DE LA RECHERCHE À L'INDUSTRIE

Cea den

SINGULARITIES OF TENSILE BEHAVIOR OF ADVANCED AUSTENITIC STEELS OBTAINED BY DIFFERENT COLD PROCESSES

<u>**Patrick OLIER**</u>¹, Laurine Courtin ^{1a}, Emilien Curtet ¹, Bouzid Kedjar ², Ludovic Thilly ²

 DEN-Section for Applied Metallurgy Research, CEA, Université Paris-Saclay, France
1a Ph. D thesis defense : oct. 2015

2. Institut Pprime, UPR 3346 – CNRS/University of Poitiers ISAE-ENSMA, 86962 Futuroscope, Chasseneuil Cedex

SEPTEMBER 2017, 21TH ESAFORM'2017, THESSALONIKI

Ceaden introduction

ASTRID demonstrator

"Advanced Sodium Technological Reactor for Industrial Demonstration"

480-700°C, 110 dpa

First core components :

- Use of reference materials benefiting from a large feed-back from the previous French SFRs (Rapsodie, Phénix, SuperPhénix)
 - Austenitic steels (fuel cladding, space wire, end-plugs ...),
 - Martensitic steels (hexagonal wrapper),
 - B₄C (absorbers)...
- Qualifying these materials regarding the specificities of ASTRID core
 - high dose level for equilibrium core,
 - heterogeneous core design involving lower T°C of the cladding,
 - high compacity of the fuel assembly ...

FUEL CLAD MATERIAL – 15-15Ti steel

- Optimized austenitic steel : 15%Cr 15%Ni + Ti + Si + P (Cold Work state)
- Specification AIM1 (Austenitic Improved Material #1 : Astrid Project) close to opt. D9 (US), IFAC-1 (India) ChS-68 (Russia), DIN 1.4970 (Germany)

 ✓ Several fabrication routes are conducted to produce 15Cr-15Ni cladding tubes Three cold processes are involved : drawing, pilgering or swaging

✓ This study investigates the effects of processing paths using various heat treatments and amount of cold work (from 17% to 37%) on the final microstructure and the tensile properties.

Ceaden

Fuel Clad / Fabrication route

FABRICATION ROUTE

Ceaden

Finished tubes 15-15Ti ϵ - Φ 10,73 mm – th: 500 μ m

Reference	Cold work process	Final cold work (ɛ%)	Grain size * (µm)
AI-LA6	HPTR pilgering	23%	25 μm (G=8)
AI-Et ₂ 8-1080	Cold drawing	17%	14 µm (G=9)
AI-Et ₂ 8-1130	Cold drawing	17%	42µm (G=6)
AI-Et ₁ 4	Cold drawing	37%	-
AI-Ma4	Cold swaging	23%	32 μm (G=7)

Final mill annealing 1080°C Φ_{grain} = 14 μm

* Grain size measured by image analysis (visilog software)

Final mill annealing 1130°C Φ_{grain} = 42 μm

Ceaden MICROSTRUCTURE (COLD DRAWING & 17% - 1130°C)

- O Fully austenitic (no ferrite), average grain size ~ 40-45 μm
- O Precipitates of TiMoC (~ a few hundred of nm) and Ti(C,N) (a few µm)
- O High dislocation density + mechanical twins (cold-working)

Optical micrograph – transverse direction

TEM micrograph

Ceaden TENSILE TESTS / SPECIMENS

Tensile tests are performed between 20°C and 700°C - strain rate 3.10⁻⁴ sec-1

TENSILE TESTS / TILE SPECIMENS

Temperature dependance of the engineering stress-strain curves for 15-15Ti ϵ , cold swaging ϵ 23% (AI-Ma-4)

These curves show strong temperature dependencies of strength and ductility:

- => The strength decrease as test temperature raising from 20°C to 700°C,
- => Contrary to most other metals, the variation of ductility is not monotonous by raising the temperature. A minimum value is obtained at about 200°C, where the 15-15Tiε SS shows prompt necking at yield.

Ceaden TENSILE TESTS / TILE SPECIMENS

- ✓ The UTS decreases linearly from 700-800 MPa below to 450-500 MPa by raising the temperature from 20°C to 700°C
- \checkmark For the same cold work level (ε = 23%) the UTS values are quite similar
- ✓ The lowest the cold work level the lowest the UTS values over the range of tested T°

Ceaden TENSILE TESTS / TILE SPECIMENS

Influence of the cold process and the % of cold work on the YS values

- ✓ The Yield Strength (YS) decreases linearly from 560-750 MPa below to 380-500 MPa by raising the temperature from 20°C to 700°C
- ✓ For the same CW level (ε = 23%) the YS values are quite similar

 \checkmark

 $(\varepsilon = 17\%)$ the lowest the grain size the highest the YS values

=> Hall Petch Effect

Influence of the cold process and the % of cold work on the uniform elongation (UE)

- ✓ The highest the % of cold work the lowest the UE over the temperature range
- ✓ The effect of T°C on ductility is not monotonous, with UE decreasing between 20°C and 200°C, increasing up to 500-600°C and finally decreasing above 600°C
- ✓ Very low UE is measured at 200°C (UE ~ 1 2%)

Ceaden FRACTURE / Tile specimens

Fracture surfaces for Al-Ma-4 (cold swaging ϵ 23%) tested at 20°C and 200°C

Ductile fracture with fine dimples

Ductile fracture with elongated dimples

TENSILE TESTS / RING SPECIMENS

Comparison : ring ⇔ tile tests

Ceaden

The levels of strength (UTS, YS), are slightly higher in the circumferential direction (ring sp.) than those measured in the longitudinal direction (tile sp.)

22 den TENSILE TESTS / RING SPECIMENS

RECHERCHE À L'INDUSTRI

The UE are weaker in the circumferential direction (ring p.) than those measured in the longitudinal direction (tile sp.).

Tensile behaviour of austenitic $15-15Ti_{\epsilon}$ SS :

- \checkmark The stress-strain curves show strong temperature dependencies of strength and ductility.
- \checkmark Both YS and UTS decrease linearly as test temperature raising from 20°C to 700°C.
- \checkmark For the same level of cold work, no effect of the cold processes could be highlighted. However, the higher the amount of cold work ($\varepsilon \sim 37\%$), the higher the YS and the UTS and the lower the UE.
- \checkmark In the circumferential direction, the levels of strength are slightly higher and the UE are weaker than those measured in the longitudinal direction, suggesting a low degree of anisotropy.
- \checkmark The effect of temperature on ductility is not monotonous, with UE decreasing between 20°C and 200°C, increasing up to 500-600°C and finally decreasing above 600°C.

Very low UE is thus measured at 200°C.

E LA RECHERCHE À L'INDUSTRI

Ceaden outlook

Why such low levels of ductility are measured at ~200°C (and at a lesser degree at 400°C) ?

➔ It could be a consequence of a localization of the deformation which would result in a very limited plastic flow until necking

For 316 austentic SS :

The strong temperature dependence of the stress to activate twinning implies that it is not possible to induce twinning during plastic deformation at about 200°C and above This limits plastic deformation to lower levels of UE

=> Wu and al, JNM, 356 (2006) 70–77

Or Byun and al, Acta Mat., 52 (2004), 3889-3899

<u>For $15-15Ti_{\epsilon}$ SS</u>: the origin of this singularity of behaviour is being studied at CEA in the course of the PhD work of Emilien Curtet

Thanks for your attention

Questions ?

DE LA RECHERCHE À L'INDUSTRIE

