
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/25022

To cite this version: Washha, Mahdi and Qaroush, Aziz and
Mezghani, Manel and Sèdes, Florence Unsupervised Collective-based
Framework for Dynamic Retraining of Supervised Real-Time Spam
Tweets Detection Model. (2019) Expert systems with Applications, 135.
129-152. ISSN 0957-4174

Official URL

DOI : https://doi.org/10.1016/j.eswa.2019.05.052

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Unsupervise d collective-base d framework for dynamic retraining
of supervised real-time spam tweets detection model

Mahdi Washha a, ∗, Aziz Qaroush
b, Manel Mezghani a, Florence Sedes a

a IRIT, University of Toulouse, CNRS, INPT, UPS, UT1, UT2J, France
b Department of Electrical and Computer Engineering, Birzeit University, Ramallah, Palestine

Keywords:

Twitter

Real-time

Spam

Social spammers

Twitter stream

a b s t r a c t

Twitter is one of the most popular social platforms. It has changed the way of communication and in- formation dissemination

through its real-time messaging mechanism. Recently, it has been used by re- searchers and industries as a new source of data

for various intelligent systems, such as tweet sentiment analysis and recommendation systems, which require high data quality.

However, due to its flexibility and popularity, Twitter has become the main target for spamming activities such as phishing

legitimate users or spreading malicious software, which introduces new security issues and waste resources. There- fore,

researchers have developed various machine-learning algorithms to reveal Twitter spam. However, as spammers have become

smarter and more crafty, the characteristics of the spam tweets are varying over time making these methods inefficient to

detect new spammers tricks and strategies. In addition, some of the employed methods (e.g. blacklisting) or spammer features

(e.g. graph-based features) are extremely time-consuming, which hinders the ability to detect spammer activities in real-time. In

this paper, we introduce a framework to deal with the volatility of the spam contents and new spamming patterns, called the

spam drift. The framework combines the strength of unsupervised machine learning approach, which learns from unlabeled

tweets, to retrain a real-time supervised tweet-level spam detec- tion model in a batch mode. A set of experiments on a large-

scale data set show the effectiveness of the proposed online unsupervised method in adaptively discovers and learns the

patterns of new spam activities and achieve stable recall values reaching more than 95%. Although the average spam precision

of our method is around 60%, the high spam recall values show the ability of our proposed method in reducing spam drift

problems compared to traditional machine learning algorithms.

1. Introduction

The new great characteristics of Social Web that involve users

as information producers have exposed different information qual-

ity (IQ) problems (Agarwal & Yiliyasi, 2010). For example, Twit-

ter, which is the most popular microblogging sites, has a real-time

messaging mechanism that makes it more popular and suitable for

handling real-time public events and updates. In addition, due to

its popularity, social-based researchers adopt it as a main source

of information in performing their experiments on related re-

search areas (Abascal-Mena, Lema, & Sèdes, 2015; Hoang & Mothe,

2016; Mezghani et al., 2015; Mezghani, Zayani, Amous, Péninou,

& Sèdes, 2014; Zubiaga, Spina, Amigó, & Gonzalo, 2012; Zubiaga,

Spina, Fresno, & Martínez-Unanue, 2011). However, the simplicity

∗ Corresponding author.

and flexibility of using these sites, and the absence of any effective

restrictions on content posting action might be viewed as addi-

tional challenges for having IQ issues. Indeed, social spam content,

which is published by a well-known kind of ill-intentioned users,

so-called social spammers, is one of the most common noises

appearing on online social media (OSM) sites and is categorized

under IQ problems. Social spammers intensively post nonsensical

contents such as advertisements, porn materials, viruses, malware,

and phishing websites in different contexts (e.g., topics) and in an

automated and systematic way (Benevenuto, Magno, Rodrigues, &

Almeida, 2010; Washha, Qaroush, & Sèdes, 2016). Moreover, Social

spammers exploit trending topics and available services or APIs

to lunch their spammy content in short periods (e.g., one day) to

maximize their monetary profits and speed up their spamming be-

havior. For example, on Twitter, social spammers leverage different

set of provided services to launch their spam attacks through: URL,

Hashtag , and Mention services. Besides these services, Twitter pro-

vides APIs for developers to be used in their third-party applica- E-mail addresses: mahdi.washha@irit.fr (M. Washha), aqaroush@birzeit.edu (A.
Qaroush), florence.sedes@irit.fr (F. Sedes).

https://doi.org/10.1016/j.eswa.2019.05.052

tions. Social spammers exploit this distinctive service as an oppor-

tunity to automate their spamming behavior.

Social spam might be defined as a piece of irrelevant informa-

tion; however, this interpretation is quite not accurate. We jus-

tify this misinterpretation through the definition of information re-

trieval (IR) systems (Manning, Raghavan, & Schütze, 2008) in which

the relevancy of the retrieved documents in the IR systems is de-

pendent on the input search query. Thus, irrelevant documents

with respect to an input query are “not” necessary to be a spam

content. Hence, as an additional definition, social spam might be

viewed as irrelevant information that doesn’t have an interpreta-

tion in any context as long as the input query is not a spam con-

tent. Since social spam is a pure IQ problem, we project the prob-

lem on five IQ dimensions including accuracy, believability, repu-

tation, value-added, and relevancy. Indeed, spam content does not

represent real-world data, and thus it has a low degree in accu-

racy and believability dimensions. Also, the reputation of spam is

also low because normal users tend to circulate accurate informa-

tion in general. Finally, spam content doesn’t deliver any benefit

for the OSM users in terms of value-added and relevancy dimen-

sions. Although projecting social spam problems on IQ world pro-

vides more insights regarding handling the problem efficiently; so-

cial spammers spend great effort s to increase the degree of IQ di-

mensions. Therefore, understanding and knowing facts about social

spammers and their behaviors can contribute to providing effective

solutions for the social spam problem. The work of spam detection

is very important to both industries and academia because social

spam is also very critical in other social media platforms.

Social media platforms, including Twitter, has recently been

used as a new data source by researchers which potentially could

have many applications within emergency management and crisis

coordination, making the streaming of high-quality tweets a seri-

ous challenge with the continuous presence of ill-intentioned indi-

viduals (Imran, Castillo, Diaz, & Vieweg, 2015). Among these plat-

forms, Twitter API is more open and accessible, which makes Twit-

ter more favorable to developers to building tools to access data.

In addition, Twitter data can contain valuable metadata including

geospatial data. Research and applications on Twitter data ranges

from sentiment analysis, time series analysis, and Network analy-

sis which can be exploited in relating intelligent systems applied

in industry, government, and universities (Giachanou & Crestani,

2016). For example, Twitter uses artificial intelligence techniques

to determine what tweet recommendations to suggest on users

timelines. Also, several companies use Twitter Sentiment Analysis

to develop their business strategies, to find out customers feelings

towards products or brand, and to predict the stock market move-

ments (Mittal, 2011).

Several methods were presented in the recent research litera-

ture for detecting spamming activities on Twitter. However, these

methods have several weaknesses that make them below the de-

sired level of efficiency in detecting dynamic spammer activities

in real-time. These weaknesses could be summarized as follows:

(i) most of these methods are based on supervised machine learn-

ing approach which is trained on static, human-annotated datasets

which is very human-labor cost, (ii) reliance on small and static

annotated datasets to build a model to follow-up social spammers’

patterns and their tricks, is not an efficient solution because of the

lack of information in the tweet object itself, information fabri-

cation problem, and the variation in social spammers’ behaviors

(Chen, Zhang, Xiang, Zhou, & Oliver, 2016; Grier, Thomas, Paxson,

& Zhang, 2010). For example, Fig. 1 shows a sequence of streamed

spam tweets that attacked the “KCA” event by three correlated

spam accounts (social spammers). From this example, various pat-

terns might be elicited: (1) same URL used in posting tweets;

(2) the same prefix was exploited in filling screen-name attribute

“voteddlovatu”; and (3) there was a high similarity in the user-

Fig. 1. An example of three correlated spam tweets posted in a consecutive way by

three different spam accounts.

name attribute among the three accounts, and (iii) previous studies

didn’t provide sufficient analysis and formulations regarding the

features used by the spam detection model to work in real-time.

In spite of the volatility of the spam content and new spam-

ming patterns, we can exploit the high correlation among spam-

mers’ behavior when they launch their spam campaigns for aggre-

gating and analyzing continuously-streamed tweets using unsuper-

vised methods to produce annotated datasets of tweets that can

be used for repetitively retraining and updating spam classifica-

tion models. In this paper, we introduce and experiment a frame-

work that leverages an unsupervised method in providing, auto-

matically and periodically, an annotated dataset for updating su-

pervised real-time spam tweet detection model. More precisely,

our framework is mainly composed of two main modules: (i) an

online collective-based unsupervised spam tweet model; and (ii) a

supervised real-time spam tweet detection model. The first mod-

ule collects and stores streamed tweets. Then, it applies clustering

methods on the stored tweets, followed by a rule-based method

that labels each cluster of tweets to provide annotated tweets.

The second module is responsible for classifying instantly every

streamed tweet into spam or non-spam, with periodically leverag-

ing the annotated datasets that come from the first module to re-

train and update the current classification model. We demonstrate

the effectiveness of the proposed framework through a series of

intensive experiments conducted on a dataset streamed from 50

different Twitter trending topics consisting of more than 2 million

tweets. Compared to two known methods designed for real-time

spam tweets detection, the experimental evaluation shows the ef-

ficiency of the proposed framework in detecting spam tweets in

terms of precision, recall, and F -measure performance measures.

Also, it provides the ability to have control of the target quality

of the tweets. In summary, the main contributions of the work in-

troduced in this paper are: (i) provide an up-to-date survey and

analysis regarding related studies organized in a hierarchy way, (ii)

we have collected and labeled a large Twitter dataset of around

2 million Tweets from 50 different Twitter trending topics to be

used in data analysis and experimental evaluation we will also

make this dataset available for others researchers to use, (iii) pro-

viding a complete framework based on an online unsupervised

learning method to deal with spam drift problems, by automati-

cally and periodically preparing annotated training datasets to re-

train a supervised tweet-level spam detection model, (iv) the pro-

posed tweet-level classification model didn’t require pre-training

on the prepared annotated datasets. Additionally, no human inter-

vention is required; which saves time, cost, and resources. (v) in-

troducing an optimized set of discriminative, hardly manipulated,

and lightweight features extracted only from the streamed tweets,

without requiring any external information from Twitter’s servers,

(vi) compared to the state-of-the-art methods, the experimental

evaluation shows the efficiency of the proposed framework in re-

ducing the impact of spam drift problems.

Fig. 2. A taxonomy for Social spam detection methods in Twitter (Kabakus & Kara, 2017; Washha, Shilleh et al., 2017; Wu, Wen et al., 2017).

2. Related work

Twitter gives its users the opportunity to report spam accounts

through clicking ”Report: they are posting spam” option that is

available in all accounts. When an account is being reported, Twit-

ter’s administrators manually review and deeply analyze that ac-

count to make later suspension decision. However, such reporting

mechanism is inefficient for fighting social spammers, because it

needs significant effort s from both users and administrators when

considering billions of users. Moreover, many users may provide

fake reports and thus not all reports are necessary true. As an ad-

ditional attempt to address the social spam problem, Twitter has

a set of rules with permanently suspending the accounts that vio-

late those rules (Twitter, 2016). Unfortunately, social spammers are

smart enough to bypass Twitter’s rules. For instance, social spam-

mers may coordinate multiple accounts by distributing the desired

workload among these accounts to mislead the detection. Con-

sequently, Twitter’s approaches are ineffective for reducing spam

drift in real-time spam filtering.

The shortcomings in Twitter’s anti-spam mechanism have mo-

tivated researchers to introduce more robust methods to increase

data quality for the applications that use Twitter as a main source

of information. After a deep look into a wide range of scientific re-

search related to the spam detection methods on Twitter, we build

a detailed taxonomy for these methods as shown in Fig. 2 , which is

based on different criteria, including: (i) type of the detection ap-

proach (Honeypot, Blacklist, and Machine Learning) and (ii) level

of detection (Tweet, Account, and Campaign) exploited in the de-

tection methods (Kabakus & Kara, 2017; Wu, Wen, Xiang, & Zhou,

2017).

2.1. Honeypot approach

Traditional supervised learning methods require an initial hu-

man labeled dataset which cannot work efficiently with spam

drift issues. Alternatively, some spam discovery approaches rely on

community reporting mechanism by using Social honeypot. A so-

cial honeypot is viewed as an information system resource that

can monitor social spammers’ behavior through logging their in-

formation such as the information of their accounts and any avail-

able content (Lee, Caverlee, & Webb, 2010). Social honeypots are

valuable tool for gathering and understanding spamming activities,

specifically community-based online activities. However, there is

no significant difference between Twitter’s anti-spam mechanism

and the social honeypot approach. Both of them need administra-

tive control to make a decision regarding the accounts that have

been fallen into the honeypot trap to reduce the false positive rate,

which in turns is time-consuming. Lee et al. (2010) deployed a

set of honeypots for MySpace and Twitter and they used an up-

dated trained classifier to identify spammers. Stringhini, Kruegel,

and Vigna (2010) deployed 900 honeypots in Facebook, MySpace,

and Twitter and they manually identified spammers from all re-

quests.

2.2. Blacklist approach

Most spammers promote their services/products by embedding

URL links in the spam tweet. Therefore, an effective way of spam

detection is to detect tweets containing spam links which rely on

the third party blacklisting techniques. For example, Twitter em-

ployed Googles Safe Browsing API to prevent malicious links (Grier

et al., 2010). In fact, blacklist methods detect spam by searching

the list and it can be applied for domain level rather than spe-

cific URL. Blacklisting techniques are commonly deployed in web

filtering services such as Twitter spam detection or for dataset

labeling. In addition, it provides a lightweight approach with a

lower cost than existing classifiers (Ma, Saul, Savage, & Voelker,

2011). However, it cannot deal with the dynamic behavior of spam-

ming activities and thus it’s not appropriate for real-time detec-

tion because in average it takes 4 days for the blacklist to include

the new spam URLs. In addition, many spammers try to embed-

ded shortened URLs, which disable the performance of blacklisting

techniques (Wu, Wen et al., 2017). Moreover, some URLs detection

techniques are based on the correlations between the extracted

URLs from several tweets in which require more time to retrieve

tweets from Twitter servers (Lee & Kim, 2013).

2.3. Machine learning approach

To automate the task of spam detection, most of the Twitter

spamming detection methods are based on machine learning tech-

niques. However, the main difference between these methods is in

the selected features along with their formulations. In fact, almost

every paper in these methods introduce a group of distinct features

and apply a set of well-known machine learning methods to detect

spamming activities. Features used by machine learning methods

for Twitter spam detection are varying and differ in terms of their

level (e.g account, tweet, and campaign), formulations, powerful-

ness, ease of manipulation, and their suitability for real-time detec-

tion. Authors in Sedhai and Sun (2017a) and Yang, Harkreader, and

Gu (2013) provide a comprehensive study and analysis regarding

hashtag, tweet, account, graph, and timing features with respect to

their performance in Twitter spam detection.

Selection of the machine learning method (e.g. supervised, un-

supervised, or semi-supervised) is mainly based on the availability

of annotated dataset. In fact, most of the spam detection meth-

ods have employed supervised machine learning algorithms, which

are trained on one or more types of spam features, that are

distributed between tweet-based features, account-based features,

and campaign-based features. Account-based methods are based

on the features extracted from a Twitter account such as user

name, creation date, location, number of followings, number of

tweets, number of mentions, number of moments, number of likes,

and number of retweets. The works introduced in Benevenuto et al.

(2010) , Washha et al. (2016) , Wu, Liu, Zhang, and Xiang (2017) ,

Wang (2010) , McCord and Chuah (2011) , Stringhini et al. (2010) ,

Meda et al. (2016) , Bara, Fung, and Dinh (2015) , Hu, Tang, and Liu

(2014) and Hu, Tang, Zhang, and Liu (2013) have been focused on

extracting features (e.g., the number of friends, number of follow-

ers, similarity between tweets, and ratio of URLs in tweets) from

users’ accounts. In more dedicated studies, the works presented

in Cao and Caverlee (2015) and Wang and Pu (2015) have iden-

tified the spam URLs through analyzing the behavior of shorten-

ing URLs such as the number of clicks and the length of the redi-

rection chain. Features extracted from a single Twitter account are

simple and lightweight. However, they are easily manipulated by

social spammers using a group of bots. In addition, account-level

detection is less effective for spammers who may act as legitimate

users by posting nonspam content regularly. This behavior moti-

vated researchers to leverage graph theory to extract more com-

plex features from a set of Twitter accounts. For instance, the stud-

ies presented in Yang, Harkreader, and Gu (2011) , Yang, Harkreader,

Zhang, Shin, and Gu (2012) and Almaatouq et al. (2016) have ex-

amined the relation among users through using some graph the-

ories and metrics to measure three features, including node be-

tweenness, local clustering, and bi-directional relation ratio. Lever-

aging such complex features gives high spam accounts detection

rate; however, they are not suitable for real-time Twitter-based ap-

plications, because of the huge volume of data that must be re-

trieved from Twitter’s servers as well as graph operations, that re-

quire exponential time.

Tweet-level spam detection is a lightweight method that re-

quires instant analysis and they are based on the features ex-

tracted from tweets such as tweet contents (e.g. text and links),

sender, mentions, hashtags, links, number of retweets, number of

replays, send dates, location (Kabakus & Kara, 2017; Wu, Wen

et al., 2017). Tweet-level spam detection is essential to fight against

spamming activities at a more fine-grained level. Most of these

methods are based on using language models (e.g TF-IDF and bag-

of-words) to compute the similarity between a tweet and other

tweets in the same trending topic, or based on detecting malicious

URLs embedded in the tweets (Lee & Kim, 2012; Martinez-Romo

& Araujo, 2013; Thomas, Grier, Ma, Paxson, & Song, 2011). How-

ever, these methods may not be suitable for real-time filtering be-

cause it needs the tweets that have been posted on the same topic

from Twitter’s servers. Moreover, the traditional ways to filter URLs

are based on blacklisting and HTML parsing which cannot handle

shortened URLs, and take significant time to update blacklist. Other

tweet features like sender, mentions, hashtags, links, number of

retweets, number of replays, send dates, and location are simple

and lightweight.

In campaign-level, researchers treated spam problem from a

collective perspective view. Therefore, instead of detecting spam

tweets one by one, they clustered spam into a set of groups ac-

cording to their similarity on tweet contents or URLs (Wu, Wen

et al., 2017). Chu, Widjaja, and Wang (2012) clustered a set of

desired accounts according to the URLs available in the posted

tweets. Then, a defined set of features from the accounts clus-

tered is designed to build a binary classification model using ma-

chine learning algorithms to identify spam campaign. Chu, Gian-

vecchio, Wang, and Jajodia (2012) have proposed a classification

model to capture the difference between bot, human, and cyborg

with taking into consideration the content of tweets and spam-

ming behavior. Campaign-based methods are not appropriate for

real-time filtering due to the high volume of data required from

Twitter’s servers. In addition, some campaigns are classified man-

ually which is extremely time-consuming (Thomas, Grier, Song, &

Paxson, 2011). Finally, in hybrid-based methods, researchers use

a combination of features extracted from Twitter accounts and

tweets contents in order to provide more robust spam detection

method (Chen, Zhang, Chen, Xiang, & Zhou, 2015; Chu, Gianvec-

chio, Wang, & Jajodia, 2010; Inuwa-Dutse, Liptrott, & Korkontzelos,

2018; Wang, Zubiaga, Liakata, & Procter, 2015). However, using hy-

brid features, requires careful features selection to make a trade-

off between detection rate and detection time, in addition to the

needed information from Twitter servers to compute features.

In general, supervised machine learning methods that have

been used to detect spam tweets in real-time require a set of dis-

criminative, lightweight, and not easy manipulated features, in ad-

dition to the existence of an annotated datasets for the training

phase (Benevenuto et al., 2010; Chen, Zhang, Xie et al., 2015). Since

tweet object has a limited amount of content or information, a few

numbers of the features described in Table 1 are adopted in real-

time spam tweet detection. Moreover, the major drawback of this

approach is in the process of training classifiers, which is based

on static datasets that reflect current spammer strategies without

paying attention to the spam drift issues. To overcome this prob-

lem, we need to retrain classifiers periodically based on up-to-

date datasets that catch the new spamming strategies (Chen et al.,

2017). Authors in Chen, Zhang, Xiang, and Zhou (2015) proposed

asymmetric self-learning method to update classifier periodically.

They added the incoming classified tweets, which were classified

using an initial trained model to the training dataset. Then, after

a defined period (e.g., 1 day or 2 days), the classification model is

retrained using the old training tweets along with the recent clas-

sified tweets. However, this approach is completely dependent on

the initial trained model, and there is no guarantee about its per-

formance in effectively detecting new social spammers’ patterns.

Similar approach are proposed in Lee et al. (2010) . The authors

employed honeypots as an information resource to monitor and

collect spammers behaviors and log their information. They pass

detected candidate spam profiles to the trained classifier and then

return back profiles that are classified as a spammer to periodi-

cally update classifiers. However, the initial dataset used for train-

ing classifier is small. In addition, the approach includes human

inspectors for validating the quality of the extracted spam candi-

dates. Surendra and Aixin (Sedhai & Sun, 2017b) proposed a semi-

supervised spam detection method consisting of two main mod-

ules: four-level spam tweet-based detection module which oper-

ates in real-time mode and an updating module which operates

in batch mode. After finding the confidently labeled tweets, the

detection module including blacklisted, near-duplicate, ham tweet

detector, and tweet classification models are updated accordingly.

The proposed detector uses tweet-based features which are suit-

able for real-time detection. However, some discriminative features

that can be derived from the user account and historical tweets of

the users are missing. In addition, among four detectors, the classi-

fication model contributes to 87% of tweets labeling, for which the

performance is dependent on the initial data set. Chao et. al. (Chen

et al., 2017) proposed a scheme called Lfun that can automati-

cally detect changed spam tweets from new unlabeled tweets and

incorporate them into classifiers retraining process. The proposed

method employed 12 lightweight features and uses two compo-

nents to extract changed spam tweets including learn from de-

tected spam tweets and learn from human labeling. However, the

performance of the scheme is mainly dependent on the first com-

ponent which trained on an initialized labeled dataset. In addition,

human labeling is time consuming.

To sum up, the above studies have the following weaknesses: (i)

they assume that all pre-information (e.g., a blacklist of spamming

domains and annotated dataset or trained classification models) to

label tweets exist, (ii) most of them are based on updating dataset

using the output of the classifier which can’t guarantee to learn

new spamming activities, since the classifier is trained on an initial

dataset, and (iii) some of them are missing important lightweight

account-level features, and (iv) some of them require human in-

spectors for validating the quality of the detector. Unlike these

studies, our proposed framework have the following strengthens:

(i) it didn’t require pre-information like e.g., a blacklist of spam-

Table 1

A description of content and user features exploited in spam tweets detection, with classifying them based on their suitability for real-time filtering.

Feature Name Description Real-Time Suitability

Content Features

Number of Hashtags The number of words that begin by “#” symbol (Benevenuto et al., 2010; Chen, Zhang, Xiang et al.,

2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013).

√

Number of URLs The number of links, including shorten links (Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015;

Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013).

√

Number of Words The number of words written in tweet where white-space is used a separator among words

(Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo

& Araujo, 2013).

√

Number of Characters The number of characters used in creating the tweet, including numbers and symbols (Benevenuto

et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo,

2013).

√

Number of Mentions The number of accounts mentioned in the tweet through looking for words starting by “@”

(Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo

& Araujo, 2013).

√

Number of Retweets The number of retweets that the tweet has gained (Benevenuto et al., 2010).
√

Number of Spam Words The number of spam words that exist in the tweet according to a define list of spam words

(Benevenuto et al., 2010; Martinez-Romo & Araujo, 2013).

√

Number of Trending Topics The number of words that represent trending topics circulated in Twitter (Benevenuto et al., 2010;

Martinez-Romo & Araujo, 2013).

√

Number of hashtags per words The ratio of the number of hashtags to the number of words in the tweet (Benevenuto et al., 2010).
√

Number of URLs per Words The ratio of the number of URLs to the number of words in the tweet (Benevenuto et al., 2010).
√

Number of Numeric Characters The number of numeric digits in the tweet (Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015;

Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013).

√

Number of Replies The number of times that the tweet has been replied by other users (Benevenuto et al., 2010;

Martinez-Romo & Araujo, 2013).

√

Number of Favourites The number of accounts/users that have favorited the tweet (Chen, Zhang, Xiang et al., 2015; Chen,

Zhang, Xie et al., 2015).

√

Tweet and URL Page Title Divergence The Kullback Leibler Divergence value computed between the text of the tweet and the title of the

URL website, if any (Martinez-Romo & Araujo, 2013).

✗

Tweet and Topic Content Divergence The average value of the Kullback Leibler Divergence values computed between each tweet of the

considered tweet topic and the text of the considered tweet, if any (Martinez-Romo & Araujo, 2013).

✗

Tweet and User’s Tweets Divergence The average value of the Kullback Leibler Divergence values computed between each tweet posted by

the tweet user and the considered tweet content (Martinez-Romo & Araujo, 2013).

✗

User Features

Number of Followings The number of accounts/users that the user of the tweet follows (Chen, Zhang, Xiang et al., 2015;

Chen, Zhang, Xie et al., 2015).

√

Number of Lists The number of accounts/users that has listed the user of the tweet (Chen, Zhang, Xiang et al., 2015;

Chen, Zhang, Xie et al., 2015).

√

Number of Followers The number of accounts/users that follow the user of the tweet (Chen, Zhang, Xiang et al., 2015; Chen,

Zhang, Xie et al., 2015).

√

Account Age The number of milliseconds spent since the creation date of the account of the tweet (Chen, Zhang,

Xiang et al., 2015; Chen, Zhang, Xie et al., 2015).

√

Number of Tweets The number of tweets that the user of the tweet has tweeted (Chen, Zhang, Xiang et al., 2015; Chen,

Zhang, Xie et al., 2015).

√

ming domains and trained classifier, (ii) our proposed framework

is capable of continuously updating itself by using unsupervised

learning method, which is based on a set of discriminative account

and tweet-level features without any human intervention, and (iii)

introducing an optimized set of discriminative, and lightweight ac-

count and tweet-level features extracted from only the streamed

tweets, without requiring any external information from Twitter’s

servers.

3. Problem definition and formalization

Any Twitter stream can be represented as a finite set of chrono-

logically sorted tweets, defined as S t = { T 1 , T 2 , . . . , T t−1 , T t } , where
t ∈ N + represents the number of seconds since starting the stream-

ing process, and T 1 and T t are the first and latest tweets that

has been streamed. Indeed, the Tweet object contains different at-

tributes related to the tweet content and its user. Therefore, we

represent the tweet element T • by a 6-tuple of attributes, T • =
(User, # Retweets , # Replies , # Favourites, Text, Time), where # Retweets

represents the number of retweets that the tweet has gained,

Replies is the number of comments performed as a reply on

the tweet, # Favourites is the number of likes that the tweet has,

T ime ∈ Z ≥0 is the posting date of the tweet in seconds time unit

computed since January 1, 1970, 0 0:0 0:0 0 GMT, while the Text and

User attributes are defined as follows:

• Text: The textual content of the tweet is represented as a finite

set of ordered words, T ext = { w 1 , w 2 , . . . } . This set of words is
extracted by segmenting the tweet content using the whites-

pace separator. The word element w • might be a hashtag, URL,

user’s account mentioned, and more.
• User: Twitter provides simple meta-data about the user who

posted a tweet. Hence, we further represent the user object

by 7-tuple of attributes defined as, U ser = (SN, U N, UA, # Tweets ,

Followers , # Followees , # Lists), where # Tweets is the number of

tweets that the user has posted on his account, # Followers is

the number of accounts that follow the user, # Followees is the

number of accounts that the user follows, # Lists is the number

of accounts that list the user. The rest of the attributes, SN, UN,

UA , are further defined as follows:

– Username (UN): Twitter allows users to name their ac-

counts with a maximum length of 20 characters. Users can

use whitespace, symbols, special characters, and numeric

numbers in filling their username attribute. This field is not

necessary for being unique and thus the users can name

their accounts by already used names. We represent this

attribute as a set of ordered characters, defined as UN =
{ d 1 , . . . , d i } , where d • ∈ { Printable Characters } 1 is the charac-

ter and i ∈ Z ≥0 is the position inside the username string.

– Screen Name (SN): This attribute is a mandatory field and

it must be filled at the creation time of the account. Users

must choose a unique name that hasn’t been used previ-

ously by other users, with a maximum length of 16 char-

acters. Twitter also restricts the space of allowed charac-

ters to include only the alphabetical letters, numbers, and

“ _ ” character. Similar to the username attribute, we rep-

resent this field as an ordered set of characters, defined

as UN = { d 1 , . . . , d i } , where d – ∈ { Printable Characters } is the

character and i ∈ Z ≥0 is the position inside the username

string.

– User Age (UA): When a user creates an account on Twitter,

the creation date of the account is registered on Twitter’s

servers without providing any permissions to modify it in

the future. We exploit the creation date, as an accessible and

available property in the user’s object, to compute the age

of the account. Formally, we calculate the age in days time

unit through subtracting the current time from the creation

date of the account, define as UA =
T ime now −T ime creation

864 ∗10 5 , where

T ime now , T ime creation ∈ Z ≥0 are number of milliseconds com-

puted since January 1, 1970, 0 0:0 0:0 0 GMT.

According to this representation, the problem of real-time

tweet-level spam detection can be defined as follows; Given a

tweet streamed at time t, T t , and a set of already streamed tweets,

S t−1 , our problem is to predict whether the tweet T t is a spam or

non-spam, with leveraging only the available information in both

T t and the set of already streamed tweets S t−1 . More formally, we

aim at designing a model, F : x → { spam, non − Spam } , which takes
a feature vector of the streamed tweet T • as an input and predicts

its class label as an output.

4. Dataset description and ground truth

A dataset with ground-truth is required to train and evalu-

ate a supervised machine learning spam detection methods. In

fact, most of the researchers use their own dataset and some of

them didn’t make it publicly available (Benevenuto et al., 2010;

Martinez-Romo & Araujo, 2013). In addition, for privacy reasons,

when social-network-based researchers publish a dataset, they

only provide the target object IDs (e.g., tweets and accounts) to

retrieve them from servers of the desired social network. However,

providing the IDs of the spam tweets or accounts is not enough

because Twitter might already have suspended the corresponding

accounts and thus nothing to retrieve from the servers.

The most challenging task in creating a large dataset is the an-

notation process. Currently, researchers are using four ways to gen-

erate ground truth, including: manual inspection, blacklists, sus-

pended accounts, and clustering (Chen, Zhang, Chen et al., 2015;

Hu et al., 2014; Hu et al., 2013; Sedhai & Sun, 2017a; Thomas,

Grier, Song et al., 2011; Wu, Liu et al., 2017). Manual inspection is

costly, time-consuming, and some times subjective. Blacklists (e.g.

google safebrowsing) are an effective automated method. However,

not all spam tweets contain URLs and also some spam tweets con-

tain URLs that may direct to legitimate content. Therefore, Black-

list can be applied only for tweets containing URLs. On the other

hand, suspended accounts are also automated method and work

by labeling all of the suspended accounts tweets as spam. In fact,

Twitter decides to suspend an account if it engaging spamming ac-

tivities including posting misleading, deceptive, or malicious links. 2

1 http://web.itu.edu.tr/sgunduz/courses/mikroisl/ascii.html .
2 https://help.twitter.com/en/rules- and- policies/twitter- rules .

However, sometimes, suspended accounts may contain non-spam

tweets. Finally, in clustering methods (e.g. near-duplicate and ex-

pectation maximization), all tweets in the same cluster will be an-

notated with the same label. Up to our knowledge, there are two

publicly available datasets suitable for tweet-level spam detection

(Chen, Zhang, Chen et al., 2015; Sedhai & Sun, 2015). In Chen,

Zhang, Chen et al. (2015) the authors used the blacklist method

to annotate collected tweets, and thus they are concerned only on

tweets containing URLs. On the other hand, authors in Sedhai and

Sun (2015) used four main stages in the annotation process. How-

ever, due to the way the tweets were collected, the collection does

not contain full user profiles, which limits extracting account-level

features. In addition, the data set was collected based on popu-

lar hashtags, not on user basis, which does not guarantee to con-

tain all tweets of any user. Therefore, since our methodology: (i)

uses hybrid features (tweet-level and account-level) to train a real-

time spam detection model, (ii) deals with all tweets not only

the tweets having URLs, and (iii) uses tweets writing style simi-

larity and tweets posting behavior similarity features to label new

streamed tweet which require retrieving user tweets, both datasets

are not suitable for our proposed approach. As a result, we decided

to collect our own dataset and generate ground-truth.

Building large tweet dataset consists of two main stages, the

collection stage, and the annotation stage. For the collection stage,

we have developed a crawler that uses the Twitter Streaming

APIs. Actually, real-time spam detection methods are applied on

a stream of tweets related to one or more entities (hashtag, user-

name, and URL). Therefore, to simulate and investigate such cases,

we have chosen the hashtag as a target entity since most of the

researches and applications stream the tweets from a particular

hashtag or topic (Chellal, Boughanem, & Dousset, 2016; Hoang &

Mothe, 2016; Sedhai & Sun, 2015; Zubiaga et al., 2012). We have

launched our crawler for four months, started since 1/Jan/2015,

where 2.1 million of relevant tweets from 50 trending hashtags

have been collected and also stored based on their posting time. In

the annotation stage, since manual labeling is expensive and black-

lists are used only for tweets containing URLs, we have leveraged

the suspended accounts method which is widely used in social

spam detection to annotate our collected tweets (Hu et al., 2014;

Hu et al., 2013; Thomas, Grier, Song et al., 2011; Washha, Qaroush,

Mezghani, & Sèdes, 2017a; Wu, Liu et al., 2017). The process checks

whether the user of each tweet was suspended by Twitter. In case

of suspension, both the user and his tweets are labeled as spam.

We have performed this process for one year after crawling the

tweets in order to have a large number of spam users and their

tweets.

In total, as reported in Table 2 , we have found about 78,0 0 0

users (accounts) labeled as social spammer, and 881,0 0 0 legitimate

users. Also, the number of spam tweets existing in our dataset

is more than 208,0 0 0 tweets, forming about 10% of 2.1 million

tweets. The number of tweets posted is obviously greater than the

number of tweets retrieved since the former number represents

the tweets that have been streamed into the hashtags selected,

while the latter number corresponds to the ultimate tweets that

have been posted since the creation of the accounts. As the dataset

is not balanced at the class level, we compute the normalized ver-

sion of the statistics per 100 users to have a more fair compari-

son between social spammers and legitimate users. The normal-

ized version of the number of URLs shows an obvious misusing of

URLs in spreading social spammers’ content, compared to the le-

gitimate users. It is expected that the number of verified users is

zero since having a verified account requires to contact Twitter’s

administrators; thus the spam accounts are too difficult to be veri-

fied. Another interesting possible conclusion is that the distribution

of spam tweets is not necessary to be uniform, meaning that social

spammers may have some hidden preferences for selecting hash-

Table 2

Distribution of different statistics for social spammers (spam accounts) and legitimate users (non-spam accounts) existing in our dataset.

Social spammers Legitimate users

Statistic Name Number Percentage Number (per 100 users) Percentage Number Percentage Number (per 100 users) Percentage

Number of users 78,074 8.1% – – 881,207 91.9% – –

Number of geo-enabled users 5986 1.8% 8 18.2% 316,617 98.2% 36 81.8%

Number of verified users 0 0.0% 0 0.0% 2978 100% 1 100%

Number of users’ followers 78,143,567 2.9% 100,089 25.8% 2,526,736,521 97.1% 286,735 74.2%

Number of users’ followees 50,839,084 3.6% 651,165 81.5% 1,302,269,081 96.4% 147,782 18.5%

Number of tweets posted 944,566,070 5.4% 1,209,834 39.1% 16,604,525,699 94.6% 1,884,293 60.9%

Number of tweets retrieved 208,546 10.1% 267 55.8% 1,857,479 89.9% 211 44.1%

Number of retweeted tweets 80,773 9.1% 104 53.3% 808,263 90.9% 92 46.6%

Number of replied tweets 855 2.4% 1 33.3% 24,895 97.6% 3 66.6%

Number of URLs 127,655 1.9% 163 55.1% 1,166,666 98.1% 133 44.9%

Table 3

Distribution of 50,0 0 0 spam and non-spam tweets streamed into the top 20 hashtags existing in our dataset, showing an obvious variation in the number of spam tweets

of 20 hashtags.

Non-spam tweets Spam tweets Non-spam tweets Spam tweets

Topic name Number Percentage Number Percentage Topic name Number Percentage Number Percentage

#iHeartAwards 39,478 78.9% 10,522 21.1% #Harmonizers 38,844 77.7% 11,156 22.3%

#KCA 38,992 77.9% 11,008 22.1% #quote 46,076 92.2% 3924 7.8%

#BestFanArmy 40,982 81.2% 9018 18.8% #NowPlaying 47,841 95.7% 2159 4.3%

#TreCru 49,541 99.1% 459 0.9% #BTS 48,798 97.6% 1202 2.4%

#Periscope 48,831 97.7% 1169 2.3% #VoteMaineFPP 47,756 95.5% 2244 4.5%

#SoundCloud 46,709 93.4% 3291 6.6% #gameinsight 45,492 90.9% 4508 9.1%

#np 47,150 94.3% 2850 6.7% #VoteKathrynFPP 47,427 94.8% 2573 5.2%

#RT 36,922 73.8% 13,078 26.2% #android 46,162 92.3% 3838 7.7%

#5SOSFam 41,476 82.9% 8524 17.2% #love 46,802 93.6% 3198 6.4%

#Directioners 44,704 89.4% 5296 10.6% #giveaway 47,602 95.2% 2398 4.8%

tags. More precisely, Table 3 reports the distribution of the spam

and non-spam tweets streamed into top 20 hashtags and shows a

clear variation in the number of spam tweets. The stream of some

hashtags such as # RT has been intensively polluted with an esti-

mated ratio of 1 spam tweet to 3 non-spam tweets, while there

are hashtags that haven’t been polluted too much like # TreCru . In-

deed, there is no clear interpretation behind this high variation in

the distribution of spam tweets; however, the importance of the

hashtag, and how long time the hashtag has been trending are the

most possible reasons.

5. Unsupervised collective-based and real-time spam filtering

model

5.1. Model design: an overview

Supervised learning methods are the classical approach adopted

in literature for building spam tweets detection models. As com-

monly known in the machine learning field, applying these meth-

ods need an annotated dataset. Unfortunately, having such data

is often very expensive in terms of annotation time, and/or hu-

man resources. In addition, social spam classification models re-

quire continuous adaption using new training datasets to follow-

up new social spammers’ patterns and behaviors. Thus, obtaining

a static training dataset to train a classification model is not an ef-

ficient solution at all.

Therefore, we propose a design of an online collective-based

spam tweets classification framework that utilizes the great bene-

fits of unsupervised machine learning methods, to periodically and

automatically provide an annotated dataset by which updated su-

pervised classification models can be produced. The model em-

ploys the correlation between social spammers’ tweets in a short

period to predict spamming behavior. As described in Fig. 3 , our

framework consists of two main modules: (i) real-time tweet filter-

ing model; and (ii) periodic classification model learning. The first

module prepares a feature vector for a streamed tweet through ex-

tracting a set of predefined light features and then passes the vec-

tor to an already learned classification model to predict the class

label of the streamed tweet. The second module, which is the core

of the framework, stores incrementally the streamed tweets in a

storage component (e.g., database) and then frequently creates a

newly labeled training dataset using unsupervised methods once a

certain number of new tweets is stored in the storage component.

Upon satisfying the condition of streamed tweets, a new feature

space is prepared using all annotated tweets in the storage compo-

nent. Finally, a classical supervised learning method (e.g., Random

Forest, SVM, J48) is applied to the new labeled feature space to

build a binary classification model to replace the current classifier

model.

5.2. Collective-based unsupervised predictive model

Leveraging Twitter REST APIs to retrieve more information

about users of the streamed tweets is the best solution to pre-

cisely label each tweet as spam or not. However, the impractically

of this approach in terms of time brings serious challenges to de-

sign an efficient method suitable for processing large scale (some-

times endless) of streamed tweets. Therefore, instead of inspecting

each tweet individually, we overcome this shortcoming by propos-

ing an automatic approach that inspects the correlation between

spam accounts and their tweets at different levels using unsuper-

vised clustering methods. The design of the proposed approach

comes in five-stages as illustrated through an example in Fig. 4 . For

a given set of streamed tweets, the first stage extracts the users

who posted the tweets streamed. The second stage clusters the

users set based on the age of each user’s account. In the next stage,

for each generated cluster, a defined number of communities is de-

tected through an optimization process. In the fourth stage, we ex-

tract hand-designed features for each community using only users’

tweets and accounts information. The last stage makes a decision

about each community using a simple discriminative feature-based

Fig. 3. A diagram showing the flow and the steps of the two main components in our framework: (i) periodic classification function learning; (ii) and real-time tweet

detection or filtering.

Fig. 4. An example describing the functionality of the 5-stage unsupervised classification: (i) user set extraction; (ii) account age clustering; (iii) community detection; (iv)

community-based features extraction; (v) and community-based classification.

Fig. 5. CDF of 12 tweet features drawn for a randomly selected 10 days of streaming spam and non-spam tweets.

classification model that labels each tweet of spam communities as

spam tweets.

Stage 1: Users Set Extraction. We design the clustering and the

community detection stages based on leveraging the users’ infor-

mation that is available in the streamed tweets. Formally, for the

latest streamed tweets set, S t , the unique set of users is defined as

Users = { T .User| T ∈ S t } where | Users | ≤ | S t |.

Stage 2: User Age-based Clustering. Social spammers have the

ability to create hundreds or thousands of the Twitter accounts in

a short period not exceeding few days, for launching their spam

campaigns (Benevenuto et al., 2010; Washha et al., 2016). Also, the

impact of the creation time has shown its effectiveness in detect-

ing spam accounts so that when a set of accounts have a close

and recent creation date, the probability of being a spam accounts

increased. Fig. 5 show the Cumulative Distribution Function (CDF)

of 12 tweet-level features which extracted for spam and non-spam

tweets. These CDFs are computed for a randomly selected 10 days

of tweet streaming to study the strength of these features. The CDF

of the features shows that social spammers tend to behave exactly

as legitimate users to avoid detection. An interesting point worth

to mention is that the CDF of account age feature is the most ro-

bust one compared to the rest of the features since the creation

date of accounts is non-editable by users.

Thus, the creation date of Twitter accounts can be an effec-

tive means for grouping the spam accounts that might have a cor-

relation between them. According to that, the Users set is clus-

tered based on the user age (UA) attribute. In a formal way, let

C
Age
a = { u | u ∈ Users, u.UA = a } be a day-cluster containing the users
who have an account age equaling a ∈ Ages , where Ages = { u.UA | u ∈
Users } is a set of distinct users ages. Obviously, the number of day
clusters is dynamically determined, which exactly equals to the

size of the Ages set (i.e., | Ages |).

Stage 3: Community Detection. Social spammers might create

uncorrelated spam campaigns at the same time (Stringhini et al.,

2010; Wang & Pu, 2015; Washha, Shilleh, Ghawadrah, Jazi, & Sèdes,

2017). In other words, we might have an age cluster containing

spam accounts belonging to different spam campaigns. Also, many

non-spam users join Twitter daily, which increase the probabil-

ity of having non-spam users created on the same day as the

spam ones. Therefore, to distinguish between different uncorre-

lated spam campaigns and non-spam accounts, a community de-

tection stage is performed on each cluster resulted by age-based

clustering stage. We define each spam campaign as a community

having a high correlation between its users, where the correla-

tion in a given community can be measured over naming accounts

level, duplicated tweets content, or similar posting behavior.

In this paper, we adopt the Non-negative Matrix Factorization

(NMF) as an unsupervised method, to infer communities’ struc-

ture because of its outstanding performance in clustering problems

(Yang & Leskovec, 2013). NMF has turned into one of the preferable

tools for decomposing data into low-rank factorizing matrices to

yield a parts-based representation. It has distinct features of pre-

serving the structure of the original input data and keeping the

non-negativity in both weight and basis. The latent semantic space

of the NMF method has a very intuitive explanation in some clus-

tering problems. For instance, in NMF based document clustering,

each axis of the latent semantic space stands for the basic topic

of a particular cluster where each document is represented by the

additive combination of the basic topics.

For the given community detection problem, NMF works

through partitioning or factorizing one or more information matri-

ces into hidden factor matrices for an aging cluster, C a , a ∈ Ages , of

users. Formally, the factorization of information matrices is mathe-

matically defined as an optimization minimization problem as:

min
H≥0

|| X −HH
T || 2F = min

H≥0





√

√

√
√

| C Agea |
∑

i =1

| C Agea |
∑

j=1

| x i j − h i h
T
j | 2



 2

= min
H≥0

| C Agea |
∑

i =1

| C Agea |
∑

j=1

| x i j − h i h
T
j | 2 (1)

where || •|| F is the Frobenius norm of the considered matrix, X ∈
R | C

Age
a |×| C Age a | is an information matrix representing the strength of

the social connections (i.e., similarity among a pair of users) be-

tween users, H = [h 1 . . . h K] ∈ R | C
Age
a |×K is the community structure

hidden factor matrix of K communities, and the j th row vector

h j = [h j1 , . . . , h jK] ∈ R 1 ×K . The entry x ij reflects the strength of the

social connection between the u i ∈ C
Age
a user and u j ∈ C

Age
a user. The

entry h ij in the hidden factor matrix can be interpreted as the con-

fidence degree of user u i ∈ C
Age
a belonging to the j th community. It

is important to mention that each user belongs to one community

only, not more than one.

Obviously, inferring the hidden matrix H requires a formal def-

inition of the information matrix X . For example, X might be an

adjacency matrix representing the social connections or the links

among users of a given age cluster C Age a . However, obtaining the

adjacency matrix in our case is not possible since the available

information about users is limited to simple meta-data that de-

scribe accounts, which did not give enough information about the

followers and the followees. Hence, in this paper, we leverage the

available and accessible information to estimate social connections

between users through proposing three definitions of the informa-

tion matrix X denoted as X
SN

, X
UN

, and X
W S where each of which

is formally defined as follows:

• Screen Name Similarity (X SN): Since the screen name field must

be unique, social spammers tend to adopt a particular fixed

pattern when creating multiple accounts acting as a spam cam-

paign. For example, in Fig. 1 , the spammer has adopted the

name “voteddlovatu” as a fixed pattern and repeated it in fill-

ing the screen name field. Intuitively, the high matching in the

screen name between users (or accounts) increases the proba-

bility of the users to belong to the same community. Therefore,

we define the information matrix X
SN to measure the degree of

matching between the screen name attribute. More precisely,

for each two users u i , u j ∈ C
Age
a , a ∈ Ages , the degree of match-

ing for a particular entry in the matrix X
SN is defined as:

x SNi j =
max {| m | : m ∈ N − gram (u i .SN) ∩ N − gram (u j .SN) , N ∈ { 1 , . . . , min (| u i .SN| , | u j .SN|) }}

min (| u i .SN| , | u j .SN|) (2)

where | •| is the cardinality of the considered set, N − gram (•)
is a function that returns a set of contiguous sequence of char-

acters for a given name (set of ordered characters) based on

the value of N . For better understanding, the 3-gram (or tri-

gram (Cavnar & Trenkle, 1994)) of the screen name “vote” is

{“vot ”, “ote ”}. The above definition can detect the matched pat-

tern wherever it appears in the screen name attribute. For in-

stance, let “vote12” and “tovote” be screen names for two dif-

ferent spam users, the degree of matching according to Eq.

(2) is around (4 6)66 . 6% , which resulted from the use of pattern

“vote”, regardless the position of the pattern.
• User Name Similarity (X UN): Conversely the screen name at-

tribute, spammers may duplicate username attribute as many

as they wish. In fact, they aim to use a structured and represen-

tative (not random) names to attract legitimate users (Washha,

Qaroush, Mezghani, & Sèdes, 2017b). Therefore, fully or partially

matching among users based on such an attribute increases the

probability of being in the same community. Thus, we define

the information matrix X
UN to measure the degree of similarity

among users based on the user name attribute. Formally, given

two users u i , u j ∈ C
Age
age , the degree of similarity is defined as:

x UNi j =
max {| m | : m ∈ N − gram (u i .UN) ∩ N − gram (u j .UN) , N ∈ { 1 , . . . , min (| u i .UN| , | u j .UN|) }}

min (| u i .U N| , | u j .U N|) (3)

• Names Writing Style Similarity (X WS): Based on our observa-

tions, social spammers may follow a particular style in writ-

ing the username and screen name attributes. For instance, in

these two real spam accounts (u 1 = { SN = “ v ote 5 soss 33 ′′ , US =
“ v ote 5 sos ′′ } , and u 2 = { SN = “ sa v ed028 ′′ , US = “ sa v ed ′′ }), the so-
cial spammer has used the username attribute in filling the

screen-name attribute with putting the username value in the

beginning. Hence, as these two accounts belong to the same

spam campaign, modeling such behavior can efficiently con-

tribute to identifying spam communities. In order to model this

similarity between a pair of users, we firstly define a function,

Pos (Str 1 , Str 2), that takes two strings as an input and then it

finds the location (S tart, I nside, E nd) of the string Str 2 in the

string Str 1 , written as:

P os (Str 1 , Str 2) =









SE | Str 1 ∩ Str 2 | = | Str 2 | = | Str 1 |
S | Str 1 ∩ Str 2 | = | Str 2 | and•1 ∈ Str 1 ∩ Str 2
E | Str 1 ∩ Str 2 | = | Str 2 | and•| Str 1 | ∈ Str 1 ∩ Str 2
I | Str 1 ∩ Str 2 | = | Str 2 | and•1 / ∈ Str 1 ∩ Str 2 and•| Str 1 | / ∈ Str 1 ∩ Str 2

(4)

where the two strings are represented as a finite set of or-

dered characters Str • = { d 1 , d 2 , . . . } , d • ∈ { Printable Characters },

the symbol •1 represents any character written at the begin-

ning of a given string, while •| Str 1 | corresponds to the character
written at the end of the string Str 1 .

Therefore, for a pair of users u i , u j ∈ C
Age
a , a ∈ Ages, belonging to

an age cluster, we define a writing style similarity matrix X
W S

based on the equality of the pair in the Pos function value. For

a particular entry in the matrix X
W S

, the similarity is defined

as:

x W S
i j =

{

1 P os (u i .SN, u i .UN) = P os (u j .SN, u j .UN)
0 otherwise

(5)

where here 1 means that the pair of users has same

writing style, while 0 represents dissimilar writing style.

For better understanding, when applying the Pos func-

tion on the given example of a pair of spam accounts

(users), (u 1 = { SN = “ v ote 5 soss 33 ′′ , US = “ v ote 5 sos ′′ } , and

u 2 = { SN = “ sa v ed 028 ′′ , US = ′′ sa v ed ′′ }), the “S” location is re-

turned for the both users (i.e., Pos (“ v ote 5 soss 33 ′′ , “ v ote 5 sos ′′) =

S, Pos (“ sa v ed028 ′′ , “ sa v ed ′′) = S) since the username “vote5sos”

appears in the beginning of screen name “vote5soss33” of the

user u 1 , and similar for the “saved” username of the user u 2 .

Thus, the writing style similarity equals to 1.

Non-negative matrix factorization method allows to integrate

these three information matrices together in the same objective

function. According to this, the objective function is defined as:

min
H≥0

|| X
SN −HH

T || 2F + || X
UN −HH

T || 2F + || X
W S −HH

T || 2F (6)

Obviously, the objective function in Eq. (6) infers the hidden

factor matrix H to represent consistent community structure of re-

lated users. Indeed, this objective function is not jointly convex and

has no closed form solution exists. Hence, we propose the use of

a gradient descent approximation method as an alternative opti-

mization approach. Since we have one matrix free variable (H), the

gradient descent method updates it iteratively until the variable

converge. Formally, let L (H) denotes the objective function given

in Eq. (6) . So, at iteration τ , updating Eq. (6) is given by:

H
τ = H

τ−1 − η.
∂L (H

τ−1)

∂(H)
= H

τ−1 − 2 η
(

6 H
τ−1 (H

τ−1) T H
τ−1

− (X
SN + X

UN + X
W S) H

τ−1 − ((X
SN) T + (X

UN) T + (X
W S) T) H

τ−1)

(7)

where the parameter η denotes the gradient descent step in up-

dating the matrix H . We assign the value of η to a small con-

stant value (i.e. 0.05). Also, since the gradient descent method is

an iterative process, a stop condition is required in such a case.

For this, we used two stop conditions: (i) the number of itera-

tions, denoted as M ; and (ii) the absolute change in the H ma-

trix for two consecutive iterations to be less than a threshold, i.e.,

| (|| H τ || F − || H τ−1 || F) | ≤ ǫ.
One might view that the proposed information matrices and

the age-clustering stage can be easily manipulated by social spam-

mers to evade the detection. Indeed, this view could be correct

when a social spammer creates very small spam bot consisting of

no more than 5 spam accounts. Also, social spammers did not pre-

fer to use a random function to generate screen names and user-

names since the main objective of the social spammers is to lure

legitimate users. Thus, social spammers have to use names suit-

able for the target that they want to achieve. For instance, if a

social spammer wants to promote for a product ”X” through de-

voting large spam bots, he must name the spam accounts using

keywords related to the intended product. Social spammers have

the option to create the accounts before the attack; however, they

couldn’t change the creation date attribute. Moreover, the purpose

of using the age feature is to increase the difficulty in front of the

social spammers to create thousands of accounts in short a period

so that social spammers need to spend months to create a thou-

sand of spam accounts. As the purpose of launching spambots is

a monetary benefit, social spammers could not wait for this long

time in creating their accounts as well as leaving them inactive

may subject them for suspension from Twitter itself.

Stage 4: Community-Based Feature Extraction. In order to

predict the class (spam or non-Spam) of each community, one

or more features must be extracted from each community such

that these features can effectively discriminate between spam and

non-spam communities. Since social spammers may follow com-

plex and different spamming strategies, no single feature can ef-

fectively discriminate between spam and non-spam communities.

In addition, the design of such features must rely only on the

available information in each community to avoid using REST APIs.

Thus, we introduce a design of four community-based features that

take into account the community’s users along with their tweets.

The four introduced features are distributed between account-

based and tweet-based features. The username patterns similar-

ity (UNPS), and the screen name patterns similarity (SNPS) are

two features extracted using the username and screen name of the

user attributes. On the other hand, Tweets writing style similar-

ity (TsWSS), and Tweets posting behavior correlation (TsPBC), are

tweet-based features which only leverage the available content in

the tweets of a community. It is important to mention that there

is a strong intuition behind the design of each feature, which will

be illustrated statistically through different graphs of cumulative

density function (CDF).

The total number of formed communities is dependent on the

number of age clusters (| Ages |) beside the number of predefined

communities K . Therefore, the ultimate number of communities is

| Ages | ×K , where the community detection stage is applied to each

age cluster. We represent the j th inferred community in the hidden

matrix, H , by 7-tuple of attributes C j = (Users, T weets, UNP S, SNP S,

TsWSS, TsPBC, Label) where Users is a finite set of the users be-

longing to the inferred community, Tweets ⊆S t is all tweets that are
posted by the users of the community, and Lable ∈ { spam, non −
spam } is the class label of the community. The remaining attributes
are defined and formulated as follows:

• Username Patterns Similarity (UNPS) and Screen Name Pat-

terns Similarity (SNPS) : Social spammers may adopt a partic-

ular pattern (e.g., “voteddlovatu”) in creating their spam cam-

paigns and therefore the probability of having spam commu-

nities biased toward a particular pattern used in creating ac-

counts is relatively high. Since there is no obvious correlation

among communities at the pattern level, nor a prior knowledge

about the length and the name of the patterns, we must have a

generic and independent way to determine whether the com-

munity has a spammy pattern. Thus, we rely on an intuitive

and generalized fact which states that the probability distribu-

tion of the patterns in non-spam communities is close to the

uniform distribution, while the spam communities have the op-

posite behavior. More precisely, we measure the degree of simi-

larity between string patterns probability distribution extracted

from users of a particular community with the uniform proba-

bility distribution of the patterns.

Formally, let PT UN and PT SN be two finite sets of string pat-

terns extracted from the username and the screen name

attributes for users of the j th community, C j . Also, let P
UN
D

and P SN
D be the corresponding probability distributions of

the username and the screen name patterns, respectively.

For the uniform distribution, let P UN
uni

, P SN
uni

be the corre-

sponding uniform distributions of username and screen

name patterns, respectively. For instance, for a particu-

lar community, let P T SN = { “ mischie f ′′ , “ isch ′′ , “ _ 12” , “ _ 14” }
and P SN

D = { (“ mischie f ′′ , 0 . 7) , (“ _ 15” , 0 . 1) , (“ _ 14” , 0 . 1) , (“ _ 12”
, 0.1)} be a set of screen name patterns along

with its probability distribution, and {(“mischief ′′ ,
0 . 25) , (“ _ 15” , 0 . 25) , (“ _ 14” , 0 . 25) , (“ _ 12” , 0 . 25) } be the uni-

form probability distribution of these patterns. To extract

and catch all string patterns, the N-gram method is applied

since social spammers may define patterns varying in their

length and position. To perform the N-gram method, different

values of N ranging from three to the length of the string are

used, with ignoring low N values (one and two) because they

provide meaningless patterns. For the j th community’s users,

represented as C j , we extract the string patterns used in the

username and screen attributes as follows:

P T UN =

⋃

u ∈ C j ·Users

⋃

N ∈{ 3 , ... , | u.UN |}
N − gram (u.UN)

P T SN =

⋃

u ∈ C j ·Users

⋃

N ∈{ 3 , ... , | u.SN |}
N − gram (u.SN) (8)

The double unification (
⋃⋃

) can be viewed as a double “for”

loops where the inner unification is responsible about return-

ing all patterns, as a finite set of strings, that a single user has,

while the outer unification unifies all sets of users’ string pat-

terns to have only one single set of the string patterns repre-

senting the community itself.
Since the pattern is a categorical random variable in which the
string has not a meaningful order of magnitudes, we adopt
the Kullback–Leibler divergence (Kullback & Leibler, 1951) (KL)
method as a suitable and a fast way to measure the similar-
ity between any two probability distributions of categorical ran-
dom variables. However, the classical version of KL method can-
not be directly exploited in computing similarity among (P T UN

D

and P T UN
uni

) or (P T SN
D and P T SN

uni
) since the ∞ and 0 values cor-

respond to dissimilar, and similar distributions, respectively.
Hence, we perform a few modifications on the current version
of KL method to inverse the semantic meaning of KL values (i.e.,
0 ⇒ dissimilar and 1 ⇒ similar) and taking into account bound-
ing its values. Thus, for the j th community, the value of the
UNPS and SNPS features are computed using the customized KL
equation as follows:

C j .UNP S =
log | P T UN | − ∑

w ∈ PT UN P
UN
D (w) ∗min (| log P

UN
D (w)
P UN
uni (w)

| , log | PT UN |)
log | P T UN |

(9)

C j .SNP S =
log | P T SN | − ∑

w ∈ PT SN P
SN
D (w) ∗min (| log P

SN
D (w)
P SN
uni (w)

| , log | PT SN |)
log | P T SN |

(10)

where | •| is the cardinality (length) of the string patterns set,

P •
D (w) is the probability of occurring the pattern w based on the

distribution of the considered patterns set, and P •
uni (w) is the

probability of occurring the pattern w according to the uniform

distribution of the considered patterns set.
• Tweets Writing Style Similarity (TsWSS) : Single social spam-

mer may create thousands of spam accounts for involving them

in a spam campaign. Thus, the probability to have a correla-

tion between the tweets of these accounts is quite high. Ac-

cording to our observations, the way or the style followed in

writing tweets is mainly similar (e.g., one form) with possible

correlations among them. For instance, the spam tweets of a

campaign shown in Fig. 1 have a common style structure in

writing tweets (word, word, hashtag, word, word, word, word,

word, and the URL). It is obvious that the three tweets are

too correlated, though their social spammer has been tricky

in writing tweets through avoiding duplication in the con-

tent of the tweets. Computing the writing style similarity be-

tween tweets requires: (i) a new representation of each tweet

through identifying the type (W ord, H ashtag, U rl, and M ention)

of each whitespace separated string; (ii) and a metric that com-

putes the degree of similarity among the new representation

of the community’s tweets. Therefore, we define a transforma-

tion function, Type (ST) ∈ { W, H, U, M } that takes ST string as

a parameter and returns the type of the input string (W ord,

H ashtag, U rl, and M ention). Consequently, the new represen-

tation of a tweet T • belonging to the j th community, C j , is

T rans (T •) = { (i, T ype (w i)) | w i ∈ T •.T ext} where i ∈ Z + is the po-

sition of the string in the tweet text and w i is the string that

requires a transformation. Unifying the new representation of

all tweets provides a single unique set representing the writing

style of the community’s users. The cardinality of the unique

set provides a meaningful indication about the writing style

variation where the small cardinality means that the users have

followed almost the same writing style. However, to precisely

quantify how much the writing style is close among tweets, a

reference value is required to compare the cardinality of the

new set with it. The maximum value of the cardinality of the

new set occurs when there is no intersection among the new

representation of all tweets. Therefore, the cardinality of the

new set will equal to the sum of | Trans (T)| overall community’s

tweets. Formally, by the following equation, we measure the

writing style similarity:

C j .T sW SS = 1 −
| ⋃T ∈ C j .T weets T rans (T) |
∑

T ∈ C j .T weets | T rans (T) |
(11)

• Tweets Posting Behavior Similarity (TPBS) : Another possible
form of correlation among spam accounts is the rate (e.g., every
5 min) of posting tweets. Intuitively, when the users (accounts)
of a community have the same posting behavior, regardless
of the posting period, the probability of the community being
spam is high. The simplest way to compute the posting rate
of a user is by examining the mean and the variance of the
Time difference between every two consecutive tweets. How-
ever, social spammers can manipulate in these two statistics
features through leaving a big gap between every two consecu-
tive sets of tweets, leading to have a large variance and mean.
We overcome this non-ignorable shortcoming through perform-
ing a quantitative user pairwise comparison at the posting time
distribution of the user’s tweets level. Then, a conclusion is
drawn about the class label of the community based on the
result of each pairwise comparison. Formally, for the j th com-

munity, represented as C j , let P
u
T S [n] be the probability distri-

bution of the tweet posting time of the user u, u ∈ C j .Users

where n ∈ Z + is a random variable representing the time in
seconds. Since P u

T S [n] is a function of time and its random vari-
able is quantitative in which its values with magnitudes have a
meaningful order, we adopt the cross-correlation method which
widely used in signal processing field for comparing two signals
(Oppenheim, 1999), defined as follows:

PostSim (u 1 , u 2) =
∑∞

n =0 (P
u1
T S ⋆ P

u 2
T S)[n]

Min (
∑∞

n =0 (P
u1
T S ⋆ P

u 1
T S)[n] ,

∑ ∞
n =0 (P

u2
T S ⋆ P

u 2
T S)[n])

=
∑ ∞

n =0
∑∞

m =0 P
u1
T S [m] P u 2

T S [m + n]

Min (
∑∞

n =0
∑∞

m =0 P
u1
T S [m] P u 1

T S [m + n] ,
∑ ∞

n =0
∑ ∞

m =0 P
u2
T S [m] P u 2

T S [m + n])

(12)

where u 1 , u 2 are two different users belonging to the C j com-

munity, “⋆ ” is a symbol denoted to the correlation operation,

and Min is a function that takes the minimum among two real

number values. The correlation between two signals produces a

new signal having different magnitudes where two highly cor-

related signals shall have large magnitudes. However, in order

to quantify this correlation in a single real value, we compute

the area under the new signal by adding the outer summation

(
∑ ∞

n =0). As the area under the new signal (output signal) might

be more than 1 and intuitively the maximum area is obtained

when the two users’ distributions are identical, we normalize

it through computing the correlation between each user’s dis-

tribution with itself, so-called auto-correlation, with taking into

account the minimum among them as a normalization factor.

For better understanding, Fig. 6 shows the posting time dis-

tribution (timely shifted and not normalized) of two different

users having an obvious correlation in posting behavior. The

cross-correlation between the two distributions has resulted in

a new signal with an area of 18 (1+2+3+4+3+2+1). When apply-

ing the Eq. (12) on the given example, the value of the feature

will be “1” since the area of the auto-correlation of each user’s

distribution equals to 18, meaning that the two users are com-

pletely correlated.

In computing the ultimate value of the TPBS feature, we com-

pute first the probability distribution of PostSim over all pos-

sible user pairs existing in the C j
th

community. Formally, let

P PostSim (e.g., {(0.25, 0.4), (0.1, 0.6)}) be the probability distribu-

tion of the posting similarity and P Uni form
PostSim

(e.g., {(0.25, 0.5), (0.1,

0.5)}) be the corresponding uniform distribution of PostSim . We

quantify the difference between the distributions through per-

forming cross-correlation between them, defined as:

C j .T P BS = 1 −
∑∞

n =0 (P PostSim ⋆ P
Uni form
PostSim

)[n]
∑ ∞

n =0 (P
Uni form
PostSim

⋆ P Uni form
PostSim

)[n]

= 1 −
∑∞

n =0
∑∞

m =0 P PostSim [m] P Uni form
PostSim

[m + n]
∑ ∞

n =0
∑ ∞

m =0 P
Uni form
PostSim

[m] P Uni form
PostSim

[m + n]
(13)

where the high value (close to 1) of TPBS means that all users

of the j th community have almost same posting behavior (i.e.,

almost same posting frequency) and thus that community has a

high probability for being a spam campaign. On the other side,

when the P PostSim be close to the uniform distribution, it means

that almost no users have same posting behavior and thus that

community has a low probability for being a spam campaign.

Stage 5: Community Classification Function. After computing

the four community-based features for a community, the next step

is determining whether that community is a spam or non-spam

one. The main issue is what the best way to combine or weight

the four features to form a community classification function. Han-

dling robustly this issue requires to recall two key points: (i) the

Fig. 6. An example describing the cross-correlation between posting time distribution of two different spam accounts (users).

high values of the four features have a high degree of correlation

with the probability of the considered community being a spam;

(ii) and judging on a community as a spam needs at least one fea-

ture having a high value. The robustness and the strength of the

four community-based features are easily captured through exam-

ining their CDF at different streaming periods. Thus, in Fig. 7 , we

show the CDF statistic of the four features drawn at three different

10-day streaming periods using the annotated dataset exploited in

this paper. For each community feature, it is obvious that the area

between the spam CDF and non-spam CDF is quite large, mean-

ing that there is no too much overlapping between the value of

the feature of the spam and non-spam communities. Also, the fea-

tures of the non-spam communities have low values because of

the early increasing in their CDF curves, while the features of the

spam communities have the opposite behavior. Based on the two

key points mentioned and the provided CDF statistics, we design a

simple community classification through classifying the input com-

munity as a spam if one of the features has value more than a

certain threshold 1, formally defined for the j th community C j as

follows:

C j .Label =

{

spam C j .T sW SS ≥ 1 || C j .T P BS ≥ 1 || C j .SNP S ≥ 1 || C j .UNP S ≥ 1

non − spam C j .T sW SS < 1 & C j .T P BS < 1 & C j .SNP S < 1 & C j .UNP S < 1
(14)

where “||” and ′′ & ′′ are ”OR” and “AND” operations, respectively.
The high value of 1∈ [0, 1] increases the difficulty of the con-

ditions to be satisfied for labeling communities as a spam. Con-

versely, the low value of 1 leads to label too many communi-

ties as a spam. As the main purpose of the unsupervised classifi-

cation is to provide an annotated dataset of spam and non-spam

tweets, we leverage the label assigned for each community in-

ferred through inheriting the label of each community to its users

and their tweets available in the storage component. Formally, the

annotated version of all tweets streamed, S t , is extracted as fol-

lows:

Spam _ T weets =

⋃

j∈{ 1 , ... , | Ages |×K}
C j .Label= spam

C j .T weets

Non − Spam _ T weets =

⋃

j∈{ 1 , ... , | Ages |×K}
j.Label= non −spam

C j .T weets (15)

Fig. 7. Cumulative distribution function (CDF) of non-spam and spam communities drawn for our four collective-based features at three streaming periods where each

period is 10 days, showing the effectiveness of these features in discriminating among spam and non-spam communities.

where Spam _ T weets ∪ Non − Spam _ T weets = S t . As these two anno-

tated sets of tweets will be exploited in learning a binary classi-

fication function, the value of 1 also plays an important role in

the size of these sets. For instance, setting 1 to 0.9 will likely pro-

duce a small size of spam tweets set since this condition might be

satisfied on few communities.

5.3. Tweet classification model and real-time detection

We follow the classical approach for producing a binary classifi-

cation model, F (x) , and that through applying the classical widely

used machine learning algorithms trained on the annotated set of

tweets. As a prerequisite for performing the training phase is defin-

ing the feature vector that will represent the tweet entity. Thus, we

adopt 17 lightweight features described in Table 1 for building the

feature vector. The steps for learning the classification model start

by preparing the feature space consisting of the feature vector of

the training tweets. Then, the feature space is labeled using the

output of the unsupervised classification stage performed on the

training tweets. The feature space can be easily viewed as a two-

dimensional matrix with a size of | S t | ×18, where 18 is the sum

of the size of the feature vector (17) and the class label (1). At

last, classical supervised learning methods such as Random Forest,

K-NN, and J48 could be applied on the labeled feature space to ob-

tain a binary classification model, F S t (x) . Once the learning phase

gets finished, the old classification function is replaced by the new

one. It is important to mention that the training or learning phase

is taken place in a background process whenever a new number

of tweets (e.g., 500 tweets) is streamed, so-called “Updating Model

Frequency”. As an initial classification model, we classify incoming

tweets as non-spam, F Initial (x) = “ non − spam ′′ , until the updating
model frequency condition is satisfied to have a binary classifica-

tion model.

At the operational real-time filtering phase, the current adopted

classification model is used to predict the class label of every in-

coming tweet. Predicting the incoming tweet type requires first to

extract the feature vector of the tweet, using the same 17 features

leveraged in the training phase. Then, the class label of the con-

sidered tweet is predicted using the current classification model

(F Initial (x) or F S t (x)).

6. Experimental setup and results

6.1. Experimental setup

Performance Metrics. Since the ground-truth of 2.1 million

tweets which belonging to 50 different hashtags is available, we

adopt three commonly used measures in classification problems

to evaluate our proposed framework besides two states of the art

methods. These measures include precision, recall, and f-measure,

computed according to the confusion matrix of the Weka tool (Hall

et al., 2009). These measures computed based on True Positive,

False Positive, True Negative and False Negative parameters, where

True Positive refers to detecting a spam tweet which is actually

a spam tweet. We didn’t report accuracy because our model is a

binary classifier and our main task is to detect spam tweets, not

non-spam tweets. In addition, the collected dataset is not balanced

and thus the accuracy measure will not be informative.

Methods and Parameters. We compared our framework with

two real-time spam detection methods presented in the litera-

ture, denoted as ”Classical (traditional ML)” and ”Asymmetric Self-

learning (Chen, Zhang, Xiang et al., 2015)” methods. The classical

one works through performing training on an annotated dataset

of tweets for a once to build a classification model. After that,

the trained model will be used at the operational detection phase

all the time without retraining the model again. The Asymmetric

Self-learning (Chen, Zhang, Xiang et al., 2015) method also uses a

trained classifier model to detect spam tweet. However, the initial

dataset was updated by adding each new streamed tweet and us-

ing the output of the classifier as the ground-truth label for that

tweet. After streaming a certain number of tweets, the classifica-

tion model is updated using the updated dataset. To evaluate these

methods, a set of experiments were conducted on (i) various ma-

chine learning methods, including Random Forest, Decision Tree

(J48), and K-Nearest Neighbor (K-NN) where WEKA tool is used

as an implementation for these algorithms, (ii) various number of

the training tweets (e.g. 50 0, 10 0 0, and 50 0 0), and (iii) various up-

Table 4

Parameters and learning algorithms setting for the classical, asymmetric self-learning (Chen, Zhang, Xiang et al., 2015), and our collective-based methods.

Approach Learning Algorithms

Updating Model

Frequency (Tweets) Training Tweets Unsupervised Classification Parameters

Classical (Traditional

ML) Method

Random Forest (RF)

− Number of Trees:10, 100, 500

Decision Tree (J48)

− Confidence Factor (CF):0.5, 1.0,

3.0

K-nearest neighbour (K-NN)

−K:2, 5, 10

– 50,010,0 05,0 0 0 −

Asymmetric Method 5,0 01,0 0 0 50,010,0 05,0 0 0 −
Collective-based

Method

5,0 01,0 0 0 − − Number of Communities (K): 5,10

− Classification Threshold(1): 0.2,0.5,0.8

− Number of Iterations (M): 5,0 0 0

− Stop Condition (ǫ): 0.0 0 0 01

− Learning Rate (η): 0.001

dating frequency (e.g., 500 and 1000 tweets). For our method, we

experimented the unsupervised classification module under vari-

ous parameters including the number of communities (K), classifi-

cation threshold (1), number of iterations (M), stop condition (ǫ),
and learning rate (η). In fact, the number of communities and the
classification threshold are the most important parameters in this

stage. Therefore, we studied their impact through setting K ∈ {5,

10}, and 1∈ {0.2, 0.5, 0.8}, while the number of iterations, stop

condition, and learning rate are fixed to 5,0 0 0, 0.0 0 0 01, and 0.0 01,

respectively. Table 4 summarizes the setup parameters of the three

methods.

Training and Testing Tweets. The classical and the Asymmetric

Self-learning (Chen, Zhang, Xiang et al., 2015) spam tweet detec-

tion methods require a pre-training before putting them in the op-

eration mode. We have performed our experiments using 50 dif-

ferent hashtags tweets and for each hashtag, we devote an inde-

pendent classification model, resulting in 50 classification models.

When using the classical method, each classifier is trained for the

first streamed tweets (e.g., 500, 1000, or 5000) into the intended

hashtag, while the rest streamed tweets are used for the testing.

The Asymmetric Self-learning method is pre-trained as in classical

method, but periodic retraining is performed when a defined num-

ber of new streamed tweets (e.g., 500, or 1000) is satisfied. Thus,

in some points, the testing tweets are leveraged later as train-

ing tweets when the periodic retraining condition is satisfied. Our

method differs from classical and Asymmetric Self-learning meth-

ods where there is no need for a pre-training since we assume

that the user of the system doesn’t have time to build an anno-

tated dataset. Hence, with excluding the initial training phase, our

method has been experimented using the same circumstances of

the Asymmetric Self-learning method.

6.2. Experimental results

The main purposes of our set of experiments are to study three

main aspects, summarized in: (i) getting insight into the perfor-

mance of our unsupervised collective-based method in automati-

cally providing labeled datasets for the purpose of updating classi-

fication models, (ii) study the effect of changing number of train-

ing tweets, updating frequency, number of communities, and the

classification threshold on having a generalized model with high

detection rate, and (iii) examining how much the use of different

learning algorithms with manipulating their main parameters in

improving the performance. The experiments have been conducted

on 50 different hashtags illustrated in Section 4 . Since each hash-

tag represents a stream of tweets, we reported the performance re-

sults at different values of streamed tweets (e.g., every 500 tweets)

where the ultimate value of the performance metrics is computed

using the results of 50 hashtags. More precisely, the confusion ma-

trix after a particular number of streamed tweets is summed over

50 hashtags, leading to having a single confusion matrix by which

the metrics are computed.

At the evaluation level, we reported the experimental results

of the classical (traditional ML which based on training the classi-

fier on static dataset without retraining it later), asymmetric self-

learning (Chen, Zhang, Xiang et al., 2015), and our collective-based

method in three main figures (Figs. 8–10), which form a summary

resulted from a set of experiments reported in Appendix A. Each

figure aims at: (i) showing the effect of increasing dataset size

on the performance of the three approaches in terms of recall,

precision and F-measure, (ii) highlighting the effect of spam drift

in the performance of tweet spam detectors, and (ii) comparing

the performance of different ML methods. In addition, Each sum-

marized figure shows the empirical results for the best machine

learning algorithm drawn from all possible spam detection config-

urations. For illustrate, the asymmetric self-learning method has

9 possible configurations (3 updating frequency configurations ×
3 different training tweet size configurations) where we reported

the performance result of the best learning method tested under

these configurations. For example, the curve labeled ”asymmetric

self-learning_J48(CF = 5)_Freq = 300_Training = 500” (solid blue line)

shown in Fig. 8 reports the performance in terms of recall for

the asymmetric self-learning method when using the J48 learning

method, 300 updating tweets frequency, and 500 tweets for train-

ing an initial version of the classification model. Through deeply

analyzing the four main figures, some interesting thoughts and re-

marks can be inferred.

Classical (Traditional ML) method results. The accuracy re-

sults, which is not reported in this paper, have almost a stable per-

formance with more than 90% when running the classical method

at different learning algorithms and parameters. The three learn-

ing algorithms (Random Forest, J48, K-NN) have almost the same

accuracy, without noticing any important effects when changing

their parameters (#Trees, CF, and K) on improving the results. Ac-

cording to the distribution of the class labels in our dataset, it is

important to mention that the accuracy metric is not too indicative

one since the class label distribution is imbalanced. In other words,

having a high accuracy near 90% doesn’t mean that all spam tweets

have been detected because in our dataset the distribution of spam

class is about 11% compared to 89% for non-spam class. At the first

glance, we can conclude that the classical method is effective for

detecting spam tweets in real-time; however, the spam recall val-

ues which reported in Fig. 8 are too low with an average value of

35%. This means that classical-based classification models almost

predict incoming tweets as a non-spam. Fig. 8 also shows the im-

pact of increasing training size on improving spam recall. This be-

havior is expected since large enough training tweets may contain

a diversity of social spammers’ patterns, which help classification

Fig. 8. Spam recall performance results of two baseline spam detection methods (Classical and asymmetric self-learning (Chen, Zhang, Xiang et al., 2015)), and our collective-

based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations.

models to detect them. Regarding learning algorithms, there is a

clear diverse among them in which the decision tree (J48) learning

method has a dominant performance, compared to K-NN and Ran-

dom Forest learning methods. On the other side, Fig. 9 , shows that

the spam precision results of the classical method are better than

spam recall ones, and showing also the direct correlation between

the size of the training set and the spam precision performance

metric. The high spam precision values ensure that the classical

classification models classify the incoming tweets as spam when

they have high confidence in that tweet being true spam. The de-

cision tree (J48) has the lowest spam precision values, compared

to the other learning algorithms. On the other hand, Random For-

est has the best performance in terms of spam precision. The low

spam precisions and high recall values obtained by J48 mean that

the classification model (a sequence of if-else conditions) resulted

by J48 have been designed through setting up the conditions that

require any small clue to classify incoming tweet as a spam, while

the Random Forest has established a group of decision trees made

the conditions for classifying tweet as a spam too difficult. As the

spam class F-measure metric is a combination of spam class preci-

sion and spam class recall metrics, as reported in Fig. 10 , the value

of the F-measure metric gets increased when increasing the num-

ber of the training tweets since the size of the training has a direct

correlation with both the spam class recall and precision metrics.

Asymmetric self-learning (Chen, Zhang, Xiang et al., 2015). The

impact of model update frequency and the training size parameters

are obvious on increasing the spam recall values. Therefore, updat-

ing every streaming of 300 tweets achieves better spam recall val-

ues than doing that every 500 and 1,000. This behavior is reason-

able and consistent because updating classification models as soon

as possible makes them up-to-date to recent social spammers’ pat-

terns. Interestingly, although 300 tweets frequency is small enough

to have an effective model, the increasing rate of spam class re-

call values is too small and near to zero. More precisely, the best

and maximum spam class recall value has not exceeded 40%. This

behavior can be explained by recalling the design of the method.

The asymmetric self-learning method enriches the initial training

set by adding incrementally every incoming tweet with labeling

it based on the output of the current classification model. There-

fore, the newly added tweets don’t provide too much information

about the patterns or behaviors related to social spammers since

the built classification model predicts it as a spam tweet when

the model has already learned over similar patterns or feature val-

ues. Consequently, with small improvement rates, the asymmetric

self-learning method may need millions of tweets to obtain high

spam recall values. On the other hand, the spam class precision

results which presented in Fig. 9 have completely opposite behav-

ior compared to the spam class recall values, through maintaining

stable performance along the number of streamed tweets. Com-

pared to the classical method, there are significant improvements

in terms of precision occurred when retraining is carried out ev-

ery either 500 or 1000 tweets. Thus, this proves the necessity of

updating classification models to adopt social spammers’ patterns

and tricks. Consistently with the results of the asymmetric self-

learning method, the Random Forest learning algorithm is domi-

nant in the spam class precision, while the decision tree (J48) is

the best in producing spam class recall values. For the spam class

F-measure results reported in Fig. 10 , they reflect the ineffective

Fig. 9. Spam precision performance results of two baseline spam detection methods (Classical and asymmetric self-learning (Chen, Zhang, Xiang et al., 2015)), and our

collective-based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations.

of such a method for detecting tweets since the best maximum

value that can be obtained is not exceeding 40%, while the classi-

cal method reaches around 50% at some configurations.

Collective-based Method Results. As reported in Fig. 8 , our

proposed method has high and superior spam class recall val-

ues with an average exceeding 80%, compared to the classical and

asymmetric self-learning methods. This proves the effectiveness of

the online unsupervised labeling method in producing automati-

cally updated training datasets which can handle the dynamicity

of social spammers on Twitter. With doing a pair-wise comparison

along possible values of 1, we find that the classification thresh-

old 1 has a high direct correlation with the spam recall perfor-

mance metrics. In other words, using small 1 values lead to having

many spam tweets in the new training sets and thus learning over

a diverse of social spammers’ patterns. A large number of com-

munities such as (K = 10) does not provide too much contribution

in detecting spam tweets. This behavior is because the number

of uncorrelated spam campaigns that have attacked every hash-

tag is not more than 5. However, it is recommended to use a large

number because the uncorrelated spam campaigns in the streamed

tweets might increase with time. The tweets frequency has no sig-

nificant impact on improving the spam recall values because, at

each retraining phase, the training tweets have enough spam ex-

amples that make the classification models robust until the next

retraining phase. It is important to mention that our collective-

based method is not pre-trained such that before the first train-

ing phase, all streamed tweets are classified as non-spam ones. In-

deed, this explains the behavior of having zero spam recall val-

ues at the beginning. The spam class precision values are quite

low with an average performance of 55%. The main reason for hav-

ing such spam class precision values is because of classifying non-

spam communities as spam ones and thus the training sets will

contain spam tweets which are truly non-spam ones. The results

of the F-measure metric reported in Fig. 10 are quite stable along

the number of streamed tweets and have almost similar behavior

to the spam recall values. Furthermore, the impact of the number

of communities and the number of tweets frequency is not clear

in both the spam class precision and F-measure, leaving the full

control to the classification threshold (1). Table 5 summaries the

obtained results (average, max and the best achieved classifier) of

the three approaches in terms of recall, precision and F-measure.

Time Performance Analysis. As the main purpose of our pro-

posed system is to detect spam tweets in real-time, it is impor-

tant to discuss in-depth the system performance in the detection

time required, the CPU cost, and the needed resources. The recent

statistics about the number of tweets show that every second, on

average, around 60 0 0 tweets are tweeted on Twitter, which corre-

sponds to over 350,0 0 0 tweets sent per minute, 500 million tweets

per day and around 200 billion tweets per year. 3 In the streaming

tweet mode, Twitter performs sampling and then pushes to the

endpoint users only 1% of the instant tweets, having a maximum

frequency of 60 tweets per second. This frequency imposes a con-

straint on our system to make a decision about every streamed

tweet in margin no more than (1 60 ≈ 16 . 7 ms). Recalling that the

component responsible about learning and updating new classifi-

3 http://www.internetlivestats.com/twitter-statistics/ .

Fig. 10. Spam f-measure performance results of two baseline spam detection methods (Classical and asymmetric self-learning (Chen, Zhang, Xiang et al., 2015)), and our

collective-based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations.

Table 5

Summary of the obtained results in terms of recall, precision and F -measure.

Recall Precision F-Measure

Approach Average Max ML Average Max ML Average Max ML

Classical (Traditional ML) 33% 41% J48 71% 77% RF 44% 52% RF

Asymmetric Self-learning (Chen, Zhang, Xiang et al., 2015) 18% 38% J48 78% 90% RF 28% 47% J48

Our Framework 91% 98% RF 60% 63% RF 70% 73% RF

cation function is not required to work in real-time mode at all. In

other words, that competent can be run in a background process

which trains new classification model when the number of new

streamed threshold condition is satisfied. The component of real-

time spam tweet detection must treat every incoming tweet within

a time less than 16.7 ms in order to prevent an overflow problem

in buffering tweets and the synchronization problem. Hence, in our

system, the adopted real-time tweet features, which are described

in Table 1 , require 3 ms for extraction and 2 ms in the prediction

operation using the learned classification model, requiring 5 ms to

process an incoming tweet. These values have been computed us-

ing a computer with i5 processor, a memory of 4GB, and storage

of 1TB.

Discussion, implications and future work. The reported re-

sults in Figs. 8–10 , shows that our proposed method has supe-

rior improvement specially in the recall measure with an aver-

age of 80% compared to 35% and 40% for classical and asymmet-

ric self-learning method respectively. The low precision values ob-

tained by our proposed system are not significant compared to the

importance of obtaining high recall values. In fact, spam filtering

in online social networks is conceptually different from the email

spam filtering field. Therefore, classifying a truly non-spam email

as spam one is a serious problem in email spam filtering, known

as a false positive problem, since that email might be too impor-

tant for the receiver. This situation is quite different in online so-

cial networks since in such a context the information circulated

inside the networks are accessible by all registered users. In addi-

tion, due to a large number of tweets especially for trending topics,

the users or applications (e.g. sentiment analysis and tweet sum-

marization) are obviously interested in high quality and relevant

information (non-spam tweets) more than low-quality ones (spam

tweets). Moreover, classifying mistakenly a tweet as spam while

it is truly non-spam is not a serious problem since another tweet

can compensate the information within misclassified ones. Hence,

maintaining high spam class recall values during the streaming

is more important than having high precision values with low

recalls.

Results (especially recall measure) corresponding to the classi-

cal method confirmed that increasing size of the training data only

cannot bring more improvements to the detection model. In ad-

dition, updating dataset based on the output of a trained model

cannot bring more improvements to the asymmetric self-learning

method. We explain this in general by the fact that due to the

new spamming activities and strategies the distribution of the ex-

tracted features changes during the time, while the distribution of

training dataset features stays the same. In more details, with the

introduced experimental results, comparisons and discussions, sev-

eral implications and conclusions can be inferred: (i) the closeness

performance of different learning algorithms proves that the ma-

jor issue in spam detection is directly related to the selected fea-

tures, (ii) due to the spam drift, the distribution of the features

adopted in the literature for real-time spam tweet detection can-

not be robust and hold for long time; (iii) the low spam recall val-

ues obtained by the classical and asymmetric self-learning classifi-

cation models ensure the dynamicity of spam contents in Twitter

and thus adopting these models are not an efficient solution at all,

(iv) relying on increasing the size of the training dataset only can-

not bring more improvements to the detection model, (v) the ur-

gent need for an automatic online method to label new streamed

tweets for the purpose of providing updated dataset, and (vi) re-

training classification models periodically in batch mode using up-

dated training dataset reduces the problem of features distribution

making the framework capable of capturing new spamming behav-

iors and thus can reduce the spam drift problems.

Due to lack of time, many different improvements, adaptations,

studies, and experiments have been left as future work which

could be summarized in five dimensions: (i) introducing other

tweet content features, (ii) study the effect of feature engineering

methods, (iii) testing other clustering methods, (iv) reducing the

effect of class imbalance dataset, and (v) handling the growth of

the collected training dataset. For the first dimension, since spam-

ming contents are usually similar with malicious topics or words,

we intended to employ dynamic feature representations of the tex-

tual content of tweets such as Term Frequency-Inverse Document

Frequency TF-IDF, bag-of-words, and sparse learning. In the sec-

ond dimension, we will study the effect of using feature discretiza-

tion and feature selection in terms of detection performance and

time. In fact, discretization can be useful when creating probabil-

ity mass/density functions and also many machine learning meth-

ods produce better results when discretizing continuous attributes

(Kotsiantis & Kanellopoulos, 2005). On the other hand, features se-

lection methods produce simplified models that have shorter train-

ing and operational time and also more general in order to reduce

the problem of overfitting (Miao & Niu, 2016). For the third dimen-

sion, we can experiment other clustering algorithms like agglom-

erative clustering which is widely used in information retrieval. In

addition, the community classification function (stage five in our

framework) can be improved by making the annotation based on

two stages. The first stage uses blacklisting method, and the second

stage uses the community function defined in Eq. 14 . The blacklist

stage tests the URLs embedded in the message and the tweet will

be predicted as spam if at least one of the embedded URLs are

blacklisted, otherwise (e.g. tweets didn’t contain URLs or all URLs

are not blacklisted) the prediction will be based on the proposed

community function. In the fourth dimension, since 11% of the

collected tweets are spam and machine learning algorithms usu-

ally have better performance when classifying the majority class

than the minority class, there is a need to handle the class im-

balance dataset (Wu, Wen et al., 2017). Therefore, several tech-

niques can be tested to reduce the effect of this problem includ-

ing random sampling without replacement, random sampling with

replacement, cluster sample, and stratified sample (Rout, Mishra,

& Mallick, 2018). Finally, we will address an important design is-

sue regarding the growth of the collected training dataset. As the

effectiveness of very old spam contents will decrease in the long-

term run, we will work on reducing the size of the collected data

by dropping the very old tweets in order to quickly adapts clas-

sifiers to capture new spamming behaviors and to reduce training

time.

7. Conclusion

As spammers becoming more smarter and crafty through us-

ing complex spamming strategies, characteristics of the statistical

properties of spam tweets keeps changing over time making the

existing machine learning based detection method not an efficient

solution. In this work, we have introduced a framework for dy-

namic retraining of supervised real-time tweet-level spam detec-

tion model to reduce the effect of the spam drift problem. The

proposed framework composed of two main modules where the

first one works in a batch mode and exploits the strength of the

unsupervised learning method to periodically provide an up-to-

date annotated datasets. The first module learned from unlabeled

tweets through studying and analyzing the collective prescriptive

of streamed tweets and their user’s behavior. The second module

has a real-time tweet-level classification model trained based on

17 lightweight features and retrained periodically using the up-

to-date annotated dataset prepared by the first module. We have

experimented our framework and other two related methods on

our collected dataset which consists of more 2 million tweets an-

notated by the suspended account-based method. Results show

that increasing only the size of the training data cannot bring

more improvements to the spam classification model. In addition,

our approach has a superior and a controllable spam recall per-

formance, compared to the classical and asymmetric classification

methods which in turn has a significant effect in reducing spam

drift.

As a main strength point or contribution existing in our

method, the proposed framework provides an online unsupervised

learning method that does not require a human intervention in the

way of periodically preparing annotated training datasets, which

showing a significant difference from other real-time spam detec-

tion methods proposed in the literature for handling spam drift

problem. In addition, our method provides a lightweight tweet-

level spam detector that works on a real-time basis and up-

dated itself periodically in batch mode where the proposed de-

tector did not require a pre-information like a blacklist of spam-

ming domains, initial annotated dataset, or pre-trained classifier.

Moreover, the high recall values make our approach adoptable

for Twitter-based researchers and industries to stream only high-

quality tweets which required by a set of intelligent tweet-based

application such as tweet sentiment analysis.

There is also a limitation in our proposed framework. The

framework did not address the growth of the collected training

dataset. In fact, the purpose of increasing the size of the training

data is to eliminate the effect of spam drift problem by incorpo-

rating new spamming activities. However, the contribution of very

old spam contents will decrease as the correlation of these con-

tents becomes less with the new spam contents in the long-term

run. Therefore, without efficient control to the growth, the classi-

fier will not be adapted quickly to capture new spamming behav-

iors. In addition, classifiers will require more training time. More-

over, it may increase the side effect of class imbalance dataset. As

future work, we will work on reducing the size of the collected

data by dropping the very old tweets especially non-spam tweets

after a certain time. Another limitation is regarding the annotation

method used in our collected dataset in which suspended accounts

may have non-spam tweets. However, there is no public dataset or

common evaluation framework suitable to evaluate our framework

and manually labeling large collection of tweets require a great ef-

fort and resources.

Appendix A. Advanced performance results

Fig. A1. Spam class recall performance results of the three real-time spam detection methods, including classical, asymmetric, and our collective-based methods, drawn at

different configurations for each method.

Fig. A2. Spam class precision performance results of the three real-time spam detection methods, including classical, asymmetric, and our collective-based methods, drawn

at different configurations for each method.

Fig. A3. Spam class F-measure performance results of the three real-time spam detection methods, including classical, asymmetric, and our collective-based methods, drawn

at different configurations for each method.

Conflict of interest

Authors declare that they have no conflict of interest.

Credit authorship contribution statement

Mahdi Washha: Conceptualization, Methodology, Software,

Writing - review & editing, Supervision. Aziz Qaroush: Data cu-

ration, Writing - original draft. Manel Mezghani: Visualization, In-

vestigation. Florence Sedes: Supervision.

References

Abascal-Mena, R., Lema, R., & Sèdes, F. (2015). Detecting sociosemantic communities
by applying social network analysis in tweets. Social Network Analysis Mining,

5 (1), 38:1–38:17. doi: 10.1007/s13278-015-0280-2 .
Agarwal, N. , & Yiliyasi, Y. (2010). Information quality challenges in social media. In

International conference on information quality (ICIQ) (pp. 234–248) .
Almaatouq, A. , Shmueli, E. , Nouh, M. , Alabdulkareem, A. , Singh, V. K. , Alsaleh, M. ,

et al. (2016). If it looks like a spammer and behaves like a spammer, it must
be a spammer: Analysis and detection of microblogging spam accounts. Inter-
national Journal of Information Security, 15 (5), 475–491 .

Bara, I.-A. , Fung, C. J. , & Dinh, T. (2015). Enhancing twitter spam accounts discov-
ery using cross-account pattern mining. In Integrated network management (IM),

2015 IFIP/IEEE international symposium on (pp. 4 91–4 96). IEEE .
Benevenuto, F. , Magno, G. , Rodrigues, T. , & Almeida, V. (2010). Detecting spammers

on twitter. In In collaboration, electronic messaging, anti-abuse and spam confer-

ence (CEAS) (p. 12) .
Cao, C. , & Caverlee, J. (2015). Detecting spam urls in social media via behavioral

analysis. In Advances in information retrieval (pp. 703–714). Springer .
Cavnar, W. B. , & Trenkle, J. M. (1994). N-gram-based text categorization. Ann Arbor

MI, 48113 (2), 161–175 .
Chellal, A., Boughanem, M., & Dousset, B. (2016). Multi-criterion real time tweet

summarization based upon adaptive threshold. In 2016 IEEE/WIC/ACM interna-

tional conference on web intelligence, WI 2016, Omaha, NE, USA, October 13–16,
2016 (pp. 264–271). doi: 10.1109/WI.2016.0045 .

Chen, C., Wang, Y., Zhang, J., Xiang, Y., Zhou, W., & Min, G. (2017). Statisti-
cal features-based real-time detection of drifted twitter spam. IEEE Transac-
tions on Information Forensics and Security, 12 (4), 914–925. doi: 10.1109/TIFS.2016.
2621888 .

Chen, C., Zhang, J., Chen, X., Xiang, Y., & Zhou, W. (2015). 6 million spam tweets:
A large ground truth for timely twitter spam detection. In 2015 IEEE interna-
tional conference on communications (ICC) (pp. 7065–7070). doi: 10.1109/ICC.2015.
7249453 .

Chen, C. , Zhang, J. , Xiang, Y. , & Zhou, W. (2015). Asymmetric self-learning for tack-
ling twitter spam drift. In Computer communications workshops (infocom wk-
shps), 2015 IEEE conference on (pp. 208–213). IEEE .

Chen, C., Zhang, J., Xiang, Y., Zhou, W., & Oliver, J. (2016). Spammers are becoming
“smarter” on twitter. IT Professional, 18 (2), 66–70. doi: 10.1109/MITP.2016.36 .

Chen, C. , Zhang, J. , Xie, Y. , Xiang, Y. , Zhou, W. , Hassan, M. M. , et al. (2015). A perfor-
mance evaluation of machine learning-based streaming spam tweets detection.
IEEE Transactions on Computational Social Systems, 2 (3), 65–76 .

Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2010). Who is tweeting on twit-
ter: Human, bot, or cyborg? In Proceedings of the 26th annual computer secu-
rity applications conference In ACSAC’10 (pp. 21–30). New York, NY, USA: ACM.
doi: 10.1145/1920261.1920265 .

Chu, Z. , Gianvecchio, S. , Wang, H. , & Jajodia, S. (2012). Detecting automation of twit-
ter accounts: Are you a human, bot, or cyborg? Dependable and Secure Comput-
ing, IEEE Transactions on, 9 (6), 811–824 .

Chu, Z. , Widjaja, I. , & Wang, H. (2012). Detecting social spam campaigns on twitter.
In Applied cryptography and network security (pp. 455–472). Springer .

Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment
analysis methods. ACM Computing Surveys, 49 , 1–41. doi: 10.1145/2938640 .

Grier, C., Thomas, K., Paxson, V., & Zhang, M. (2010). @spam: The underground on
140 characters or less. In Proceedings of the 17th ACM conference on computer
and communications security . In CCS ’10 (pp. 27–37). New York, NY, USA: ACM.
doi: 10.1145/1866307.1866311 .

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).
The weka data mining software: An update. SIGKDD Explorations Newsletter,
11 (1), 10–18. doi: 10.1145/1656274.1656278 .

Hoang, T. B. N. , & Mothe, J. (2016). Building a knowledge base using microblogs:
The case of cultural MicroBlog contextualization collection (regular paper). In
K. Balog, L. Cappellato, N. Ferro, & C. Macdonald (Eds.), Conference on mul-

tilingual and multimodal information access evaluation (CLEF), Evora, Portugal,
05/09/2016-08/09/2016: 1609 (pp. 1226–1237). http://CEUR-WS.org: CEUR Work-
shop Proceedings .

Hu, X., Tang, J., & Liu, H. (2014). Online social spammer detection.. In
AAAI (pp. 59–65).
Hu, X., Tang, J., Zhang, Y., & Liu, H. (2013). Social spammer detection in
microblog- ging.. In IJCAI: 13 (pp. 2633–2639). Citeseer. Imran, M., Castillo, C., Diaz,
F., & Vieweg, S. (2015). Processing social media messages

in mass emergency: A survey. ACM Computing Survey, 47(4), 67:1–67:38. doi:
10. 1145/2771588.

Inuwa-Dutse, I., Liptrott, M., & Korkontzelos, I. (2018). Detection of spam-posting
accounts on twitter. Neurocomputing, 315 . doi: 10.1016/j.neucom.2018.07.044 .

Kabakus, A. T. , & Kara, R. (2017). A survey of spam detection methods on twitter.
International Journal of Advanced Computer Science and Applications, 8 .

Kotsiantis, S. , & Kanellopoulos, D. (2005). Discretization techniques: A recent survey.
GESTS International Transactions on Computer Science and Engineering, 32 , 47–58 .

Kullback, S. , & Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22 (1), 79–86 .

Lee, K., Caverlee, J., & Webb, S. (2010). Uncovering social spammers: Social hon-
eypots + machine learning. In Proceedings of the 33rd international ACM SI-
GIR conference on research and development in information retrieval . In SIGIR ’10
(pp. 435–442). New York, NY, USA: ACM. doi: 10.1145/1835449.1835522 .

Lee, S. , & Kim, J. (2012). Warningbird: Detecting suspicious urls in twitter stream..
In NDSS: 12 (pp. 1–13) .

Lee, S., & Kim, J. (2013). Warningbird: A near real-time detection system for suspi-
cious urls in twitter stream. IEEE Transactions on Dependable and Secure Comput-
ing, 10 (3), 183–195. doi: 10.1109/TDSC.2013.3 .

Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2011). Learning to detect malicious
urls. ACM Transactions on Intelligent Systems and Technology, 2 (3), 30:1–30:24.
doi: 10.1145/1961189.1961202 .

Manning, C. D. , Raghavan, P. , & Schütze, H. (2008). Introduction to information re-
trieval . New York, NY, USA: Cambridge University Press .

Martinez-Romo, J. , & Araujo, L. (2013). Detecting malicious tweets in trending topics
using a statistical analysis of language. Expert Systems with Applications, 40 (8),
2992–30 0 0 .

McCord, M. , & Chuah, M. (2011). Spam detection on twitter using traditional classi-
fiers. In Proceedings of the 8th international conference on autonomic and trusted

computing . In ATC’11 (pp. 175–186). Springer-Verlag .
Meda, C. , Ragusa, E. , Gianoglio, C. , Zunino, R. , Ottaviano, A. , Scillia, E. , et al. (2016).

Spam detection of twitter traffic: A framework based on random forests and
non-uniform feature sampling. In Advances in social networks analysis and min-
ing (asonam), 2016 IEEE/ACM international conference on (pp. 811–817). IEEE .

Mezghani, M. , On-at, S. , Péninou, A. , Canut, M. , Zayani, C. A. , Amous, I. , et al. (2015).
A case study on the influence of the user profile enrichment on buzz prop-
agation in social media: Experiments on delicious. In New trends in databases
and information systems - ADBIS 2015 short papers and workshops, bigdap, dcsa,

gid, mebis, oais, sw4ch, wisard, poitiers, France, September 8–11, 2015. Proceedings

(pp. 567–577) .
Mezghani, M., Zayani, C. A., Amous, I., Péninou, A., & Sèdes, F. (2014). Dynamic en-

richment of social users’ interests. In IEEE 8th international conference on re-
search challenges in information science, RCIS 2014, Marrakech, Morocco, May 28–

30, 2014 (pp. 1–11). doi: 10.1109/RCIS.2014.6861066 .
Miao, J., & Niu, L. (2016). A survey on feature selection. Procedia Computer Science,

91 , 919–926. doi: 10.1016/j.procs.2016.07.111 . Promoting Business Analytics and
Quantitative Management of Technology: 4th International Conference on Infor-
mation Technology and Quantitative Management (ITQM 2016)

Mittal, A. (2011). Stock prediction using twitter sentiment analysis .
Oppenheim, A. V. (1999). Discrete-time signal processing . Pearson Education India .
Rout, N. , Mishra, D. , & Mallick, M. K. (2018). Handling imbalanced data: A survey. In

M. S. Reddy, K. Viswanath, & S. P. K. M. (Eds.), International proceedings on ad-
vances in soft computing, intelligent systems and applications (pp. 431–443). Sin-
gapore: Springer Singapore .

Sedhai, S. , & Sun, A. (2015). Hspam14: A collection of 14 million tweets for hash-
tag-oriented spam research. In SIGIR 2015 .

Sedhai, S., & Sun, A. (2017a). An analysis of 14 million tweets on hashtag-oriented
spamming. Journal of the Association for Information Science and Technology,
68 (7), 1638–1651. doi: 10.1002/asi.23836 .

Sedhai, S., & Sun, A. (2017b). Semi-supervised spam detection in twitter stream. IEEE
Transactions on Computational Social Systems, PP . doi: 10.1109/TCSS.2017.2773581 .

Stringhini, G., Kruegel, C., & Vigna, G. (2010). Detecting spammers on social net-
works. In Proceedings of the 26th annual computer security applications confer-
ence . In ACSAC ’10 (pp. 1–9). New York, NY, USA: ACM. doi: 10.1145/1920261.
1920263 .

Thomas, K., Grier, C., Ma, J., Paxson, V., & Song, D. (2011). Design and evaluation of
a real-time url spam filtering service. In 2011 IEEE symposium on security and
privacy (pp. 447–462). doi: 10.1109/SP.2011.25 .

Thomas, K. , Grier, C. , Song, D. X. , & Paxson, V. (2011). Suspended accounts in retro-
spect: An analysis of twitter spam. In Internet measurement conference .

Twitter (2016). The twitter rules. https://support.twitter.com/articles/
18311# .[Online; accessed 1-March-2016].

Wang, A. H. (2010). Don’t follow me: Spam detection in twitter. In Security and cryp-
tography (secrypt), proceedings of the 2010 international conference on (pp. 1–10) .

Wang, B. , Zubiaga, A. , Liakata, M. , & Procter, R. (2015). Making the most of tweet-
-inherent features for social spam detection on twitter. CoRR, abs/1503.07405 .

Wang, D. , & Pu, C. (2015). Bean: a behavior analysis approach of url spam filter-
ing in twitter. In Information reuse and integration (IRI), 2015 IEEE international

conference on (pp. 403–410). IEEE .
Washha, M., Qaroush, A., Mezghani, M., & Sèdes, F. (2017a). Information quality in

social networks: A collaborative method for detecting spam tweets in trending
topics. In Advances in artificial intelligence: From theory to practice - 30th inter-

national conference on industrial engineering and other applications of applied in-

telligent systems, IEA/AIE 2017, Arras, France, June 27–30, 2017, proceedings, part II
(pp. 211–223). doi: 10.1007/978- 3- 319- 60045- 1 _ 24 .

Washha, M., Qaroush, A., Mezghani, M., & Sèdes, F. (2017b). Information
quality in social networks: Predicting spammy naming patterns for retrieving
twitter spam accounts. In ICEIS 2017 - proceedings of the 19th international
conference

on enterprise information systems, volume 2, Porto, Portugal, 26–29 April, 2017
(pp. 610–622). SciTePress .

Washha, M. , Qaroush, A. , & Sèdes, F. (2016). Leveraging time for spammers detection
on twitter. In Proceedings of the 8th international conference on management of

digital ecosystems (pp. 109–116). ACM .
Washha, M. , Shilleh, D. , Ghawadrah, Y. , Jazi, R. , & Sèdes, F. (2017). Information qual-

ity in online social networks: A fast unsupervised social spam detection method
for trending topics. In ICEIS 2017 - proceedings of the 19th international con-
ference on enterprise information systems, volume 2, Porto, Portugal, 26–29 April,

2017 (pp. 663–675). SciTePress .
Wu, T., Liu, S., Zhang, J., & Xiang, Y. (2017). Twitter spam detection based on
deep learning. In Proceedings of the Australasian computer science week
multiconference (p. 3). ACM.
Wu, T., Wen, S., Xiang, Y., & Zhou, W. (2017). Twitter spam detection: Survey
of new approaches and comparative study. Computers and Security, 76. doi:

10.1016/ j.cose.2017.11.013.

Yang, C., Harkreader, R., & Gu, G. (2013). Empirical evaluation and new design for
fighting evolving twitter spammers. IEEE Transactions on Information

Forensics and Security, 8(8), 1280–1293. doi: 10.1109/TIFS.2013.2267732.
Yang, C., Harkreader, R., Zhang, J., Shin, S., & Gu, G. (2012). Analyzing spammers’

social networks for fun and profit: A case study of cyber criminal ecosystem on

twitter. In Proceedings of the 21st international conference on world wide web . In
WWW ’12 (pp. 71–80). New York, NY, USA: ACM. doi: 10.1145/2187836.2187847 .

Yang, C. , Harkreader, R. C. , & Gu, G. (2011). Die free or live hard? Empirical eval-
uation and new design for fighting evolving twitter spammers. In Proceedings
of the 14th international conference on recent advances in intrusion detection . In
RAID’11 (pp. 318–337). Berlin, Heidelberg: Springer-Verlag .

Yang, J., & Leskovec, J. (2013). Overlapping community detection at scale: A non-
negative matrix factorization approach. In Proceedings of the sixth ACM interna-

tional conference on web search and data mining . In WSDM ’13 (pp. 587–596).
New York, NY, USA: ACM. doi: 10.1145/2433396.2433471 .

Zubiaga, A., Spina, D., Amigó, E., & Gonzalo, J. (2012). Towards real-time summariza-
tion of scheduled events from twitter streams. In 23rd ACM conference on hy-
pertext and social media, HT ’12, Milwaukee, WI, USA, June 25–28, 2012 (pp. 319–
320). doi: 10.1145/2309996.2310053 .

Zubiaga, A., Spina, D., Fresno, V., & Martínez-Unanue, R. (2011). Classifying trend-
ing topics: A typology of conversation triggers on twitter. In Proceedings of
the 20th ACM conference on information and knowledge management, CIKM

2011, Glasgow, United Kingdom, October 24–28, 2011 (pp. 2461–2464). doi:
10.1145/ 2063576.2063992.

