DE LA RECHERCHE À L'INDUSTRIE

<u>Ceaden</u>

Digital-Holographic near-field reconstruction for particles characterization in astigmatic systems & refractive index measurements

Matthias Sentis¹, <u>Fabrice Onofri²</u>, Fabrice Lamadie¹ 1 DEN, DMRC, SA2I, CEA Marcoule, France 2 Aix-Marseille Université, CNRS, IUSTI, UMR 7343, France

Matthias Sentis is searching for a post-doc!

16th Electromagnetic and Light Scattering Conference Univ. Maryland, MD, USA / 19-25 March 2017.

Raindrops, red blood cells, flyes.... Drops, grains and bubbles,...

Size parameter kr from 50 to 12, 000 !

Mechanical, chemical engineering and biological issues: characterization of drops, grains, bubbles, biological samples... In their environment!

Mechanical, chemical engineering and biological issues: characterization of drops, grains, bubbles, biological samples... In their environment!

Characterization ?

- 3D position and motion (slip velocity, acceleration,...)
- Size (shape, porosity,...)
- Concentration and net fluxes
- Composition and properties (density, mixing fraction, temperature,...)

Mechanical, chemical engineering and biological issues: characterization of drops, grains, bubbles, biological samples... In their environment!

Characterization ?

- 3D position and motion (slip velocity, acceleration,...)
- Size (shape, porosity,...)
- Concentration and net fluxes
- Composition and properties (density, mixing fraction, temperature,...)

Constraints !

- Temporal and spatial resolution (freezing and dynamic tracking)
- Data flow to be minimized
- Complex composition and shaped scatterers, optical aberrations,...
- Large to huge size parameters

Mechanical, chemical engineering and biological issues: characterization of drops, grains, bubbles, biological samples... In their environment!

Characterization ?

- 3D position and motion (slip velocity, acceleration,...)
- Size (shape, porosity,...)
- Concentration and net fluxes
- Composition and properties (density, mixing fraction, temperature,...)

Constraints !

- Temporal and spatial resolution (freezing and dynamic tracking)
- Data flow to be minimized
- Complex composition and shaped scatterers, optical aberrations,...
- Large to huge size parameters

Digital in-line holography

<u>Ceaden</u> INTRODUCTION

Principle of digital in-line holography in free space

Back propagation of the recorded irradiance for each particle: determination of z_p (Scalar diffraction theory: Fraunhofer, Fresnel or Rayleigh-Sommerfeld approx.)

Image processing to retrieve x_{p,y_p} and D

Ceaden INTRODUCTION

Digital in-line holography, typical results for liquid-liquid droplets of known composition in a rectangular tank

+ laure

3

ACCOUNTING FOR SOME ASTIGMATISM IN THE SYSTEM

ACCOUNTING FOR SOME ASTIGMATISM IN THE SYSTEM

ILLUSTRATION: IMAGING THROUGH A CYLINDRICAL REACTOR

ACCOUNTING FOR SOME ASTIGMATISM IN THE SYSTEM

ILLUSTRATION: IMAGING THROUGH A CYLINDRICAL REACTOR

Previous approaches

22 den

- Fractional Fourier Transform (Ozaktas et al, Wiley, 2001)

- Huygens-Fresnel integral with ABCD transfer matrix (*Collins et al., JOSA 60, 1970*) and particle shape analytical decomposition (*Verrier et al. Appl. Optics 53, 2014*) (GHFT)

Previous approaches

22 der

- Fractional Fourier Transform (Ozaktas et al, Wiley, 2001)

- Huygens-Fresnel integral with ABCD transfer matrix (*Collins et al., JOSA 60, 1970*) and particle shape analytical decomposition (*Verrier et al. Appl. Optics 53, 2014*) (GHFT)

New approach: "Modified Generalized Huygens-Fresnel Transform (M-GHFT)"

- the diffraction integral is still expressed as a convolution product
- the optical systems contribution is simply accounted with two global ABCD matrices
- same accuracy than with previous approaches but...
- More easy to implement and more efficient numerically than the Fractional Fourier Transform
- No restriction of the particle shape and off-axis positioning (/ GHFT)

Sentis et al. OLEN 88:184-196 (2017)

Diffracted field with M-GHFT (propagation or backpropagation along z-axis)

$$S_{z}(x,y) = \frac{exp(ikz)}{i\lambda A_{x}A_{y}\sqrt{B_{x}B_{y}}}exp\left(i\pi\frac{C_{x}x^{2}}{\lambda A_{x}}\right)exp\left(i\pi\frac{C_{y}y^{2}}{\lambda A_{y}}\right)\left(S(u,v)*h(u,v)\right)\left(\frac{x}{A_{x}},\frac{y}{A_{y}}\right)$$

Optical properties of the medium Particle 2D model $ABCD_{x} = \begin{bmatrix} A_{x} & B_{x} \\ C_{x} & D_{x} \end{bmatrix}; ABCD_{y} = \begin{bmatrix} A_{y} & B_{y} \\ C_{y} & D_{z} \end{bmatrix}; Opaque disk model (OD) Opaque disk and phase$

ceaden

Model (ODP)

Convolution theorem $\mathfrak{I}^{-1}(\mathfrak{I}(S)\mathfrak{I}(h))$

Fresnel's propagators and sampling conditions:

Propagator	Shannon conditions
$h(u,v) = exp\left(\frac{i\pi u^2}{\lambda A_x B_x}\right) exp\left(\frac{i\pi v^2}{\lambda A_y B_y}\right)$	$A_x B_x \ge \frac{d_x L}{\lambda}$ and $A_y B_y \ge \frac{d_y L}{\lambda}$
$H(f_x, f_y) = exp\left(-i\pi(A_x B_x f_x^2 + A_y B_y f_y^2)\right)$	$A_x B_x \leq \frac{d_x L}{\lambda}$ and $A_y B_y \leq \frac{d_y L}{\lambda}$

400 single droplets Diameter D: less than 4% deviation 1.02 1.01 Holography, 0.99 0.92 0.92 0.96 0.95 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 Shadowgraphy, D [mm] Position z_p : less than 1% deviation 16.6 E 16.65 Particle position holography, X, 16.52 16.52 16.45 16. V=X 0 +1% 16.25 16.40 16.42 16.44 16.46 16.48 16.50 Particle position ombroscopy, z_{ombro} [mm]

Ceaden

EXPERIMENTAL RESULTS

Digital in-line holography vs shadowgraphy

PARTICLES:

REFRACTIVE INDEX MEASUREMENT (OR RECOGNITION) ??????????????????

Water or ethanol ?

PARTICLES:

REFRACTIVE INDEX MEASUREMENT (OR RECOGNITION) WITH PHOTONIC JET!!!

Neither of them, isane in water...

Holographic reconstruction of the near intensity field scattered by a spherical particle

Holographic reconstruction of the near intensity field scattered by a spherical particle

Holographic reconstruction of the near intensity field scattered by a spherical particle

x/R [-]

Sentis et al., Opt. Express 7(402):781-788 (2017)

Holographic reconstruction of the near intensity field scattered by a spherical particle

Holographic reconstruction of the near intensity field scattered by a spherical particle

Sentis et al., Opt. Express 7(402):781-788 (2017)

Holographic reconstruction of the near intensity field scattered by a spherical particle

Sentis et al., Opt. Express 7(402):781-788 (2017)

Numerical estimation of the resolution achievable on refractive index

- 1000 holograms generated from randomly parametrized particles (x, y, z, D, m)

Numerical estimation of the resolution achievable on refractive index

- 1000 holograms generated from randomly parametrized particles (x, y, z, D, m) liquid-liquid systems: better than 6.10⁻³

Numerical estimation of the resolution achievable on refractive index

- 1000 holograms generated from randomly parametrized particles (x, y, z, D, m)

liquid-liquid systems: better than 6.10⁻³ liquid or solid-gas systems: better than 2.5.10⁻²

Experimental test on the resolution achievable on refractive index

- two pure fluids and one mixture
- 500 single droplets for each fluids

Experimental test on the resolution achievable on refractive index

- two pure fluids and one mixture
- 500 single droplets for each fluids

Ceaden conclusion

Digital in-line holography

- Allows 3D reconstructions of particle flows
- Retrieval of some features of the near field

Extension of DH to astigmatic systems (cylindrical case presented)

- Development of a new propagation model
- Near field reconstruction for position assessment

Extension of DH to refractive index measurement

- Near field reconstruction for refractive index assessment

