

# Thermodynamic study and assessment of the fluorine-iron system

S. Chatain, Jl. Fleche, M. Achour, L. Martinelli

# ▶ To cite this version:

S. Chatain, Jl. Fleche, M. Achour, L. Martinelli. Thermodynamic study and assessment of the fluorine-iron system. CALPHAD XLVI, Jun 2017, Saint-Malo, France. CALPHAD XLVI, 2017. hal-02419619

# HAL Id: hal-02419619 https://hal.science/hal-02419619v1

Submitted on 19 Dec 2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# Thermodynamic study of iron-fluorine system

Sylvie Chatain<sup>1</sup>, Jean-Louis Flèche<sup>1</sup>, Mickaël Achour<sup>2</sup>, Laure Martinelli<sup>1</sup>

Lithium ion batteries

- FeF<sub>3</sub> as electrode, especially cathode material

- synthesis of nanostructured material => effect on  $\Delta G^{\circ}_{f}$  => nano-CALPHAD

<sup>1</sup> Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME) – CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France <sup>2</sup> Hall de Recherche de Pierrelatte (HRP) – Division Chimie et Enrichissement, F-26701, Pierrelatte, France

## Context and goals

#### Iron corrosion in fluorinated atmosphere

- FeF<sub>2</sub> and FeF<sub>3</sub> as corrosion products
- improve the Fe-F thermodynamic description
- Fe-F database built using CALPHAD method

# Literature review

#### Crystal structure







Phase diagram

 Discrepancies on the FeF<sub>2</sub> melting temperature (950 °C [73Tsi], 975 °C [89Joh] or 1100 °C [98Cha])

No FeF<sub>3</sub> fusion: sublimation without melting

#### Thermodynamic properties

| Solid<br>Compounds | ∆H° <sub>f,298 K</sub><br>(kJ/mol) | Experimental method                     | Reference |
|--------------------|------------------------------------|-----------------------------------------|-----------|
| FeF <sub>2</sub>   | -710.12                            | Mass spectrometry (2 <sup>nd</sup> law) | [81Sch]   |
|                    | -715.5±0.5                         | Mass spectrometry                       | [81Sch]   |
|                    | -705.8±41.8                        | Mass spectrometry (3 <sup>rd</sup> law) | [28Jel]   |
| FeF <sub>3</sub>   | -989.6±2.2                         | Calometric bomb                         | [81Joh]   |
|                    | -1037.6±4.5                        | F.e.m (3 <sup>rd</sup> law)             | [81Sch]   |
|                    | -1056                              | Mass spectrometry (3 <sup>rd</sup> law) | [28Jel]   |
|                    | -1043                              | Mass spectrometry (2 <sup>nd</sup> law) | [28Jel]   |
|                    | -993                               | Mass spectrometry (2 <sup>nd</sup> law) | [37Dom]   |
|                    | -990.8±2.1                         | Calometric bomb                         | [79Fer]   |

Good agreement for  $\Delta H^{\circ}_{f, 298 \text{ K}}$  (FeF<sub>2</sub>, cr) and  $\Delta G^{\circ}_{f, T}$  (FeF<sub>2</sub>, cr)

- $\Delta H^{\circ}_{f, 298 \text{ K}}$  (FeF<sub>3</sub>, cr) data scaterred
- No thermodynamic properties for gaseous molecule Fe<sub>2</sub>F<sub>6</sub> and only estimations for FeF<sub>3</sub>

## First principle calculations

- Calculations on gaseous molecules performed using Density Functional Theory implemented in DMol3 software
- Generalized gradient approximation for exchange and correlation energy (GGA)
- Spin of iron atoms taken into account





# Optimisation (in progress)

#### Modeling

- At first, selected literature data from [73Tsi] for optimisation
- Liquid associated model : (Fe, FeF<sub>2</sub>, FeF<sub>3</sub>)
- Hypothetic pure liquid FeF<sub>3</sub> at high pressure
- Interaction parameters : <sup>0</sup>L(FeF<sub>2</sub>, FeF<sub>3</sub>)=514668-501xT
  - <sup>1</sup>L(FeF<sub>2</sub>, FeF<sub>3</sub>)=29253

#### Results

- ΔH°<sub>f.298 K</sub> (FeF<sub>2</sub>,cr)=-713 kJ/mol
- $\Delta H^{\circ}_{f,298 \text{ K}}$  (FeF<sub>3</sub>,cr)=-990 kJ/mol



## **Further work**

- DTA experiments to check the phase diagram between FeF<sub>2</sub> and FeF<sub>3</sub> and between Fe and FeF<sub>2</sub>
- FeF<sub>2</sub> fusion temperature measurement
- Optimisation of the Fe-F system taken into account the new experimental data
- Effect of the nanostructure of FeF<sub>2</sub> and FeF<sub>3</sub> on the phase diagram and thermodynamic properties
- Enlarge the study to Fe-O-F ternary system

Acknowledgment: Financial support of Areva

## References

[28Jel] K. Jellinek, A. Rudat, Z. Anorg. Allg. Chem. 175 (1928) p. 281-320

[37Dom] L. Domange, Ann. Chim. 7 (1937) p. 225 [58Bau] [58Bau] W.H. Baur, Acta Cryst. 11 (1958) p. 488-490

[73Tsi] T.G. Tsiklauri, E.G. Ippolitov, B.M. Zhigarnovskii, and S.V. Petrov, Soobshch Akad. Nauk. Gruz. SSR, 69 (1973) p. 593-596

(75) J. G. Shakati, E.G. Jiponiov, B.M. Zinganiovski, and S.V. Fetro, Soussier, Akat. Nate. Gitz. Sin, 9 (257) p. 355-350 (75Cha] G. Chattopadhyay, M.D. Karkhanavala, and S. Chandrasekharaiah, J. Electrochem. Soc. 122 (1975) p. 325-327 (79Fer] G. Ferey, A.M. Leclerc, R. de Pape, Solid State Communications 29 (1979) p. 477-480

[81Joh] G.K. Johnson, J. Chem. Thermodynamics 13 (1981) p. 465-469

[81Sch] S.C. Schaefer and N.A. Gokcen, High Temp. Science 14 (1981) p. 153-159

[83Leb] M. Leblanc, G. Ferey, P. Chevallier, Y. calage and R. de Pape, J. Solid State Chem. 47 (1983) p. 53-58

[85Leb] M. Leblanc, J. Pannetier, G. Férey, R. de Pape, Revue de Chimie Minérale, 22 (1985) p. 107-114

[86Pap] R. de Pape and G. Ferey, Mat. Res. Bull. 21 (1986) p. 971-978

[89Joh] H.G. Johansen, A. Sterten and J. Thonstad, Acta Chem. Scand. 43 (1989) p. 417-420





