As another application of the study of the hitting times, we state a result
concerning the return time to 0 and the maximum before this time for the
PRRW. For the SRW, this return time to 0 is of course a.s. finite but has
infinite mean since recurrence–but not positive recurrence–holds. For the
PRRW it is well known that recurrence still holds, whatever the value of the
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reinforcement parameter but it is remarkable that above a critical value for
this reinforcement parameter “positive recurrence” occurs.

Proposition 7. Let (Xn)n≥0 be a PRRW with reinforcement parameter r
and ζ = inf{n > 0, Xn = 0}. Then

E(ζ) < +∞⇔ r > 1/3 (⇔ β > 2) .

The proof is rather elementary and given in section 7. We also get the
following proposition which shows a new dichotomy in behavior according
to the reinforcement parameter.

Proposition 8. Let (Xn)n≥0 be a PRRW with reinforcement parameter r;
let ζ = inf{n > 0, Xn = 0} as before and M = max{|Xn|, n ≤ ζ}. Then

E(M) < +∞⇔ r > 0 (⇔ β > 1)

and for these values E(M) = β/(β − 1).

In fact the joint law of (ζ,M) can be described rather explicitely (see
Proposition 19). A natural question is the asymptotic conditional law which
turns out to be simple as stated in the following.

Theorem 9. The conditional law of ζ
m2 knowing M = m converges, as

m→ +∞, to the law of a variable Z having the following Laplace transform

(20) E
(
e−

λ2

2
Z

)
=
(

λ

sinhλ

)1+β

.

This theorem is a generalization of the standard case β = 1, where Z is
distributed as the length of a Brownian excursion conditioned to have height
1 and for which the above formula is well known.

The rest of the paper is devoted to the proofs of the results stated in the
present section, begining with a section of lemmas.

2. Preliminary lemmas

We start with elementary results on the RSRW or standard random walk
(SRW). For the sake of completeness we sometimes give a sketch of proof.
The notations cosh, sinh and tanh refer to the usual functions of hyper-
bolic trigonometry. Let (Sn)n≥0 be a RSRW starting at level k > 0 and
conditioned on S1 = k − 1. The variable

(21) L = inf{n > 0; Sn = k}
denotes the length of an excursion below level k for the RSRW.

Lemma 10 (Laplace transform of L). For any λ ∈ R, we have

(22) E
[
(coshλ)−L

]
= 1− tanh(λ) tanh(kλ).

Moreover, for |λ| < π
2k , we have

(23) E
[
(cosλ)−L

]
= 1 + tan(λ) tan(kλ).
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Proof. The variable L has the same law as 1+T where T is the hitting time
of {−k, k} for a SRW (Sn)n≥0, starting from k − 1. But for any λ ∈ R, the
process

(
eλSn

(coshλ)n

)
n≥0

is a martingale, bounded up to time T . The stopping

theorem entails, setting z = 1/ cosh(λ),

eλ (k−1) = eλ k E
[
zT 1{ST=k}

]
+ e−λ k E

[
zT 1{ST=−k}

]
.

Changing λ into −λ leads to a supplementary equation. Then solving the
system formed by these two equations, we obtain

E
[
zT 1{ST=k}

]
=

sinh(λ (2k − 1))
sinh(2λ k)

and E
[
zT 1{ST=−k}

]
=

sinh(λ)
sinh(2λ k)

.

It follows by usual hyperbolic trigonometry that

E[zT ] = cosh(λ)− sinh(λ k) sinh(λ)
cosh(λ k)

where the last equality follows from usual hyperbolic trigonometry. But
E[zL] = E[zT ]/ cosh(λ) so (22) is proved.

Formula (23) is obtained by a classical argument of analytic continuation.

Lemma 11 (Moments of L). For the length L defined in (21) we have the
following mean and variance :

E(L) = 2 k,(24)

V(L) =
4
3
k (k − 1) (2 k − 1).(25)

Proof. Use differentiation with respect to λ in (22).

Lemma 12 (Time spent in a strip by a SRW). Let (Xn)n≥0 be a SRW
started at 1 and ξ be the hitting time of {0, k}. Then

(26) J+1(k, λ) = E
[
(coshλ)−(1+ξ) 1{Xξ=0}

]
= 1− tanhλ

tanh(kλ)

and

(27) J−1(k, λ) = E
[
(coshλ)−(1+ξ) 1{Xξ=k}

]
=

tanhλ
sinh(kλ)

and

(28) E
[
(coshλ)−(1+ξ)

]
= 1− tanhλ tanh(

kλ

2
).

Moreover

(29) E [1 + ξ | Xξ = 0] =
2 (k + 1)

3
and E [1 + ξ | Xξ = k] =

2 + k2

3
.

Proof : same arguments as in Lemma 10.
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Lemma 13. There exists a constant C such that, for x ∈ R and y ≥ 1,

(30)
∣∣∣∣( 1

coshx

)y
− e−

x2 y
2

∣∣∣∣ ≤ C y x4

Proof. First we note that there exists a constant C such that for any x ∈ R,∣∣∣∣ 1
coshx

− e−
x2

2

∣∣∣∣ ≤ C x4

We note also that, by the an obvious bound on the derivative, we have, for
0 ≤ a, b ≤ 1 and y ≥ 1,

|ay − by| ≤ |a− b| y.
Finally we combine the two inequalities above.

Lemma 14. Let f and fn, n ≥ 1 be nondecreasing functions belonging
to D([0, A], [0, B]) such that fn converges to f , as n → +∞, with respect
to the Skorohod topology and f is supposed to be strictly increasing. Let
g(t) = inf{s, f(s) > t} and gn(t) = inf{s, fn(s) > t} define their respective
inverses. Then gn converges to g with respect to the uniform topology.

Proof. It is an exercise on Skorohod topology but we give a proof for the
sake of completeness. The hypothesis implies the existence of a sequence
(λn) of continuous strictly increasing functions from [0, A] onto [0, A] and a
sequence (εn) converging to 0 such that, for every t ∈ [0, A], we have

(31) f(t)− εn ≤ fn(λn(t)) ≤ f(t) + εn

and

(32) t− εn ≤ λn(t) ≤ t+ εn.

Take n ≥ 1 and t ∈ (εn, A]. By the definition of g, we see that f(g(t)) ≥ t.
Using (31), we deduce fn(λn(g(t))) ≥ t − εn > t − εn − η, for a small
η > 0 and, as a consequence, gn(t − εn − η) ≤ λn(g(t)) ≤ g(t) + εn, the
last bound following from (32). Since f is strictly increasing, it is easy
to see that g is continuous. We introduce its oscillation in the usual way
ω(η) = sup{|g(x)− g(y)| , |x− y| ≤ η}. We obtain

(33) gn(t) ≤ g(t) + εn + ω(η + εn).

Besides, for any small η > 0, the definition of g implies that f(g(t)− η) ≤ t.
Using (31), it follows that fn(λn(g(t) − η)) ≤ t + εn which implies that
gn(t+εn) ≥ λn(g(t)−η) ≥ g(t)−η−εn, the last equality following from (32).
Changing t+ εn into t, we get, for t ≥ 2εn,

(34) gn(t) ≥ g(t)− ω(εn)− η − εn.
Combining (34) and (33) and letting η tend to 0, we conclude that |g(t) −
gn(t)| ≤ εn+ω(εn) for t ∈ (2εn, A). Also it is easy to see that supt≤2εn gn(t) =
gn(2 εn) converges to 0 and it is trivial that supt≤2εn g(t) tends to 0. We
conclude that supt∈[0,A] |g(t) − gn(t)| converges to 0 and the proof of the
Lemma is complete.
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We end this section by recalling some elementary facts that we will use
in the sequel.
1) The classical gamma function Γ satisties, for a > 0, as x→ +∞,

(35)
Γ(x+ a)

Γ(x)
∼ xa.

2) For a > −1 and x > 1, the following formula holds

(36)
+∞∑
k=1

Γ(a+ k)
Γ(a+ k + x)

=
Γ(a+ 1)

(x− 1) Γ(a+ x)

as stated for instance in [GR] Formula 8.384 (3) p. 910.
3) Let G be a random variable following the law given by

(37) ∀g ≥ 0, P(G = g) =
1− r

2

(
1 + r

2

)g
that we will denote G((1 − r)/2) in the sequel and call geometric law with
parameter (1− r)/2. Its mean and variance are

(38) E(G) =
1 + r

1− r
= β, V(G) =

2(1 + r)
(1− r)2

and the generating function is

(39) E
(
zG
)

=
1− r

2− (1 + r) z
.

4) We recall the usual notation for generalized binomial coefficients

(40)
(
−β
k

)
=

k∏
j=1

−β − j + 1
j

=
(−1)k

k!
Γ(k + β)

Γ(β)
.

which will appear in the series expansion, valid for |u| < 1,

(41) (1 + u)−β =
+∞∑
k=0

(
−β
k

)
uk .

3. Excursion representation for the hitting times

Recall that we denote by (Tn)n≥0 the hitting time process of a PRRW
(Xn)n≥0. We are looking for the limiting law of Tn/n2. For the RSRW,
many methods could apply (see for instance [Sp] P.21.5 or T.23.2 and also
Problem 23.10). Here the most appropriate approach seems to decompose
Tn using excursion length below the already visited levels, as stated below.

Proposition 15. The hitting times (Tn, n ≥ 2) of the PRRW can be rep-
resented as sums of independent variables (Yk)k≥1 by

(42) Tn = n+
n−1∑
k=1

Yk where Yk =
Gk∑
i=1

Lki
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and

• the variables Gk, k ≥ 1 are independent and distributed according
to the same geometric law G((1− r)/2) defined in (37).
• the variables Lki , k ≥ 2, i ≥ 1 are mutually independent and inde-

pendent of the Gk’s.
• each variable Lki has the law of the length of an excursion of the

RSRW below level k (as studied in Lemma 10).

We use the usual convention
∑0

1 = 0.

The proof is obvious and omitted. The following corollary will be crucial.

Proposition 16. The hitting times (Tn) of the PRRW have the following
mean and variance :

(43) E(Tn) = n+ β n (n− 1).

and, for large n,

(44) V(Tn) ∼ β 2
3
n4.

and the following Laplace transforms : for any λ > 0,

(45) E

[(
1

coshλ

)Tn]
=

1
coshn(λ)

n−1∏
k=1

1
1 + β tanh(λ) tanh(k λ)

and, for any λ ∈ (−π/2n, π/2n) such that β tan(λ) tan(k λ) < 1, we have

(46) E

[(
1

cosλ

)Tn]
=

1
cosn(λ)

n−1∏
k=1

1
1− β tan(λ) tan(k λ)

.

Proof. To obtain Formula (43), we take the mean in (42) then use (24)
and (38) and the result follows immediately. Similarly Formula (44) is ob-
tained by taking the variance in (42); for the variance of Yk, we are in the
classical situation of a random sum of random variables :

V(Yk) = E(Gk) V(Lk1) +
(
E(Lk1)

)2
V(Gk) .

We use the Formulas (38), (24), (25) and get (44).
Now let us prove Formula (45). We start again from the representa-

tion (42) to get

E
[
(coshλ)−Tn

]
= cosh−n(λ)

n−1∏
k=1

E
[
E
[
(coshλ)−L

k
1

]Gk]
then use Formulas (22) and (39) and this gives (45). The proof of (46) is
similar using (23) instead of (22).
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4. Invariance principle for the hitting times

We now give a proof of Theorem 1. We first show the convergence
of finite dimensional marginals. As the independence of the increments of
(τnt )t≥0 is clear, we only have to prove the convergence in law of τnt − τns for
0 < s < t. More precisely we want to show that, for any µ > 0,

(47) lim
n→+∞

E
[
e−

µ2

2
(τnt −τns )

]
=
(

cosh(µ s)
cosh(µ t)

)β
.

To do so we start from (42) which gives

τnt − τns =
[nt]− [ns]

n2
+

1
n2

[nt]−1∑
k=[ns]

Yk.

By a slight generalization of (45) we have, for any λ > 0,

E

[(
1

coshλ

)n2(τnt −τns )
]

= (coshλ)[ns]−[nt]

[nt]−1∏
k=[ns]

1
1 + β tanh(λ) tanh(k λ)

.(48)

Taking λ = µ/n for fixed µ > 0, we get

log E

[(
1

cosh µ
n

)n2(τnt −τns )
]

= ([ns]− [nt]) log cosh
µ

n
−

[nt]−1∑
k=[ns]

log
(

1 + β tanh(
µ

n
) tanh(k

µ

n
)
)
.

As n→ +∞, the first term on the r.h.s. converges to 0. For the second one
an asymptotic expansion of the logarithm at 0 shows that it behaves like

β

[nt]−1∑
k=[ns]

tanh(
µ

n
) tanh(k

µ

n
) ∼ β

µ

n

[nt]−1∑
k=[ns]

tanh(k
µ

n
)

∼ β

∫ tµ

sµ
tanh(x) dx

= β [log cosh(µt)− log cosh(µs)]

Hence

(49) lim
n→+∞

E

[(
1

cosh µ
n

)n2(τnt −τns )
]

=
(

cosh(µ s)
cosh(µ t)

)β
.
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We now apply Inequality (30) of Lemma 13 with x = µ/n and y =
n2 (τnt − τns ) to get

E

(∣∣∣∣∣
(

1
cosh µ

n

)n2(τnt −τns )

− e−
µ2

2
(τnt −τns )

∣∣∣∣∣
)
≤ E(τnt − τns )

n2
=

E(T[nt] − T[ns])
n4

.

But (43) proves that the right hand side converges to 0 as n → +∞ and
combined with (49), it completes the proof of (47) and thus the convergence
in law of finite dimensional marginals.

To show the tightness of the laws of the processes ((τnt )t≥0, n ≥ 1) we can
use for instance the criterion stated in [Bi] Theorem 15.6 which consists, for
any T > 0, in finding a nondecreasing continuous function F such that, for
all 0 ≤ t1 ≤ t ≤ t2 ≤ T and all n large enough,

(50) E
[
(τnt − τnt1) (τnt2 − τ

n
t )
]
≤ [F (t2)− F (t1)]2.

By (43), we have

E [τnt − τns ] =
[nt]− [ns]

n

(
1− β
n

+ β
[nt] + [ns]

n

)
.

Combining this with the independence of the increments, we obtain, for
0 ≤ t1 ≤ t ≤ t2 ≤ T ,

E
[
(τnt − τnt1) (τnt2 − τ

n
t )
]
≤ (1 + 2βT )2

(
[n t2]− [n t1]

n

)2

.

We deduce that (50) is satisfied with F (t) = 2 (1 + 2βT ) t. Indeed if
t2 − t1 ≥ 1/n, it follows from the inequality above. If t2 − t1 ≤ 1/n then
either n t1 and n t lie in the same interval of the form [i, i+ 1) (for a certain
integer i) or else n t2 and n t do ; in either of these cases the left hand side
in (50) vanishes.

To obtain the expression of the density of τt as given in (6) we first
reexpress the Laplace transform of τt : for µ ≥ 0,

E
[
e−µ τt

]
=

(
cosh(

√
2µ t)

)−β
=

2β e−β
√

2µ t

(1 + e−2
√

2µ t)β

= 2β
+∞∑
k=0

(
−β
k

)
e−(β+2k)

√
2µ t.(51)

The last line follows from (41) and holds for µ > 0. But a classical result on
Laplace transforms states that, for all a > 0, µ ≥ 0,

e−a
√

2µ =
∫ +∞

0
e−µx

a√
2π x3/2

e−
a2

2x dx.

Using this equality in (51) and then inverting the integral and the sum gives
the expression of the density of τt given in (6).
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Now we want to show the representation given in (7). Since this formula
obviously defines a process with independent increments it suffices to check
that, for all 0 < s < t,

(52) E
(
e
−µ

2

2

R t
s

R
R+

x N (du dx)
)

=
(

cosh(µ s)
cosh(µ t)

)β
.

But the exponential formula for Poisson measures entails

E
(
e
−µ

2

2

R t
s

R
R+

x N (du dx)
)

= exp
[
−
∫ t

s

∫
R+

(
1− e−

µ2

2
x

)
fu(x) du dx

]
where fs(x) is the intensity function defined by (8). So it suffices to check
that ∫ t

0

∫
R+

(
1− e−

µ2

2
x

)
fs(x) ds dx = β log cosh(µ t).

By changing µ2/2 into ν and deriving with respect to t, then doing an
integration by parts, this is equivalent to∫ +∞

0
e−ν y

∫ +∞

y
ft(x) dx dy = 2β

tanh(
√

2 ν t)√
2 ν

.

But noting that ft(x) = f1(x/t2)/t3 and doing straightforward changes of
variables, we see that it suffices to check the formula for t = 1. Note also
that, by the definition of f1(x) given in (8), we have∫ +∞

y
f1(x) dx = 2β

+∞∑
n=1

e−
(2n−1)2π2

8
y

so it suffices to check that∫ +∞

0
e−ν y

(
+∞∑
n=1

e−
(2n−1)2π2

8
y

)
dy =

tanh(
√

2 ν)√
2 ν

.

Doing straightforward integration and setting x = (2
√

2ν)/π, this formula
is equivalent to

(53) tanh
π x

2
=

4x
π

+∞∑
n=1

1
x2 + (2n− 1)2

which is a classical expansion in series of simple fractions, see [GR] formula
1.421(2) p. 44.

5. Explicit formulas for the process Y

This section is devoted to the proof of Proposition 2 concerning the
process (Ys)s≥0. The self-similarity expressed in (10) is a direct consequence
of the self similarity of (τt)t≥0. Let us pass to (11). Let ϕ be a continuously
differentiable function on R+ with ϕ(0) = 0. Then
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E [ϕ(Ys)] =
∫ +∞

0
ϕ(y) P(Ys ∈ dy) =

∫ +∞

0
ϕ′(t) P(Ys ≥ t) dt

=
∫ +∞

0
ϕ′(t) P(τt ≤ s) dt =

∫ +∞

0
ϕ′(t)

∫ s/t2

0
P(τ1 ∈ dy) dt

=
∫ +∞

0
ϕ

(√
s

y

)
P(τ1 ∈ dy) = E

[
ϕ

(√
s

τ1

)]
.

We have used successively Fubini’s Theorem, the definition (9), the scal-
ing (5), and again Fubini’s Theorem. Since the equality holds for a law
determining class of functions ϕ, we deduce (10). Then it is straightforward
to deduce Formulas (12) and (13).

Now we want to prove Formula (14). We first note that, for ϕ nonnegative
measurable function on R+,∫ +∞

0
ϕ(t) dτt =

∫ +∞

0
ϕ(Ys) ds.

This is straightforward when ϕ = 1[0,a], a > 0 and the general case follows
by a monotone class argument. Using this formula and the representation (7)
of τt in terms of a Poisson measure and finally the exponential formula for
Poisson measures, we get

− log E
(
e−

R +∞
0 ϕ(Ys) ds

)
= − log E

(
e−

R +∞
0

R +∞
0 ϕ(t) x N (dt dx)

)
=

∫ +∞

0

∫ +∞

0
ft(x)

(
1− e−x ϕ(t)

)
dt dx.

The explicit value of the intensity function ft(x) given in (8) allows us to
compute the integral above. Denoting I the set of odd integers, we obtain∫ +∞

0

∫ +∞

0
ft(x)

(
1− e−x ϕ(t)

)
dt dx

= 2β
∫ +∞

0

(∫ +∞

0

∑
n∈I

n2 π2

8 t2
e−

n2 π2

8 t2
x
(

1− e−x ϕ(t)
)
dx

)
dt

t

= 2β
∫ +∞

0

(∑
n∈I

ϕ(t)
n2 π2

8 t2
+ ϕ(t)

)
dt

t

where the last equality is obtained via term by term integration. Using
Formula (53), we compute the sum appearing above and get the desired
formula (14).

Now we prove Formula (15) for the moments of Ys. By scaling we may
restrict to s = 1. We start from the density given by (13) and get

E(Y p
1 ) =

∫ +∞

0
xp φY1(x) dx =

2β+1

√
2π

∫ +∞

0

+∞∑
k=0

(
−β
k

)
(β+2k) xp e−

(β+2k)2 x2

2 dx.
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The sought-after formula (15) simply follows by inverting the sum and the
integral. However (35) entails that, for k → +∞,∣∣∣∣(−βk

)∣∣∣∣ =
Γ(β + k)

Γ(β) Γ(k + 1)
∼ 1

Γ(β)
kβ−1

so that this inversion can be justified by Fubini’s Theorem only when p > β.
But of course, the existence of moments for large p implies the existence for
all p ≥ 1.

6. Laws of the iterated logarithm for the PRRW

Now we want to prove Theorem 5 and Proposition 6 and as before we
proceed via the hitting times (Tn)n≥0. The representation (42) obtained
in Proposition 15 makes Tn the sum of independent variables Yk and it is
natural to try the laws of the iterated logarithm that have been proved
in this framework–see for instance [JJS] and the references therein–but the
hypotheses of many of these theorems seem difficult to check in our context
and the criterion involving moments (corollary 6.1 of [JJS]) does not apply
since one can check that E(Y 3

k ) ∼ c k5. Our strategy is to take advantage
of the (rather) explicit form of the Laplace transforms obtained previously
and deduce tail estimates. Our result on hitting times is as follows.

Theorem 17. For the PRRW the hitting times (Tn)n≥1 satisfy

(54) lim sup
n→+∞

Tn

n2 log(2) n
≤ 8
π2
.

Moreover if β ∈ (0, 1) we have, for every ε > 0,

(55) lim inf
n→+∞

Tn
n2

log(2) n (log(3) n)ε

= +∞

and if β > 1, we have

(56) lim inf
n→+∞

Tn
n2

log(2) n

≥ 2(β − 1).

Proof. We start with (54). We take q > 1 and, as before, denote [·] the
integer part. For the moment (an)n≥1 is any positive sequence and (λn)n≥1

is a sequence of real numbers in (0, π/2). We begin using the so-called
“Markov inequality” :

(57) P
(
T[qn] − [qn]
q2n an

≥ 1
)
≤ (cosλn)q

2n an E

[(
1

cosλn

)T[qn]−[qn]
]
.

We fix ε > 0 and take λn = µ/qn with µ = π(1−ε)
2 ∈ (0, π/2). With this

choice it is straightforward to check that

(58) lim
n→+∞

sup
1≤k<[qn]

β tan(λn) tan(k λn) = 0
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so that we can use (46) which writes as

E

[(
1

cosλn

)T[qn]−[qn]
]

=
[qn]−1∏
k=1

1
1− β tan(λn) tan(k λn)

.

We note that for small x, we have 1
1−x ≤ exp((1 + ε)x). We deduce from

the previous inequality that, for large n,

E

[(
1

cosλn

)T[qn]−[qn]
]
≤ exp

β(1 + ε)
[qn]−1∑
k=1

tan
µ

qn
tan

kµ

qn


≤ exp

β(1 + ε)2
µ

qn

[qn]−1∑
k=1

tan
kµ

qn


≤ exp

(
β(1 + ε)2

∫ µ

0
tan(x) dx

)
≤ exp

(
β(1 + ε)2 (− log cosµ)

)
.

We have used firstly that, for large n, tan(µ/qn) ≤ (1 + ε) (µ/qn) and sec-
ondly a straightforward bound on a Riemann sum. We inject this result

in (57) and use moreover the inequality cos(x) ≤ e−
x2

2 , valid for small x.
We get that, for large n,
(59)

P
(
T[qn] − [qn]
q2n an

≥ 1
)
≤ C exp

(
−β (1 + ε)2 log sin

ε π

2

)
exp

(
−µ

2

2
an

)
.

The choice

an =
2
µ2

(1 + ε) log n =
8
π2

1 + ε

(1− ε)2
log n

ensures that the right hand side in (59) is the term of a convergent series.
We deduce by the Borel-Cantelli Lemma that

lim sup
n→+∞

T[qn] − [qn]
q2n an

≤ 1

so that

lim sup
n→+∞

T[qn]

q2n log(2)(qn)
≤ 8
π2

1 + ε

(1− ε)2
.

Recalling that ε > 0 is arbitrary, the above lim sup is in fact lower than 8/π2.
Then, for any integer k, we use the usual interpolation [qn] ≤ k < [qn+1]
and the monotonicity property of the Tk’s to get

lim sup
k→+∞

Tk

k2 log(2)(k)
≤ q2 8

π2

and (54) follows by letting q ↓ 1.
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We pass to (55) and (56), following similar lines. For q > 1, A, an > 0 and
λn = µn/q

n positive and converging to 0, we write the following inequalities
that we will justify below :

P
(
T[qn] − [qn]
q2n an

≤ A
)

≤ (coshλn)q
2n Aan E

[(
1

coshλn

)T[qn]−[qn]
]

(60)

= (coshλn)q
2n Aan

[qn]−1∏
k=1

1
1 + β tanh(λn) tanh(k λn)

(61)

≤ e
µ2
n A an

2 exp

−β(1− η)2
µn
qn

[qn]−1∑
k=1

tanh(k
µn
qn

)

(62)

≤ exp

[
µ2
n A an

2
− β(1− η)2

∫ ([qn]−1)µn
qn

0
tanhx dx

]
(63)

≤ exp
[
µ2
n A an

2
− β(1− η)2 log cosh

(
([qn]− 1)µn

qn

)]
(64)

≤ c exp
[
µn

(
µn A an

2
− β(1− η)2

([qn]− 1)
qn

)]
(65)

≤ c exp
[
µn

(
µn A an

2
− β(1− η)3

)]
.(66)

Indeed, (60) is a Markov inequality. Equality (61) follows from (45). Then
we use, that for x small, coshx ≤ ex

2/2 and that, for a fixed small η > 0
we have , for x small enough, (1 + x)−1 ≤ e−(1−η)x and tanhx ≥ (1− η) x.
Recalling that λn = µn/q

n converges to 0, we get (62), valid for large n.
Inequality (63) is obtained by a straightforward bound on the integral and
the computation of this integral gives (64). Finally (65), follows simply from
log coshx ≥ x− log 2 and (66) is a consequence for large n.

In the case 0 < β < 1, we take an = log−1 n (log(2) n)−ε where ε > 0 and
µn = log n (log(2) n)ε/2. We see that the term in (66) is summable in n. By
the Borel Cantelli Lemma, we deduce that T[qn]−[qn]

q2n an
≥ A for large n and the

assertion (55) follows by standard arguments as before.
In the case β > 1, take an = log−1 n and µn = log n = 1/an. For A such

that A
2 − β < −1 we can find η > 0 such that A

2 − β (1− η)3 < −1 and the
quantity (66) is summable in n. By the same argument as before we deduce

lim inf
n→+∞

Tn

n2(log(2) n)−1
≥ A

and this is true for all A < 2 (β − 1) so that (56) follows.
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We now give a formal statement on the intuitive comparison argument
used in the introduction.

Proposition 18. If (Xn)n≥0 is a PRRW with reinforcement parameter r ∈
[0, 1) then one can construct a RSRW (Wn)n≥0 starting at 0 such that Wn ≥
Xn for every n ≥ 0.

If (Xn)n≥0 is a PRRW with reinforcement parameter r ∈ (−1, 0] then one
can construct a RSRW (Wn)n≥0 starting at 0 such that Wn ≤ Xn for every
n ≥ 0.

Proof. We only treat the case r ≥ 0, the other one is similar. Let (ηn)n≥0

be a sequence of independent Bernoulli variables with mean r/(1 + r) and
independently, (η̃n)n≥0 be a sequence of independent Bernoulli variables
with mean 1/2. We construct (Wn)n≥0 by setting :

• we set Wn+1 −Wn = Xn+1 −Xn if Xn > 0 and Wn > 0 and one of
the following three conditions hold : Xn < Xn or Xn+1−Xn = 1 or
ηn = 0;
• if Xn > 0 and Xn = Xn and Xn+1 − Xn = −1 and ηn = 1 we set
Wn+1 −Wn = 1;
• if Xn = 0 and Wn > 0 we set Wn+1 −Wn = 2 η̃n − 1;
• finally if Xn = Wn = 0 we set Wn+1 −Wn = 1 = Xn+1 −Xn.

The reader can check that (Wn)n≥0 is a RSRW and note moreover that, for
every n ≥ 0,

Xn ≤Wn ≤ Xn + 2
n−1∑
k=1

1{Xk=Xk=Xk+1+1; ηk=1}.

Proof of Theorem 5 and Proposition 6. The limsup result (54) easily
implies that, for a PRRW (Xn)n≥0, whatever the value of r ∈ (−1, 1), we
have almost surely

lim inf
n→+∞

Xn√
n

log(2) n

≥ π√
8

Since the converse inequality is clear in the case r ∈ (0, 1), by comparison
with a RSRW, thanks to Proposition 18, the proof of Theorem 5 is complete.
Similarly, (56) implies (18) and (55) implies (19) hence Proposition 6. We
leave the details to the reader.

7. Return time to 0 and maximum

This section is devoted to the proofs of Propositions 7 and 8 but we start
by a supplementary statement.

Proposition 19. Let (Xn)n≥0 be a PRRW and, as defined in the introduc-
tion, ζ = inf{n > 0, Xn = 0} and M = max{|Xn|, n ≤ ζ}. Then the law
of M is given, for any m ≥ 1, by

(67) P(M = m) =
β Γ(1 + β) Γ(m)

Γ(m+ 1 + β)
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and the conditional law of ζ knowing M = m is given by the following
Laplace transform : for λ ∈ R,

(68) E
[
(coshλ)−ζ

∣∣M = m
]

= (coshλ)−m
m tanhλ
sinh(mλ)

m∏
k=2

1

1− β
k+β ψk(λ)

where

(69) ψk(λ) = 1− k tanhλ
tanh k λ

.

Proof. Note first that, for m ≥ 1, P(M = m) = P(Tm < ζ < Tm+1) and
let us compute the conditional probability P(ζ > Tk+1 | ζ > Tk) for k ≥ 1,
using the representation leading to (42). This conditional probability is the
probability that among the excursions below level k between times Tk and
Tk+1, none of them hits 0. For each such excursion, the probability of not
hitting 0 is (k−1)/k and there is a number Gk of these excursions, still with
the notation of (42). As a consequence the sought-after probability is

P(ζ > Tk+1 | ζ > Tk) = E

[(
k − 1
k

)Gk]
=

k

k + β

where the last equality follows from (39). We deduce, for m ≥ 1,

P(Tm < ζ < Tm+1) =

(
m−1∏
k=1

k

k + β

)
β

m+ β

which can be reexpressed as (67). In the same spirit as the remark before,
conditionally on M = m, we may write

(70) Tm = m+
m−1∑
k=2

Gk∑
i=1

Lki

where the Lki are independent variables distributed as the length of an ex-
cursion under level k conditioned not to hit 0 and the Gk are independent
variables. However the laws of the Gk’s are not the same as in (42) since
they are affected by the conditioning. It is easy to show that Gk follows the
geometric law with parameter

(71) ρk =
1− r

2

(
1 +

β

k

)
.

In particular its generating function is, for suitable values of z

(72) E
(
zGk
)

=
1

1− 1−ρk
ρk

(z − 1)
=

1
1− β k−1

k+β (z − 1)
.

Using Lemma 12 we get

(73) E
[
(coshλ)−L

k
i
∣∣M = m

]
=
J1(k, λ)
J1(k, 0)

=
1− tanhλ

tanh(k λ)

1− 1
k

= 1 +
1

k − 1
ψk(λ)
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where ψk is defined in (69). Combining (73) and (72) along the same lines
as the proof of (45) in Proposition 16, we deduce

(74) E
[
(coshλ)−Tm

∣∣M = m
]

= (coshλ)−m
m−1∏
k=2

1

1− β
k+β ψk(λ)

.

To continue, note that conditionally on M = m, the variable ζ − Tm is
independent of Tm and can be expressed as :

(75) ζ − Tm =
G̃m∑
i=1

L̃mi +D

where the variables L̃mi are the lengths of the excursions below level m
that are not touching 0, the variable D is the hitting time of 0 for a SRW
starting at m, conditioned to go down on the first step and conditioned not
to return at m before hitting 0. Moreover G̃m is the number of excursions of
the PRRW below level m after time Tm before ζ (conditionally on M = m
of course). It is easy to see that it is a geometric variable with parameter
ρm defined in (71). By the same arguments as before we get that, for any
λ ∈ R,

(76) E
[
(coshλ)−

PG̃m
i=1 L̃

m
i
∣∣M = m

]
=

1

1− β
m+β ψm(λ)

.

and Lemma 12 entails, that, for any λ ∈ R,

(77) E
[
(coshλ)−D

∣∣M = m
]

=
J−1(m,λ)
J−1(m, 0)

=
m tanhλ
sinh(mλ)

.

Combining the formulas (74), (76) and (77), we get the announced for-
mula (68) and the proof is complete. We now apply this result. First a
Remark. The well known recurrence of the process (Xn) i.e. the almost
sure finiteness of ζ can be deduced immediately from (67), by checking that

+∞∑
m=1

P(Tm < ζ < Tm+1) =
+∞∑
m=1

Γ(m) β Γ(1 + β)
Γ(m+ 1 + β)

= 1

which follows from (36).
The proof of Proposition 8 is now straightforward. Applying For-

mula (35) to the expression in (67), we get that, for large m,

(78) P(M = m) ∼ c m−1−β

hence the criterion for the finiteness of E(M) is clear. Moreover, for β > 1,
Formula (67) combined with (36) easily gives the value of E(M).

We now pass to the Proof of Proposition 7. We start with the obvious
formula

(79) E(ζ) =
+∞∑
m=1

P(M = m) [E(Tm |M = m) + E(ζ − Tm |M = m)] .
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We first compute E(Tm |M = m) using the representation (70). By Lemma 12,
the variables Lki have a mean equal to 2(1 + k)/3. Moreover E(Gk) =
(1− ρk)/ρk = β (k − 1)/(k + β). It follows that, for m ≥ 2,

(80) E(Tm |M = m) = m+
2β
3

m−1∑
k=2

k2 − 1
k + β

Similarly we use Equation (75) to compute E(ζ − Tm |M = m). Lemma 12
entails E(D) = (2 +m2)/3 so that we get, for m ≥ 1,

(81) E(ζ − Tm |M = m) =
2β (m2 − 1)
3 (m+ β)

+
2 +m2

3
.

Gathering the expressions in (80) and (81), we obtain that, for large m,

E(Tm |M = m) + E(ζ − Tm |M = m) ∼ c m2.

Recalling also (78), we see that the series in (79) defining E(ζ) converges if
and only if β > 2, as announced.

We now pass to the proof of Theorem 9. We substitute λ/m for λ
in (68) and get

E

[(
cosh

λ

m

)−ζ ∣∣M = m

]

=

[(
cosh

λ

m

)−m m tanh(λ/m)
sinhλ

]
(82)

× exp

[
−

m∑
k=2

log
(

1− β

k + β
ψk(λ/m)

)]
.

It is clear that the first term in square brackets on the right hand side
converges to λ

sinhλ as m→ +∞. Recall that

ψk(λ/m) = 1−
tanhc λm
tanhck λm

where tanhc(x) =
tanhx
x

.

By the Taylor expansion tanhc(x) = 1 − (x2/3) + O(x4), we see easily
that β

k+βψk(λ/m) is at most of order 1/m for large m, uniformly in k ∈



22 LAURENT SERLET

{2, . . . ,m}. It follows that, for large m,
m∑
k=2

log
(

1− β

k + β
ψk(λ/m)

)
∼ −

m∑
k=2

β

k + β
ψk(λ/m)

∼ −β
m−1∑
k=2

1
k + β

(
1− 1

tanhck λm

)

∼ −β
∫ 1

0

1
x

(
1− xλ

tanh(xλ)

)
dx

= −β log
λ

sinhλ
.

Reporting this result in (82), we conclude that

lim
m→+∞

E

[(
cosh

λ

m

)−ζ ∣∣M = m

]
=
(

λ

sinhλ

)1+β

.

Using the same argument as the one of section 4 (see the lines following (49)),
we deduce

lim
m→+∞

E
[
e−

λ2

2
ζ

m2
∣∣M = m

]
=
(

λ

sinhλ

)1+β

and the proof is complete.
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