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ABSTRACT: The present paper will report some results reflyenbtained on Cr-coated M¥ claddings under loss-of-
coolant accident conditions. Internal pressure gremd temperature ramp tests were done in steaimoamvent using the
CEA “EDGAR” testing facility. These thermal-mecheatitests were performed on 50 cm long"¥i8adding samples with
a 10 to 15pum thick outer chromium coating. Claddinigst temperatures ranging from thg phase temperature range (<
850°C) up to theg;, phase domain (> 950°C) were investigated. As alyaabserved during preliminary tests performed on

Cr-coated cladding samples with a Zircaloy-4 suskgy the results showed generally a strengthenifegieof the Cr
coating, associated with smaller cladding balloaniixcellent Cr coating adhesion was also confirnesen at the balloon
location where high cladding deformation is observ&dditionally, one-sided steam oxidation testsewrerformed on Cr-

coated M3"in steam at 1200°C, thanks to the CEA “DEZIROX’iliac Then, microstructural observations as wedl a

elemental analyses were performed on the coatedrialst oxidized at High Temperature (HT) and questthrhey
confirmed that, for design based accident and béyamditions, the resistance to HT oxidation wasaerted with a Cr
coating, which prevented oxygen diffusion intorttegallic zirconium-based substrate. Post-Quenclif#@) mechanical
tests were performed to confirm the enhanced P@wehof Cr-coated M5 compared to the uncoated cladding materials.

KEYWORDS: Enhanced Accident Tolerant Fuels (EATF), chromagating, M3", LOCA, high temperature steam
oxidation, oxygen diffusion, mechanical behavior

. INTRODUCTION, MATERIALSAND EXPERIMENTAL

Chromium coated zirconium based nuclear fuel cleglliare developed with CEA, AREVA NP and EDF asH&rced
Accident Tolerant Fuel” (EATF) cladding concept fight water reactors, and studied at CEA. It hevipusly been shown
that Cr-coated Zircaloy-4 claddings have an enhdutaerance to Loss-of-Coolant Accident (LOCA) mngparison with the
current standard Zircaloy-4 claddings (Refs 1-3)e ©bjective of the present work is to briefly gnetsthe results obtained
more recently in LOCA conditions on the last getieraof Cr coated M5™ claddings. For that purpds, types of tests
were performed on coated M5™ claddings:

- High Temperature (HT) internal pressure creep hedhtal ramp tests (‘EDGAR” tests, Ref. 4);

- HT steam oxidation and direct water quenching ftbenoxidation temperature tests (“DEZIROX” testef.F5).

Additionally, some Post-Quenching (PQ) impact testd metallurgical analysis were done and the ffastilts obtained
will be described. All results presented in thiscée were obtained on M alloy coated with 10-15 pum of Cr.
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For the chromium deposition, PVD (Physical VapopBstion) type process has been applied. Figutotvs an
illustration of the typical microstructure of the-eeceived 10-15um Cr thick coating on M5™ substrtithas to be
mentioned that the Cr coating is dense and veryogemous in thickness, with a very good bondinghenMI5™ substrate.
Moreover the as-received M5™ microstructure isaftgcted by the coating process. Thus, the ovamtiiinal mechanical
properties of coated M5™ claddings is expectedetsitnilar to those of the reference uncoated naters already
discussed in Ref. 6.
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(a) SEM (Electron Back-Scattered mode) Micrograph b) SEM-EBSD orientation map

Fig. 1. Typical microstructure of a 10-15um Cr khahromium coating on a M5™ clad substrate

. INTERNAL PRESSURE CREEP & THERMAL RAMP TESTSAT HT UNDER STEAM ENVIRONMENT

Both isothermal creep and thermal ramp tests were @n 50 cm long coated clad segments. The intpreasures
applied range from ~10 up to 120 bar and the coeeppture temperatures (in case of thermal rarsiz)Xeange from 600°C
(0z temperature range) up to 1000-11008g temperature range).

I1.A. Isothermal creep tests

Figure 2 illustrates some typical creep curvesiabthon uncoated reference materials and on Ceddds™ upon
creep tests at 750°C, with the same applied intggressure. As already observed on Zircaloy-4 satest(Ref. 3), a
strengthening effect of the Cr coating at HT isestsed on the overall thermal-mechanical responsthe@fcoated clad
segments under internal pressure, especially irb€®e800°C temperature range,(temperature range). This induces an
increase of the time to rupture, for any given agubinternal pressur@s discussed in Ref. 3, the slightly higher théslsnof
the coated claddings compared to the uncoated mnest sufficient to explain the reduction of thieep rate observed on
the coated materials)Fig. 3 gives an overview of the relative increa$eghe creep rupture time for Cr coated materials
compared to the uncoated reference ones, for bothldy-4 and M5™ substrates.

Additionally, as illustrated in Figure 4, Cr-coaimay induce a significant reduction of the ball@ize, especially in
the “low-temperature” rangei£;). For the higher creep temperature range, evsigiifificant ballooning occurs, the rupture
opening is very small (less than 1mm?) as illusttabn Figure 5. This last trend has been alreadgrobd on Cr-coated
Zircaloy-4 (Ref. 3). One may anticipate that sucénaall rupture opening could have a positive eftectthe potential fuel
relocation and dispersadg already observed for some Studsvik or Halden A @Sts performed on high Burn-Up fuel, Refs
12-13; moreover, this would induce some benefits byuoitg the steam ingress inside the clad segmettitwihe clad -
fuel pellet gap) and then would limit the extenttloé inner clad surface oxidation and the assatisgeondary hydriding
phenomena following clad burst occurrence. Finatlgan also be observed in Figure 5 that the chroncoating is still
fully adherent to the substrate with very limitexidation and/or damage/cracking, including at thenity of the burst



~ /} D) 2017 Water Reactor Fued Performance M eeting

WRFPM 2017 September 10 (Sun) ~ 14 (Thu), 2017
L.—\k/ Ful Performance Meeting Ramada Plaza Jeju « Jeju Island, Korea

location, where significant creep deformation hasuored {.e., up to potentially a few tenths of % of clactumferential
elongatior), thus preserving the oxidation protection cagaaitthe Cr coating after the clad burst occurrence
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Fig. 2 Creep curves obtained on coated/uncoated MEBttlings upon isothermal creep tests at 750°@M, tive same
applied internal pressure: two uncoated referemes superposed, in red, and one standing for 1@Gpucoated (in blue)
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Fig. 5 Visual examinations of two tested 10-15unt@ated M5™ clad segments after “EDGAR” creep tests
performed at 850°C (top) and at 1000°C (bottoegpectively

I1.B. On-going thermal ramp tests

Thermal ramp tests are on-going under constantniakepressure ranging from 10 up to 100, Har heating rates
ranging from 1°C/s up to 25°C/s. From the prelimyneesults obtained it can be observed that, for giwen internal
pressure and heating rates tested so far:

- balloon sizes of Cr coated M5™ claddings are gedlydmwer than those of the uncoated ones, thudicuimg the

tendency observed upon isothermal creep tests;

- burst temperatures of Cr coated M5™ claddings amgparable or slightly above those of the uncoatessp

- in one particular case (i.e., 10 bar and 25°Cks, 10-15um Cr coated M5™ clad segment did notHeafbre

reaching 1100°Ctljen the ramp test was stopped before burst ocnogewhile, in the same conditions, burst
occurs at temperatures lower than 1100°C for tremated reference materials, indicating that thesii&@ngthening
effect of Cr coating can be operant upon dynamarrtal ramp tests, which are more prototypical ofG20
transients than isothermal creep tests.
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To summarize the above results, it can be conclubdat] as already observed on zircaloy-4 substateespecially
upon internal pressure isothermal creep in the &8WXC oz temperature range, the 10-15um Cr coating indacesr
strengthening of more of a factor of two on theepreupture time for the coated M5™ cladding.

Discussion - The scarce creep data available ititdrature for pure chromium (Ref. 16) suggest tha Cr coating has
a significantly higher creep resistance than théaged substrate at high temperature (Ref. 17 that the global creep
behavior of the cladding is strengthened. More datathe mechanical behavior of chromium are neededurther
investigate this effect. Such an effect was alsseoved in oxidized Zr-based alloys in the presarfoexygen-rich layers
(Ref. 18). On the contrary, at lower temperatune,hechanical strength of pure chromium (Ref. §®xpected to be close
to the ones of Zircaloy-4 or M5™. Then, one doest expect a significant effect of the Cr coating the overall creep
behavior of the coated cladding at normal operagomperatures, as shown by creep tests performgREVA (Ref. 20).

However, more ramp tests are planned in the naarefuo confirm this effect in more representativ@CA transient
conditions. The ultimate goal is to derive a thdrmachanical creep-rupture model, as already daonegeference uncoated
cladding materials, to be able to take advantadbeobenefits gained by using the Cr-coated M5™dileg (Ref. 4).

1. HT STEAM OXIDATION AND POST-QUENCHING BEHAVIOR

One-sided oxidation tests were performed on clagldegments with plugs welded at the ends, to be mepresentative
of the overall HT oxidation of the nuclear fuel rizat from (potential) local burst occurrence. H&ash oxidation tests were
done at 1200°C thanks to the “DEZIROX” facility (R&) for Design-Based-Accident (DBA) and for Deasigxtension-
Conditions (DEC) oxidation times, that is, fromeavfminutes up to a few hours. At the end of théhisomal oxidation step,
direct water quenching was applied down to Room Jemature (RT). Thus, such final cooling conditi@re likely to be
conservative with respect to the two-sided oxidatioth a two-steps final cooling scenario generalbplied by other R&D
institutes/teamgi.e., cooling first at an intermediate cooling ea{1-10°C/s) down to an intermediate temperatuf@d{7
800°C) from which the final water quenching is apgldown to RT (Refs 14-)5)his last two-steps cooling scenario being
likely more prototypical of “real” LOCA transients.

Figure 6 shows the weight gain measured as a fiimcti the one-sided steam oxidation time at 120@g this figure
we have also indicated the typical oxidation tim6Q0s) corresponding to the historical LOCA reguiatimit based on an
Equivalent Cladding Reacted (ECR) = 17%, calculatgdg the “Baker-Just” (BJ) correlation (Ref. 7).
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Fig. 6 Weight gain measured after one-sided stedadation at 1200°C and direct water quenching desvRT
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It is obvious from figure 6 that the Cr coating ire@s a significant reduction of the overall HT @tidn kinetics of the
M5™ cladding, thus offering a significant additibrfaoping time” before achieving full embrittlementf the cladding
leading to fragmentation upon final (direct) wagelenching from 1200°C.

Complementary PQ mechanical tests are on-goingijdimgy impact tests at RT and ring Compressiorstast20 and
135°C. However, some preliminary impact tests atHaVe been done and are compared in Figure 7 teethdts obtained
for the uncoated reference material already preseand discussed in Refs. 8-10. The evolution®f) impact energy as a
function of the oxidation time at 1200°C confirmiget beneficial effect of the chromium coating on tresidual
ductility/toughness of HT oxidized claddings, aseatly observed in the case of a Zircaloy-4 sulesafier one-sided steam
oxidation at 1000-1200°C (Refs. 1-3).
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Fig. 7 Post-Quenching impact energy measured a<s=Aa function of (one-sided) steam oxidation tit&2®0°C

Finally, some PQ metallurgical examinations, inahgdEPMA (Electron Probe Micro Analysis) measuretsenf the
oxygen diffusion profiles are on-going. Figure &wi8 oxygen diffusion profiles measured by EPMA witthe substrate
after one-sided steam oxidation for ~25 min (f@:.,~1500s) at 1200°C on both uncoated and Cr ddeie™ clad segments
(with welded end plugs). The oxidation time herenis times higher than the one corresponding to B3Ralue of 17% for
the uncoated materials.
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For the uncoated reference material on the one,iaodn be observed the formation of thick outéttle oxide (ZrQ)
andoz(O) layers corresponding to more than half of tfal wlad thickness, and significant oxygen diffusisithin the thin
residual priorBz, inner layer achieving ~0,5 wt.%. From previoudiga (Refs. 9-11), this last value appeared toldmedo
the oxygen solubility limit in th@,, phase at 1200°C and is slightly higher than thizi¢el” value (i.e., ~0,4 wt.%) inducing
a ductile-to-brittle transition at RT of the querdhpriorfz structure, which is consistent with the negligitl® clad
toughness measured (~0,03 J/Jmm?). For the Cr-cddfedample on the other hand, there is no formatibouter brittle
ZrO, andoz(0) layers and negligible oxygen diffusion withlretZr substrate from the outer clad surface; fisr plarticular
sample one can only observe some slight oxygendidh from the inner (uncoated) clad surface, jikkle to some residual
gaseous oxygen initially trapped inside the closked segment (with welded plugs). The Cr-coated Mél&tiding thus
preserves its RT residual ductility/toughness lastilated by its quite high PQ Charpy Impact enemgye (~0,15J/mm?2, see
Fig. 7).
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Fig. 8 Oxygen diffusion profiles measured by EPMithin the substrate after one-sided steam oxiddtior25 min at
1200°C on both uncoated and 10-15um Cr coated Ma®'segments

V. CONCLUSIONS

Internal pressure creep and temperature tastp were performed in steam environment on 5@ag 10-15um Cr
coated M5™ claddings for burst temperatures aretriad pressures typical of LOCA transients. Asadseobserved after
preliminary tests on Cr-coated cladding sampleb wiZircaloy-4 substrate, the results showed atrEhgthening effect of
the Cr coating, associated with smaller clad bailog. Excellent Cr-coating adhesion was also coréit, even at the
balloon location where high cladding deformatiomadhieved. Additionally, one-sided steam oxidatiests have been
performed on Cr-coated M5™ in steam at 1200°C. Thaxe confirmed that, for design based accidenfanextended
design conditions, the HT oxidation resistancehefraterial was enhanced by the presence of a1 L& coating, which
prevented oxygen diffusion into the metallic zirion-based substrate thus inducing better residopact properties. PQ
ring compression tests are on-going to confirmaieanced PQ behavior of Cr-coated M5™ compareaetancoated
cladding materials.
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