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Abstract

This paper presents a simple and safe compiler, called

MinSIGNAL, from a subset of the synchronous dataflow lan-

guage SIGNAL to C, as well as its existing enhancements.

The compiler follows a modular architecture, and can be seen

as a sequence of source-to-source transformations applied to

an intermediate representation which is named Synchronous

Clocked Guarded Actions (S-CGA) and translation to se-

quential imperative code. Objective Caml (OCaml) is used

for the implementation of MinSIGNAL. As a modern func-

tional language, OCaml is adapted to symbolic computation

and so, particularly suitable for compiler design and imple-

mentation of formal analysis tools. In particular, the safety of

its type checking allows to skip some verification that would

be mandatory with other languages. Additionally, this work

is a basis for the formal verification of the compilation of

SIGNAL with a theorem prover such as Coq.

Keywords Synchronous Languages, SIGNAL, Syn-

chronous Clocked Guarded Actions (S-CGA), Objective

Caml, Functional Programming

1 Introduction

Safety-critical systems are widely used in the fields of avion-

ics, space systems, and nuclear power plants. Many of them

are also considered as reactive systems [1], because they al-

E-mail: yangzhibin168@163.com, bodeveix@irit. f r, f ilali@irit. f r

ways continuously interact with their environment. The en-

vironment can be some physical devices to be controlled, a

human operator, or other reactive systems. These systems

receive from the environment input events, and compute the

output information, which are finally returned to the environ-

ment. Synchronous programming is an important choice to

design these systems, which relies on the synchronous hy-

pothesis [3]. Firstly, the computation time is abstracted as

zero, that lets system behaviors be divided into a discrete se-

quence of instants. At each instant, the system does input-

computation-output, which takes zero time. Secondly, the

different arrival time of events are abstracted as the rela-

tive order between events. Even if the physical time is ab-

stracted, the inherent functional properties are not changed,

so we can say this method focuses on functional behaviors at

a platform-independent level.

There are several synchronous languages, such as ES-

TEREL [4], LUSTRE [5], SIGNAL [6], and QUARTZ [7],

which can be considered as different implementations of

the synchronous hypothesis. They adopt different program-

ming styles, e.g., ESTEREL and QUARTZ have an imper-

ative style suitable for control dominant applications while

LUSTRE and SIGNAL respectively borrow functional and

relational styles suitable for dataflow-oriented applications.

Moreover, as a main difference from other synchronous lan-

guages, SIGNAL naturally considers a mathematical time

model, in terms of a partial-order relation, to describe multi-

clocked systems without the necessity of a global clock. This

feature permits the description of globally asynchronous lo-

cally synchronous systems (GALS) [8, 9] conveniently.



The compilation process of synchronous languages is not

limited to code generation: some analyses are first applied

to determine if the specification is indeed executable. Let

us mention the LUSTRE and ESTEREL causality analyses,

the LUSTRE clock analyses and the ESTEREL constructive

analysis. The SIGNAL compilation process contains two ma-

jor analyses called clock calculus and data-dependency graph

construction from which code generation directly follows.

Moreover the clock calculus contains several steps, such as

the synchronizations of each process, i.e., the generation of

a set of equational constraints over clocks; the resolution of

a system of clock equations; and the construction of a clock

hierarchy on which the automatic code generation strongly

relies.

In the SIGNAL compiler, the control flow expressed by

abstract clocks serves to derive a control structure in auto-

matic code generation. Thus, the quality of clock calculus

has a strong impact on the correctness and efficiency of im-

plementations. There are several optimizations of the clock

calculus have been proposed to improve the quality of the

code generated by the compiler, e.g., a code executed more

efficiently or a code with smaller footprint. Optimizations

aim at increasing the depth of the clock hierarchy in order to

avoid useless tests in the generated code. They rely on dis-

covering logical implications between boolean expressions, a

conjunction being inserted as a descendent of one of its con-

juncts. Several techniques have been considered: in the SIG-

NAL compiler-Polychrony 1) rewriting techniques tempt to

normalize boolean or arithmetic expressions (with the option

command -crew), [10] uses an SMT solver, [11] and [12] an

interval-based data structure referred to as Interval-Decision

Diagram (IDD).

In this paper, we propose an implementation of the main

concepts of the SIGNAL compilation process which is en-

coded in the OCaml 2) language. In our compiler, called

MinSIGNAL, we have considered existing enhancements

such as [10], [11], and [12]. The compiler follows a mod-

ular architecture, and can be seen as a sequence of source-to-

source transformations applied to an intermediate representa-

tion which is named Synchronous Clocked Guarded Actions

(S-CGA) and translation to sequential imperative code.

(1) Why a new intermediate representation

Guarded commands [13], also called asynchronous

guarded actions by J. Brandt et al. [14], are a well-established

concept for the description of concurrent systems. In the

spirit of the guarded commands, J. Brandt et al. propose

1) http://www.irisa.fr/espresso/Polychrony
2) http://ocaml.org/

synchronous guarded actions [15] as an intermediate repre-

sentation for their QUARTZ compiler. As the name sug-

gests, it follows the synchronous model. Hence, the behavior

(control flow as well as data flow) is basically described by

sets of guarded actions of the form 〈γ ⇒ A〉. The boolean

condition γ is called the guard and A is called the action.

To support the integration of synchronous, polychronous and

asynchronous models (such as CAOS [16] or SHIM [17]),

they propose an extended intermediate representation, that is

clocked guarded actions [14, 18] where one can declare ex-

plicitly a set of clocks. They also show how clocked guarded

actions can be verified by symbolic model checking (SMV)

and simulated by SystemC.

Compared with the existing SIGNAL compiler, we use

clocked guarded actions as the intermediate representation,

to integrate more synchronous languages such as QUARTZ,

AIF3) [14] into our compiler in the future. However, in con-

trast to the SIGNAL language, clocked guarded actions can

evaluate a variable even if its clock does not hold. We men-

tion also that the DC+ [19] intermediate format has been

proposed as an intermediate format for compiling multiclock

synchronous languages (ESTEREL, LUSTRE and SIGNAL).

However, DC+ is introduced as a layer on top of DC which

is a monoclock intermediate language. DC+ is character-

ized by a rich kernel with a monoclock guarded assign-

ment (named at) and the equivalent of SIGNAL when and

default constructs. Thus, we propose a variant of Clocked

Guarded Actions, namely S-CGA, which constrains variable

accesses as done by SIGNAL and where guarded assignments

are multiclocked. Compared to DC+, the SIGNAL when

and default are not part of S-CGA. Actually, they are

compiled. The code generation from SIGNAL programs is

adapted to the S-CGA context. In [20, 21], we have already

defined the abstract syntax and the formal semantics of the

S-CGA language.

(2) Why using OCaml in the tooling implementation

For a safety-critical system, the development process al-

ways follows strict guidelines. The development quality as-

surance applies as much to the final source code, as to the

tools themselves. For instance, in the civil avionics the DO-

178B/C airworthiness certification standard [22, 23] defines

all the constraints ruling the aircraft software development.

Moreover, one of the supplements to DO-178C, the DO-

330 (Software Tool Qualification Considerations) provides a

guidance to qualify tools. This means a tool, for example a

compiler also needs to be qualified. For example, the SCADE

3) Averest Intermediate Format



SUITE 4) 5) KCG automatic code generator has been qualified

as a development tool at DO-178B level A.

The choice of a programming language close and adapted

to the tooling development is very important since a well-

suited language leads to a simpler and safer way to encode the

tooling requirements and consequently, a better and simpler

traceability.

OCaml is a functional, imperative and object-oriented ML

dialect. As a modern functional language, OCaml is adapted

to symbolic computation and so, particularly suitable for

compiler design and implementation of formal analysis tools.

In particular, the safety of its type checking allows to skip

some verification that would be mandatory with other lan-

guages, such as the memory allocation, coherency, initial-

ization checks. The OCaml language has been used in Lu-

cid Synchrone [24] (the Lustre language for reactive sys-

tems implementation), the compiler implementation of Pre-

lude [25] (a synchronous language for critical embedded sys-

tems with multiple real-time constraints), and the Coq proof

assistant [2] implementation. The first release of the SCADE

KCG code generator was implemented in C and was avail-

able in 1999. Since 2005, Esterel Technologies has designed

its new SCADE SUITE 6T M in OCaml, which contains 65k

lines of OCaml code [26]. As well, the abstract interpretation

tool ASTREE [27] is also implemented in OCaml. The expe-

riences of SCADE SUITE and of ASTREE by Airbus show

that tools written in OCaml can be integrated in a critical soft-

ware development process.

In this paper, the Ocaml implementation is a basis for the

formal verification of the compilation of SIGNAL with a the-

orem prover such as Coq. Thus we restrict to the functional

subset except for hash tables. Actually, the hash table can

be replaced by the map structure in OCaml. Moreover, this

work would be reused by ones interested in experimenting

a new strategy for clock calculus and experimenting a new

proof technique for the correctness of clock calculus (in a

long term).

The rest of the paper is organized as follows. Section 2

gives an overview of the SIGNAL language. An analysis of

the SIGNAL compilation process and the existing enhance-

ments are given in Section 3. The MinSIGNAL is presented

in Section 4. Section 5 discusses the related work, and Sec-

tion 6 gives some concluding remarks and future work.

4) A successful commercial version of the synchronous language LUS-
TRE

5) http://www.esterel-technologies.com/products/scade-suite/

2 An Introduction to SIGNAL

In this section, we first introduce the basic concepts of the

SIGNAL language such as signals and abstract clocks, then

we give a sketch of its primitive constructs and a few ex-

tended constructs. Finally, a formal semantics of the prim-

itive constructs is introduced.

2.1 Basic concepts

Signals. As declared in the synchronous hypothesis, the be-

haviors of a reactive system are divided into a discrete se-

quence of instants. At each instant, the system does input-

computation-output, which takes zero time. So, the inputs

and outputs are sequences of values, each value of the se-

quence being present at some instants. Such a sequence is

called a signal. Consequently, at each instant, a signal may

be present or absent (denoted by ⊥). In SIGNAL, signals

must be declared before being used, with an identifer (i.e.,

signal variable or the name of signal) and an associated type

for their values such as integer, real, complex, boolean, event,

string, etc.

Example 1 Three signals named input1, input2, output are

shown as follows.

input1 1 ⊥ 3 ⊥ · · ·
input2 ⊥ 5 7 9 · · ·
output ⊥ ⊥ 10 ⊥ · · ·

Abstract Clock. The set of instants where a signal takes

a value is the abstract clock of the signal. Two signals are

synchronous if they are always present and absent at the same

instants, which means they have the same abstract clock.

In the example given above, the abstract clock of input1,

input2 and output, denoted respectively ̂input1, ̂input2 and

ôutput, are defined by different sets of logical instants.

2.2 SIGNAL constructs

SIGNAL uses several constructs to express the relations be-

tween signals, including relations between values and rela-

tions between abstract clocks. Moreover, SIGNAL can spec-

ify the relations between the abstract clocks of signals in two

ways: implicitly or explicitly.

Primitive Constructs. The primitive constructs can be

classified into two families: monoclock operators (for which

all signals involved have the same abstract clock) and mul-

ticlock operators (for which the signals involved may have

different clocks).



• Monoclock operators, including instantaneous func-

tion and delay. The instantaneous function x :=

f (x1, · · · , xn) applied on a set of inputs x1, · · · , xn will

produce the output x, while the delay operator x :=

x1 $ init c sends the previous value of the input to the

output with an initial value c.

• Multiclock operators, including undersampling and de-

terministic merging. The undersampling operator x :=

x1 when x2 is used to get an input at the true occurrence

of another input, while the deterministic merging oper-

ator x := x1 de f ault x2 is used to select between two

inputs to be sent as the output, with a higher priority to

the first input.

Notice that, these operators specify the relations between

the abstract clocks of the signals in an implicit way.

In the SIGNAL language, the relations between values and

the relations between abstract clocks of the signals, are de-

fined as equations, and a process consists of a set of equa-

tions. Two basic operators apply to processes, the first one

is the composition of different processes, and the other one

is the local declaration in which the scope of a signal is re-

stricted to a process.

Extended Constructs. SIGNAL also provides some oper-

ators to express control-related properties by specifying clock

relations explicitly, such as clock synchronization, set op-

erators on clocks (union, intersection, difference) and clock

comparison.

• Clock synchronization, the equation x1 ˆ= x2 ˆ= · · · ˆ=xn

specifies that signals x1, x2, · · · , xn are synchronous.

• Set operators on clocks, such as the equation x:= x1 ˆ +

x2 defines the clock of x as the union of the clocks of

signals x1 and x2, the equation x:= x1 ˆ * x2 defines the

clock of x as the intersection of the clocks of signals x1

and x2, the equation x:= x1 ˆ - x2 defines the clock of x

as the difference of the clocks of signals x1 and x2.

• Clock comparison, such as the statement x1 ˆ < x2 spec-

ifies a set of inclusion relations between the clocks of

signals x1 and x2, the statement x1 ˆ > x2 specifies a set

of containment relations between the clocks of signals

x1 and x2, the statement x1 ˆ ♯ x2 specifies that the inter-

section of the clocks of signals x1 and x2 is empty.

2.3 A Trace Denotational Semantics

There exist several semantics for SIGNAL, such as deno-

tational semantics based on traces (called trace semantics)

[28–30], denotational semantics based on tags (called tagged

model semantics) [29, 31], operational semantics presented

in a structural style [6, 29], operational semantics defined by

synchronous transition systems (STS) [?]. [33, 34] define a

unified constructive semantic framework to unite QUARTZ

and SIGNAL. This framework allows us to better understand

the relationship between synchrony and polychrony. Here,

we introduce the trace semantics. Moreover, the semantics

of each of the extended constructs being defined in terms of

the primitive constructs, we just consider the primitive con-

structs, that is core-SIGNAL. In [35], we have given a proof

of the semantics equivalence between the trace semantics and

the tagged model semantics of the core-SIGNAL.

In the following paragraphs, we first summarize the se-

mantics domain i.e. the trace model, then the trace semantics.

(1) Trace Model

Let X be a set of signal variables, and let V be the set of

values that can be taken by the variables. The symbol ⊥ (⊥

< V) is introduced to express the absence of valuation of a

variable. Then we denote:

V⊥ = V ∪ {⊥}

Definition 1 (Signal) [29] A signal s is a sequence (si)i∈I

of typed values (of V⊥), where I is the set of natural integers

N or an initial segment of N, including the empty segment.

A signal can be finite. However, we can extend the finite

signal with infinite absences, to get an infinite one.

The definition of traces is given in the following para-

graphs. Notice that, a signal is just a sequence of values

corresponding to a signal variable, while a trace defines the

synchronized sequences of values of a set of signal variables.

Definition 2 (Event) [28] Considering X a non-empty

subset of X, we call event on X any application

e : X→ V⊥X

• e(x) = ⊥ indicates that variable x has no value in the

event.

• e(x) = v indicates, for v ∈ Vx, that variable x takes the

value v in the event.

The absent event on X (X→ {⊥}), where all the signals are

absent at a logical instant, is denoted ⊥e(X). Moreover, the

set of events on X (X→ V⊥
X

) is denoted εX .

A trace is a sequence of events. For any subset X of X, we

consider the following definition of the set τX of traces on

X.

Definition 3 (Traces) τX is the set of traces on X, de-

fined as the set of applications N→εX where N is the set of

natural integers.



Similarly, a trace can be finite. However, we can extend

the finite sequence with infinite absent events, to get an infi-

nite trace.

Definition 4 (Sprocess) Given a SIGNAL process, its

trace semantics, denoted as Sprocess, includes a set of sig-

nal variables defining the domain of the process and a set of

traces.

(2) Trace semantics

Based on the trace model, the trace semantics of SIGNAL

is presented as follows. It defines the set of traces associated

to each primitive construct of SIGNAL.

Trace Semantics 1 The trace semantics of the instanta-

neous function x := f (x1, · · · , xn) is defined as follows:

∀t ∈ N

xt =

{
⊥ i f x1t = . . . = xnt = ⊥

f (x1t, . . . , xnt) i f x1t , ⊥ ∧ . . . ∧ xnt , ⊥

At each instant t, the signals are either all present or all

absent, i.e., they are synchronous, denoted x ˆ = x1 ˆ = · · · ˆ

= xn. xt gets the value of f (x1t, . . . , xnt) when the signals are

all present. The function f includes different mathematical

operations, such as arithmetic operations, boolean operations,

etc.

Trace Semantics 2 The trace semantics of the delay con-

struct x := x1 $ init c is defined as follows:

− (∀t ∈ N) x1t = ⊥ ⇔ xt = ⊥

− {k | x1k , ⊥} , ∅ ⇒ xmin{k|x1k,⊥} = c

− (∀t ∈ N) x1t , ⊥ ∧ {k > t | x1k , ⊥} , ∅

⇒ xmin{k>t|x1k,⊥} = x1t

Here, min(X) denotes the minimum of a non-empty set of

naturals. Similarly to the instantaneous function, the delay

construct also requires signals x and x1 have the same clock,

denoted x ˆ= x1. Given a logical instant t, x takes the most

recent value of x1 except the one at t. Initially, x takes the

value c.

Trace Semantics 3 The trace semantics of the undersam-

pling construct x := x1 when x2 is defined as follows:

∀t ∈ N

xt =

{
x1t i f x2t = true

⊥ otherwise

Here, x and x1 have the same type and x2 is a boolean

signal. The clock of x is the intersection of the clock of x1

and the true occurrences of x2, denoted x=x1 ˆ* [x2], where

[x2] = x̂2 ∧ x2 represents the true occurrences of x2.

Trace Semantics 4 The trace semantics of the determin-

istic merging construct x := x1 de f ault x2 is defined as fol-

lows:

∀t ∈ N

xt =

{
x1t i f x1t , ⊥

x2t otherwise

Here, signals x, x1 and x2 have the same type. The clock

of x is the union of the clocks of x1 and x2, denoted x = x1 ˆ+

x2. Given a logical instant t, xt gets the merge of the values

of x1t and x2t, and the value of x1t has a higher priority.

Finally the semantics of parallel composition is defined as

the intersection of the semantics of the components. We ap-

ply these semantics rules to a SIGNAL process, to get a com-

plete semantics of the process, that is SProcess (Definition

4).

Remark 1. The formal semantics is used in the programs

transformations of the SIGNAL compiler, and it is also the

basis of the validation of the compilation process.

3 An Analysis of the Main Concepts of the

SIGNAL Compilation

In this section, we first present two formalizations, namely

clock algebra and conditional data-dependency graph, which

are used in the SIGNAL compilation process. Then, the main

steps of the compilation are presented. Finally, we introduce

the existing enhancements of the compilation process.

3.1 Formal models for SIGNAL program analysis

A SIGNAL program is a formal specification that is basically

composed of equations describing relations of both values

and clocks of the signals involved. The language allows one

to mathematically reason on the properties of such a spec-

ification. One clock algebra associated to SIGNAL is the

algebraic domain Z/3Z, the set of integers modulo 3 (i.e.,

Z/3Z = {−1, 0, 1}). Here 0 denotes a signal is absent, -1

means the signal is present and its value is false, and 1 means

the signal is present and its value is true. As well, the rea-

soning approach for SIGNAL programs also includes depen-

dency graphs to encode data dependencies.

(1) Clock algebra

In the SIGNAL context, relations over clocks are de-

scribed using the clock algebra. The clock cl of a signal de-

notes a series of instants. The clock x̂ of a signal x denotes the

instants at which the signal x is present. The clock [x] (resp.

[¬x]) denotes the instants at which x is present and holds the

value true (resp. false). A clock expression e is either the

empty clock, noted 0, a signal clock cl, or the conjunction



e1 ∧ e2, the disjunction e1 ∨ e2, the symmetric difference

e1\e2 of two clock expressions e1 and e2.

cl ::= x̂ | [x] | [¬x] (clock)

e ::= 0 | cl | e ∧ e | e ∨ e | e\e (clock expression)

Here, we have [x] ∨ [¬x] = x̂ and [x] ∧ [¬x] = 0.

(2) Conditional data-dependency graph

Intuitively, a data-dependency can be understood as the ne-

cessity that the value of some signal must be known in order

to calculate the value of some other signal. A program is

compiled into a graph that describes the data dependencies in

the following sense: the edge

a→cl b

specifies that the computation of the node b, a signal or a

clock, cannot be scheduled before that of the node a when

the clock cl is present. A clock relation cl = e specifies that

the signal clock cl is present iff the clock expression e is true.

a, b ::= x | x̂ (node)

R ::= cl = e | a→cl b (data dependency)

Remark 2. At the semantics level, we mainly consider

the relations between clocks and the relations between val-

ues. However, at the compiler level, we also need to consider

the data-dependencies, because they determine the execution

sequences in the generated code.

3.2 The main steps of the SIGNAL compilation

After a transformation from the user program (whose state-

ments are expressed with both primitive constructs and ex-

tended constructs) to the normalized program whose state-

ments are all expressed with primitive constructs, the SIG-

NAL compilation process contains two major analyses called

clock calculus and data-dependency graph construction from

which code generation directly follows. Moreover the clock

calculus contains several steps, such as the synchronizations

of each process, i.e., the generation of a set of equational con-

straints over clocks; the resolution of a system of clock equa-

tions; and the construction of a clock hierarchy on which the

automatic code generation strongly relies.

(1) Synchronizations of SIGNAL processes

Each primitive construct inherently defines a relation over

the clocks involved. Consequently, a system composed out

of multiple processes describes a system of these relations,

which is, an equation system of clock variables that describe

the synchronizations of the system. Based on the clock alge-

bra presented in section 3.1, for each primitive construct, the

clock synchronizations are given by Table 1. Moreover, the

clock synchronizations can be described equivalently using

SIGNAL extended constructs (e.g., xˆ= x1 ˆ+ x2).

Table 1 Synchronizations of each primitive construct

P
synchronizations o f

P in clock algebra

synchronizations

o f P in S IGNAL

x := f (x1, · · · , xn) x̂ = x̂1 = · · · = x̂n xˆ= x1 | ... | xˆ= xn

x := x1 $ init c x̂ = x̂1 xˆ= x1

x := x1 when x2 x̂ = x̂1 ∧ [x2] xˆ= x1 ˆ∗ when x2

x := x1 de f ault x2 x̂ = x̂1 ∨ x̂2 xˆ= x1 ˆ+ x2

(2) Solving the clock equation system

The SIGNAL philosophy strongly emphasizes that clocks

indicate the control of data-flow specifications. Accordingly

the control-flow of the target executable code is synthesized

from relations over clocks, or synchronizations, that is, at any

given instant, before the value of a signal x is computed, a test

must be made on the presence/absence of x, namely the pres-

ence/absence of its clock x̂. So there is a need for a resolu-

tion method that will allow to efficiently check the presence

of a clock. For that purpose, the clock equation system to

be solved is extracted from the system by applying the rules

of Table 1. The general approach for solving this equation

system is given by triangularization [36]:

The equational system is transformed into an ordered set

of so called directed definitions, that is, a system of equations

of the form h = h1 〈op〉 h2, where h is a newly defined clock,

h1, h2 are previously defined clocks and op ∈ {∧,∨, \} is some

operator on clocks. This representation ensures the absence

of clock-to-clock cycles. Several problems should be solved

to get this representation:

• Multiple definitions: If the equation system contains

more than one equation with clock h on the left side, the

equality of their respective right sides must be proven.

• Clock-to-clock cycles: If the equation system contains

cyclic dependencies, they have to be eliminated.

• Complex relations: If equations are not of the form

h = h1 〈op〉 h2, e.g., given by h1 〈op〉 h2 = k1 〈op〉 k2,

an attempt can be made to prove the equivalence of the

formulas with rewriting techniques.

The SIGNAL compilation process involves solving these



problems, mainly by using a rewriting system plus some

heuristics, in order to achieve triangular form. But since these

problems are complex, the compiler is not complete: If no ap-

propriate rewriting rule can be applied, an input program may

be rejected although the system could be solved. In any case,

if some equalities cannot be proven or if some cycle cannot

be eliminated, an input program is considered temporally in-

correct and rejected.

(3) Hierarchical representation of clock equations

Efficient code generation requires a "good" representation

of the solutions of the clock equations which result from the

previous step. In order to efficiently apply rewriting and keep

track of the triangularity (i.e., triangularization preservation)

of the equation systems, a tree-based representation of the

equations is used, named the clock hierarchy. Moreover,

the paper [9] discusses the link between perfect synchrony

and asynchrony, and shows that the endochrony property of a

clock hierarchy is a sufficient condition to get executable and

deterministic code from a given clock hierarchy.

The synthesis of clock hierarchy in SIGNAL programs re-

lies on an efficient algorithm [36] that has been implemented

in the compiler. We summarize it as follows:

• For a Boolean signal x, the known partition [x] ⊆ x̂ ⊇

[¬x] is represented by a basic partition tree, whose edges

are the set inclusion relations.

• The representation of the whole equation system of syn-

chronizations starts with representing all directed defi-

nitions by a forest of clock trees.

• Then, two clock trees are iteratively fusioned by insert-

ing one tree into another: Let T, T’ be two clock trees

with roots r and h respectively, where h is defined by

the directed equation h = h1 〈op〉 h2, and h1 and h2 are

subtrees of T. Then the fusion of T’ into T is applied

by adding the tree T’ to the immediate children of the

least common ancestor of h1 and h2 in T. This way, the

subtree T’, which is defined by the operands h1 and h2,

is placed directly under the least common ancestor of

these operands. This preserves the structural property

of triangularization and gives credit to clock inclusion

relations which yield more efficient nested if-tests.

Intuitively, the clock of a node is a subset of the clock

of its parent. The algorithm repeatedly tries to rewrite the

equations so that they match the criteria of the fusion step and

then executes the fusion until this cannot be done anymore.

As shown in the report [36], we can do optimizations on

the clock hierarchy to improve the quality of the code gen-

erated by the compiler, e.g., a code executed more efficiently

or a code with smaller footprint. For instance, the resulting

tree-based representation of the equation systems over clocks

can be optimized in the sense that the insertion step during

the fusion chooses a parent with greatest depth.

(4) Code generation

The code generation is based on the transformations pre-

sented in the previous sections. It is strongly guided by the

clock hierarchy resulting from the clock calculus to structure

the target language program, and by the conditional data-

dependency graph not only to locally order elementary op-

erations in sequences, but also to schedule component activa-

tions in a hierarchical target code. This code can be obtained

in different target languages, among which the most used are

C, C++, and Java.

When a SIGNAL program P is proved to be endochronous,

the generation of its associated code is straightforward. Each

node of the clock tree corresponding to P is characterized

by a Boolean expression that expresses a condition (if-then-

else structures). The statements that depend on each node are

computed whenever the associated condition is evaluated to

be true, meaning that the expressed clock is present. On the

other hand, the code generation takes into account the condi-

tional dependency graph that characterizes the order accord-

ing to which statements are to be computed at the same clock

instants.

Furthermore, the code generated especially the nesting of

if-then-else structures can be optimized, if h and k are two

clocks such that h ⊆ k, then for an instant t, the following

clock implication holds:

t < k =⇒ t < h

In others words, if the test t ∈ k fails, there is no need to

test if t ∈ h. Thus, code generation can take advantage of the

clock inclusion relation between clocks.

As an example, the code

i f present(k) then

do − action − k

i f present(h) then

do − action − h

endi f

endi f

is more efficient than the code



i f present(k) then

do − action − k

endi f

i f present(h) then

do − action − h

endi f

3.3 Handling Numerical Expressions

For the under-sampling construct, remember that the clock

of the Boolean expression x is partitioned into [x] and [¬x],

which are referred to as condition-clocks. In the SIGNAL

compiler, if x is defined by a numerical expression such as an

integer comparison, [x] and [¬x] are seen as black boxes by

default. As a consequence the relation in the numerical ex-

pression is unknown and useless comparisons are generated.

Here, we use an example to explain the handling of nu-

merical expressions.

Example 2 A process named Numerical_Expr is given:

process Numerical_Expr =

(? integer a, b, x1;
boolean c1, c2;

! integer x, y, z1, z2, z3,m, s1, s2;
)
(| aˆ= bˆ= x1ˆ= c1ˆ= c2
| x := a $ init 1
| y := b $ init 2
| z1 := x when (a > 0)
| z2 := x when (a <= 0)
| z3 := y when (b > 0)
| m := z1 de f ault z2 de f ault z3
| s1 := x1 when c1
| s2 := x1 when (c1 and c2)
|);

• Default Polychrony compiler

A part of the result of the clock calculus generated by the

compiler in Polychrony (without the option -crew) is shown

as follows. Here, [a > 0], [not (a > 0)], [a <= 0],

[not (a <= 0)], [b > 0], and [not (b > 0)] are consid-

ered as black boxes. So, the compiler treats [a > 0] and

[not (a <= 0)], [not (a > 0)] and [a <= 0], as different

clock equivalence classes. Actually they are in the same clock

equivalence class respectively. It follows that the compiler

cannot analyze some static properties of a program, such as

clock exclusion or clock emptiness, since numerical expres-

sions are not suitably abstracted.

| ( | CLK := when ( a>0)
| CLK_13 := when ( not ( a >0) )
| )

| ( | CLK_14 := CLK ^∗ CLK_z1 | )
| ( | CLK_z1 := CLK_a ^∗ CLK
| CLK_z1 ^= z1
| ( | z1 := x when CLK_z1 | )
| )

| ( | CLK_17 := when ( a<=0)
| CLK_18 := when ( not ( a <=0))
| )

| ( | CLK_19 := CLK_17 ^∗ CLK_z2 | )
| ( | CLK_z2 := CLK_a ^∗ CLK_17
| CLK_z2 ^= z2
| ( | z2 := x when CLK_z2 | )
| )

| ( | CLK_22 := when ( b>0)
| CLK_23 := when ( not ( b>0) )
| )

| ( | CLK_24 := CLK_22 ^∗ CLK_z3 | )
| ( | CLK_z3 := CLK_a ^∗ CLK_22
| CLK_z3 ^= z3
| ( | z3 := y when CLK_z3 | )
| )

A part of the C code generated by Polychrony compiler is

shown as follows. It also appears that the test C_s2 associ-

ated to [c1 and c2] is performed even if [c1] or [c2] tests fail.

It means that the clock inclusion property [c1 and c2]⇒ [c1]

has not been detected. If [c1 and c2] had been placed as a son

of one of [c1] or [c2] while preserving "arborescent canonical

form", the test of the conjunction would have been performed

only when one of the argument is true. However, as men-

tioned in section 3.2, such optimizations could be performed

by the C compiler itself.

C_z1 = a > 0 ;
C_z2 = a <= 0 ;
C_z3 = b > 0 ;
C_s2 = c1 && c2 ;
C_CLK_52 = C_z1 | | C_z2 ;
C_m = C_CLK_52 | | C_z3 ;
i f ( c1 )

{ s1 = x1 ; w_exp1_s1 ( s1 ) ;
}

i f ( C_z1 )
{ z1 = x ; w_exp1_z1 ( z1 ) ;
}

i f ( C_z2 )
{ z2 = x ; w_exp1_z2 ( z2 ) ;
}

i f ( C_z3 )
{ z3 = y ; w_exp1_z3 ( z3 ) ;
}

i f ( C_s2 )
{ s2 = x1 ; w_exp1_s2 ( s2 ) ;
}

i f (C_m)
{ i f ( C_z1 )

m = z1 ;
e l s e i f ( C_z2 )

m = z2 ;



e l s e

m = z3 ;
w_exp1_m (m) ;
}

• Compilation with the option -crew

Even if the SIGNAL compiler does not fully handle nu-

merical expressions, it is possible to let it do some rewriting

of numerical conditions as Boolean expressions by using the

option -crew. A part of code generated for the Example 2 is

given as follows. With this option, comparisons are rewritten

using only the operators == (for example CLK_81 = 0 == a)

and <= (for example CLK_83 = 0 <= a). Thus, [a > 0] and

[a <= 0] can be rewritten as C_z1 =!CLK_81&&CLK_83

and C_z2 = CLK_81||!CLK_83 respectively. As we can see,

the rewriting of comparisons permits a more precise analysis

on clocks.

CLK_81 = 0 == a ;
CLK_83 = 0 <= a ;
C_z1 = ! CLK_81 && CLK_83 ;
C_z2 = CLK_81 | | ! CLK_83 ;
C_z3 = (0 <= b ) && ! ( 0 == b ) ;
C_s2 = c1 && c2 ;

• Enhancement with a combined numerical-Boolean ab-

straction

Paul Feautrier et al [10] propose a combined numerical-

Boolean abstraction to deal with these problems. In the new

abstraction, every signal in a program is associated with a pair

of the form (clock, value), where clock is a Boolean function

and value is a Boolean or numeric function. They also use a

SMT solver to reason on the new abstraction, and get more

precise clock analysis because they treat the numerical ex-

pression as white boxes.

4 Inside the MinSIGNAL Compiler

In this section, we present the OCaml code of the compila-

tion process of MinSIGNAL. First, the modular architecture

of MinSIGNAL is given in a global view. Second, the com-

pilation progress is presented step by step.

4.1 A Modular Architecture

As shown in Figure 1, the MinSIGNAL compiler has a mod-

ular architecture, and can be seen as a sequence of source-to-

source transformations applied to the intermediate represen-

tation S-CGA and then translation to sequential imperative

code. Specifically, the compilation process is mainly struc-

tured as five modules. At each module, there are several sub-

modules.

• Module 1: Normalization of the user program. Beyond

the usual lexical analysis, parsing and type checking, the

compiler will transform the user program (using the sub-

set of SIGNAL) whose statements are expressed with

both primitive constructs and extended constructs to the

normalized program whose statements are all expressed

with primitive constructs.

• Module 2: Synchronizations of SIGNAL processes. As

a difference with the existing SIGNAL compiler, we

construct S-CGA from the normalized program. S-CGA

contains control flow (the relations between clocks) as

well as data flow (the relations between values).

• Module 3: Solving the clock equation system. If the sys-

tem of clock equations contains more than one equation

with the same clock, the execution of the generated code

will check the same control condition several times, and

it is inefficient. This is why we need to resolve it. We

can use BDD or SMT technology to check the equiva-

lence of two clock equations, and put the corresponding

clock variables into the same equivalence class. We also

check the endochrony property at this step, namely there

is just one master clock.

• Module 4: Hierarchical representation of clock equa-

tions. The code generation is based on both the clock

hierarchy and the data dependencies. However, there

may be clock-to-data cycles. To reduce these cycles, we

first sort all the guarded actions. It will be easier to con-

struct a clock hierarchy based on deterministic sorting,

and we consider the sorting as a depth first search (DFS)

order.

• Module 5: Code generation and optimization. The basic

idea of code generation is the same as in the SIGNAL

compiler. Furthermore, we do some optimizations at the

code level. Given two equations such as y = x when x1

and z = x when (x1 and x2), there is a clock-inclusion

relation: [x1 ∧ x2] → [x1], i.e., the clock of [x1 ∧ x2] is

a subset of the clock of [x1]. Consequently, we can do

the code optimization illustrated as follows. If control

condition x1 holds, we do not need to check x1 again in

x1&&x2. We just need to check if x2 holds or not.



Figure 1 A modular architecture for the formalization of the SIGNAL compilation process

i f (x1){
do actions

...
i f (x1&&x2){
do actions

...}
}

⇛

i f (x1){
do actions

...
i f (x2){
do actions

...}
}

As mentioned before, the safety of the type checking of

OCaml allows to skip some verification that would be manda-

tory with other languages. Moreover, the OCaml code is

compact which allows less verification efforts. MinSIGNAL

consists in about 3000 lines of OCaml code (Table 2).

Table 2 The OCaml code size of MinSIGNAL

Module name OCaml code
Normalization of the user program 750 lines
Intermediate representation S-CGA 350 lines
Solving the clock equation system 750 lines

Hierarchical representation of clock equations 550 lines
Code generation and optimization 500 lines

4.2 Normalization of the user program

As shown in section 2.2, the definition of the extended con-

structs is derived from a combination of the primitive con-

structs to provide the user with suitable macros. So, beyond

the usual lexical analysis, parsing and type checking, the

compiler will transform the user program whose statements

are expressed with both primitive constructs and extended

constructs to the normalized program whose statements are

all expressed with primitive constructs.

(1) Lexical analysis, parsing and type checking

The lexical analysis and parsing of MinSIGNAL are im-

plemented with standard tools, OCamlLex and OCamlYacc.

As usual, they translate a string of characters to a sequence

of tokens and then to an abstract syntax tree, which is neces-

sary for any complex program manipulation. We don’t give

the details of the lexical analysis, parsing and type checking,

because of the space limitations.

Here, we give a simplified abstract syntax which is defined

in OCaml. ty represents the data types of SIGNAL such as in-

teger, real, complex, boolean, etc. A SIGNAL specification

spec is a set of processes. A process proc is a set of equations

(eqn list) for signals specifying relations between values, on

the one hand, and clocks, on the other hand, of the signals

involved. Moreover, a process also includes its name, input

signals, output signals and local declarations. An equation

can denote the relations between values or the relations be-

tween clocks, Ident represents the identifier of a signal, CInt,

CReal, CBool, CString, and CChar represents constants de-

fined in the equations, Func, Delay, When, and Default de-

note the primitive constructs, set operators on clocks such as

ˆ +, ˆ * and ˆ - are also represented in Func, while clock com-

parison operators such as ˆ <, ˆ >, ˆ ♯ and ˆ= are represented

in Constraint.

type t y = TBasic of s t r i n g
type exp =
| I d e n t of s t r i n g
| CI n t of i n t
| CReal of f l o a t
| CBool of bo o l
| C S t r i n g of s t r i n g
| CChar of c h a r



| Func of s t r i n g ∗ exp l i s t
| Delay of exp ∗ exp
| When of exp ∗ exp
| D e f a u l t of exp ∗ exp

type eqn =
| Ass of s t r i n g ∗ exp
| C o n s t r a i n t of s t r i n g ∗ exp ∗ exp

type d e c l = t y ∗ s t r i n g
type p roc = Proc of s t r i n g ∗ ( d e c l l i s t )

∗ ( d e c l l i s t ) ∗ ( eqn l i s t ) ∗ ( d e c l l i s t )
type s pe c = p roc l i s t

(2) Transformation of the user syntax to the kernel syn-

tax

We first give the kernel syntax (corresponding to the core-

SIGNAL) which is defined in OCaml. The abstract syntax

of core-SIGNAL, of clock equation (in section 4.4), and of

reduced normal form (i.e., equivalence class in section 4.5)

have a common style, thus we use a type kind with three val-

ues Ksignal, Clock, and Class. In the user syntax, the expres-

sion can be iterated, while in the kernel syntax, the expression

has been flattened.

type k t y= KTBasic of s t r i n g
type c o n s t =

| SCInt of i n t
| SCReal of f l o a t
| SCBool of boo l
| S C St r i n g of s t r i n g
| SCChar of c h a r

type k ind=
| K s i g n a l
| Clock
| C l a s s of Q u o t i e n t . t

type v a r = s t r i n g ∗ k ind
type sexp =

| SVar of v a r
| SConst of c o n s t
| SFunc of s t r i n g ∗ v a r l i s t

type kexpSig =
| KDelay of s t r i n g ∗ sexp
| KWhen of s t r i n g ∗ s t r i n g
| KDefau l t of s t r i n g ∗ s t r i n g

type keqn =
| KAss of v a r ∗ sexp
| KAssSig of s t r i n g ∗ kexpSig

type k d e c l = k t y ∗ s t r i n g
type kproc = KProc of s t r i n g ∗ ( k d e c l l i s t )

∗ ( k d e c l l i s t ) ∗ ( keqn l i s t )
type kspec = kproc l i s t

Several rules are applied to the transformation from the

extended constructs to the primitive constructs.

Transformation 1. We have one basic rule: the equation

clk := x̂ can be expressed using primitive constructs as fol-

lows.

Clock extraction Corresponding primitive constructs
clk := x̂ clk := (x = x)

Transformation 2. The set operations on abstract clocks

such as clock intersection, union, and difference, can be ex-

pressed by the following constructs, and then can be ex-

pressed using primitive constructs.

Set operations on clocks Corresponding constructs
x := x1 ˆ * x2 x := x̂1 when x̂2

x := x1 ˆ + x2 x := x̂1 de f ault x̂2

x := x1 ˆ - x2 x :=
when ((not x̂2)

de f ault x̂1)

Notice that x := when ((not x̂2) de f ault x̂1) can be

rewritten as x := ((not x̂2) de f ault x̂1) when ((not x̂2)

de f ault x̂1)

Transformation 3. The comparison operations of abstract

clocks can be expressed using set operations on clocks, and

then can be expressed using primitive constructs. Here, 0̂

specifies the empty clock.

Clock comparison operations Set operations on clocks
x1 ˆ < x2 x1 ˆ = x1 ˆ * x2

x1 ˆ > x2 x1 ˆ = x1 ˆ + x2

x1 ˆ ♯ x2 0̂ ˆ = x1 ˆ * x2

x1 ˆ = x2 clk := x̂1 = x̂2 where clk

Dealing with constant signals. In addition, we’d like

to see the clock equation system defined in clock algebra di-

rectly. There is a little problem about the presence of constant

signals. For example, given a process with two equations of

signals,

y = 2 when b

y′ = 2 when b′

we have the clock relations as follows,

ŷ = 2̂ ∧ [b]
ŷ′ = 2̂ ∧ [b′]

However, the clock 2̂ in ŷ = 2̂ ∧ [b] and in ŷ′ = 2̂ ∧ [b′]

may be not the same. Namely, the presence of constant sig-

nals depend on their usage context. To avoid conflicts, we use

a new signal variable (defined in the local declaration) to re-

place the constant signal, and the new signal variable will be

defined using a delay construct, for example x1 = x1 $ init 2



and x2 = x2 $ init 2. Then, the process will be transformed

as,
y = x1 when b,
y′ = x2 when b′

x1 = x1 $ init 2
x2 = x2 $ init 2

Finally, we get the clock relations as follows,

ŷ = x̂1 ∧ [b]
ŷ′ = x̂2 ∧ [b′]

Notice that, we compute the data-type of each new signal

variable by type inference.

Based on the kernel syntax and previous transformation

rules, the user program will be transformed into the normal-

ized program and then will be flattened.

The comparison operations of abstract clocks are trans-

formed into the set operations on clocks. Its OCaml code

is given as follows.

l e t rec e l i m _ c t r s _ i n _ e q n s eqns =
L i s t . c o n c a t ( L i s t . map (
f u n c t i o n

| Ass ( s , e ) as eq −> [ eq ]
| C o n s t r a i n t ( s , e1 , e2 ) −>

begin match s with

| "^<"−>
[ C o n s t r a i n t ( " ^= " , e1 , Func ( " ^∗ " , [ e1 ; e2 ] ) ) ]

| "^>"−>
[ C o n s t r a i n t ( " ^= " , e1 , Func ( " ^+ " , [ e1 ; e2 ] ) ) ]

| " ^# "−>
[ C o n s t r a i n t ( " ^= " , Func ( " ^ " , [ CIn t ( 0 ) ] ) ,

Func ( " ^∗ " , [ e1 ; e2 ] ) ) ]
| " ^= "−>

l e t c1=new_var "C" ( TBasic " e v e n t " )
and c2=new_var "C" ( TBasic " e v e n t " )
and c3=new_var "C" ( TBasic " e v e n t " )
in

i f i s I d e n t o r C o n s t ( e2 ) then

[ Ass ( c1 , Func ( "==" , [ e1 ; e1 ] ) ) ;
Ass ( c2 , Func ( "==" , [ e2 ; e2 ] ) ) ;
Ass ( c3 , Func ( "==" , [ I d e n t c1 ; I d e n t c2 ] ) ) ]
e l s e

l e t c4=new_var "C" ( TBasic " e v e n t " ) in

[ Ass ( c1 , Func ( "=" , [ e1 ; e1 ] ) ) ;
Ass ( c2 , e2 ) ;
Ass ( c3 , Func ( "=" , [ I d e n t c2 ; I d e n t c2 ] ) ) ;
Ass ( c4 , Func ( "=" , [ I d e n t c1 ; I d e n t c3 ] ) ) ]

| _−> f a i l w i t h ( "NYI : unknown� c o n s t r a i n t " )
end

) eqns )

For the set operations on abstract clocks, they are

firstly transformed into corresponding constructs, which

are implemented by the constructors Func("ˆ+",[e1;e2]),

Func("ˆ*",[e1;e2]) and Func("ˆ-",[e1;e2]) in the recursive

function flatten. Then, all the clocks such as x̂ will be

expressed using primitive constructs, that is the construc-

tor Func("ˆ",[e]). Finally, all the primitive constructs trans-

formed will be flattened.

l e t rec f l a t t e n = f u n c t i o n

| Func ( " ^+ " , [ e1 ; e2 ] ) −>
f l a t t e n ( D e f a u l t ( Func ( " ^ " , [ e1 ] ) , Func ( " ^ " , [ e2 ] ) ) )
| Func ( " ^∗ " , [ e1 ; e2 ] ) −>

f l a t t e n ( When ( Func ( " ^ " , [ e1 ] ) , Func ( " ^ " , [ e2 ] ) ) )
| Func ( "^−" , [ e1 ; e2 ] ) −>
l e t e3 = D e f a u l t ( Func ( " n o t " , [ Func ( " ^ " , [ e2 ] ) ] ) ,
Func ( " ^ " , [ e1 ] ) ) in

f l a t t e n ( When ( e3 , e3 ) )
| Func ( " ^ " , [ e ] ) −>

l e t v1=new_var "CL" ( TBasic " e v e n t " ) in

l e t e1= f l a t t e n e in

add_eqn ( Ass ( v1 , Func ( " := " , [ e1 ; e1 ] ) ) ) ;
I d e n t v1
| Func ( f , l ) as e −>

l e t v1=new_var "F" ( TBasic ( g e t _ t y p e e ) ) in

add_eqn ( Ass ( v1 , Func ( f , L i s t . map f l a t t e n l ) ) ) ;
I d e n t v1
| Delay ( e1 , e2 ) as e −>

l e t v2=new_var "D" ( TBasic ( g e t _ t y p e e ) ) in

add_eqn ( Ass ( v2 , Delay ( f l a t t e n e1 , e2 ) ) ) ;
I d e n t v2
| D e f a u l t ( e1 , e2 ) as e −>

l e t v3=new_var "M" ( TBasic ( g e t _ t y p e e ) ) in

add_eqn ( Ass ( v3 , D e f a u l t ( f l a t t e n e1 , f l a t t e n e2 ) ) ) ;
I d e n t v3
|When ( e1 , e2 ) as e −>

l e t v4=new_var "W" ( TBasic ( g e t _ t y p e e ) ) in

add_eqn ( Ass ( v4 , When ( f l a t t e n e1 , f l a t t e n e2 ) ) ) ;
I d e n t v4
| I d e n t _ as e −> e
| e (∗ t h i s i s c o n s t a n t ∗ )−>

l e t k=new_var "K" ( TBasic ( g e t _ t y p e e ) ) in

add_eqn ( Ass ( k , Delay ( I d e n t k , e ) ) ) ;
I d e n t k

4.3 S-CGA Intermediate representation

In papers such as [18], clocked guarded actions have been de-

fined as a common representation for synchronous (via syn-

chronous guarded actions), polychronous and asynchronous

(via asynchronous guarded actions) models. It has a multi-

clocked feature. However, in contrast to the SIGNAL lan-

guage, clocked guarded actions can evaluate a variable even

if its clock does not hold [18] [20]. In this case the read

value is the most recently written value, while in SIGNAL

read and writes can be simultaneous provided the causality

is respected. As a consequence, we have introduced an inter-

mediate representation S-CGA [20, 21], which is a variant of

clocked guarded actions. In one hand, S-CGA expresses the

relations between signals, including the relations between ab-

stract clocks and the relations between values, which are con-



sistent with the SIGNAL program. In the other hand, as an

intermediate representation, S-CGA permits us to integrate

more synchronous languages such as QUARTZ, AIF into our

compiler in the future.

(1) The definition of S-CGA

S-CGA has the same structure as clocked guarded actions,

but has different semantics.

Definition 6 (S-CGA) An S-CGA system is represented

by a set of guarded actions of the form 〈γ ⇒ A〉 defined over

a set of variables X. The Boolean condition γ is called the

guard and A is called the action. Guarded actions can be of

the following forms:

(1) γ ⇒ x = τ (immediate)
(2) γ ⇒ next(x) = τ (delayed)
(3) γ ⇒ assume(σ) (assumption)

where

• the guard γ is a Boolean condition over the variables of

X, and their respective clocks. For a variable x ∈ X, we

denote:

– its clock x̂,

– its initial clock init(x̂) as the clock which ticks the

first time (if any) where x̂ ticks.

• τ is an expression over X,

• σ is a Boolean expression over the variables of X and

their clocks.

An immediate assignment x = τ writes the value of τ im-

mediately to the variable x. The form (1) implicitly imposes

that if γ is defined6) and its value is true, then x is present and

τ is defined.

A delayed assignment next(x) = τ evaluates τ in the given

instant but changes the value of the variable x at next time

clock x̂ ticks.

The form (3) defines a constraint. It determines a Boolean

condition which has to hold when γ is defined and true. All

the execution traces must satisfy this constraint. Otherwise,

they are ignored.

Guarded actions are composed by using the parallel oper-

ator ‖.

A SIGNAL process includes its name, input signals, out-

put signals, local declarations, and equations which denote

the relations between clocks or the relations between values.

In the OCaml code, we consider also inputs and outputs as

guarded actions in S-CGA. The immediate guarded action is

split into init(x̂) ⇒ x = τ and γ ⇒ x = τ where init(x̂) is not

6) An expression is said to be defined if all the variables it contains are
present.

in the guard γ. The assumption guard action is also defined in

the type action. We use another hash table ddes to deal with

the delay guarded action.

The corresponding OCaml code is given as follows.

(∗ immedia te , a s sumpt ion , ∗ )

(∗ i n p u t , and o u t p u t guarded a c t i o n s ∗ )

type a c t i o n=
Dass of sexp ∗ v a r ∗ sexp
| I n p u t of v a r ∗ s t r i n g
| Outpu t of s t r i n g

l e t a c t i o n 2 s t r = f u n c t i o n

| Dass ( se1 , sv2 , se2 ) −>
s e x p 2 s t r se1 ^ "=>" ^ v a r 2 s t r sv2
^ "=" ^ ( s e x p 2 s t r se2 )

| I n p u t ( sv , s ) −>
v a r 2 s t r sv ^ "=>" ^ " Read " ^ s

| Outpu t s −>
" Wr i t e " ^ s

(∗ i n i t p a r t o f immed ia t e guarded a c t i o n s ∗ )

l e t d ces=H a s h t b l . c r e a t e 1000
l e t h a s h 2 s t r 1 t l s = H a s h t b l . f o l d ( fun k v r −>

r ^ " \ n " ^ " i n i t ( " ^ s e x p 2 s t r k ^ " ) "
^ "=>" ^ k e q n 2 s t r v ) t l s " "

(∗ d e l a y guarded a c t i o n s ∗ )

l e t ddes=H a s h t b l . c r e a t e 1000
l e t rec v 2 s t r = f u n c t i o n

| KAss ( ( sv , k ) , e ) −>
" n e x t ( " ^ sv ^ " ) " ^ "=" ^ ( s e x p 2 s t r e )

| _ −> f a i l w i t h " v 2 s t r "
l e t h a s h 2 s t r 2 t l s =H a s h t b l . f o l d ( fun k v r −>

r ^ " \ n " ^ s e x p 2 s t r k^ "=>" ^ v 2 s t r v ) t l s " "

(2) From normalized program to S-CGA

Clock synchronization constraints are given in Table 3.

Except for the under-sampling construct, we also enhance

the clock synchronization of the deterministic-merging con-

struct. The construct x := x1 de f ault x2 will be split as two

assignments: x = x1 corresponding to the clock x̂1 and x = x2

corresponding to the clock ̂de f ___x2 = x̂2\x̂1. Namely, a

new clock variable ̂de f ___x2 is added. This enhancement

will be useful in the construction of the clock hierarchy to

avoid clock-to-data cycles (section 4.5).

Table 3 Extended synchronizations of each primitive construct

P
synchronizations o f P

in extended clock abstraction

x := f (x1, · · · , xn) x̂ = x̂1 = · · · = x̂n

x := x1 $ init c x̂ = x̂1

x := x1 when x2
x̂ = x̂1 ∧ ̂t___x2
̂t___x2 = x̂2 ∧ x2

x := x1 de f ault x2
x̂ = x̂1 ∨ x̂2
̂de f ___x2 = x̂2\x̂1



S-CGA expresses the relations between signals, including

the relations between clocks and the relations between val-

ues, which are consistent with the SIGNAL program. Thus,

in the OCaml code, the normalized program is transformed

into S-CGA by using two functions: trans_eqns_clkeqv and

attachEquation.

The function trans_eqns_clkeqv is used to construct the

clock equations from S-CGA. KAss((s, k),ex) considers the

three cases in the instantaneous function x := f (x1, · · · , xn).

The constructor KAssSig(s,es) deals with the primitive con-

structs delay, undersampling and deterministic merging.

Here, all the primitive constructs have been flattened.

l e t t r a n s _ e q n s _ c l k e q eqs =
un iq ( L i s t . c o n c a t ( L i s t . map (

f u n c t i o n

| KAss ( ( s , k ) , ex ) −>
begin match ex with

SVar ( s1 , K s i g n a l ) −>
[ Dass ( SVar ( " t r u e " , K s i g n a l ) ,

( s , Clock ) , SVar ( s1 , Clock ) ) ]
| SFunc ( f , [ ( s1 , k ) ] ) −>

[ Dass ( SVar ( " t r u e " , K s i g n a l ) ,
( s , Clock ) , SVar ( s1 , Clock ) ) ]

| SFunc ( f , [ ( s1 , k1 ) ; ( s2 , k2 ) ] ) −>
[ Dass ( SVar ( " t r u e " , K s i g n a l ) ,
( s , Clock ) , SVar ( s1 , Clock ) ) ;

Dass ( SVar ( " t r u e " , K s i g n a l ) ,
( s , Clock ) , SVar ( s2 , Clock ) ) ]

| _ −> [ ] (∗ i n c as e o f c o n s t a n t ∗ )

end

| KAssSig ( s , e s ) −>
begin match es with

KDelay ( s1 , e ) −>
[ Dass ( SVar ( " t r u e " , K s i g n a l ) ,

( s , Clock ) , SVar ( s1 , Clock ) ) ]
|KWhen( s1 , s2 ) −>

[ Dass ( SVar ( " t r u e " , K s i g n a l ) ,
( " t _ __ " ^ s2 , Clock ) ,

SFunc ( " and " , [ ( s2 , Clock ) ; ( s2 , K s i g n a l ) ] ) ) ;
Dass ( SVar ( " t r u e " , K s i g n a l ) , ( s , Clock ) ,
SFunc ( " and " , [ ( s1 , Clock ) ;
( " t _ __ " ^ s2 , Clock ) ] ) ) ]

| KDefau l t ( s1 , s2 ) −>
[ Dass ( SVar ( " t r u e " , K s i g n a l ) , ( s , Clock ) ,

SFunc ( " o r " , [ ( s1 , Clock ) ; ( s2 , Clock ) ] ) ) ;
Dass ( SVar ( " t r u e " , K s i g n a l ) ,
( " de f___ " ^ s2 , Clock ) ,

SFunc ( " d i f f " , [ ( s2 , Clock ) ; ( s1 , Clock ) ] ) ) ]
end

) eqs ) )

Moreover, the function attachEquation is used to construct

the relation between values from S-CGA.

l e t a t t a c h E q u a t i o n eqns=
L i s t . i t e r (
f u n c t i o n

| KAssSig ( s , e s ) −>

begin match es with

| KDelay ( s1 , se1 ) −>
H a s h t b l . add dc es ( SVar ( s , Clock ) )
( KAss ( ( s , K s i g n a l ) , se1 ) ) ;
(∗ i n i t ( ^ y )=>y=d ∗ )

H a s h t b l . add ddes ( SVar ( s , Clock ) )
( KAss ( ( s , K s i g n a l ) , SVar ( s1 , K s i g n a l ) ) )
(∗ ^ y=>n e x t ( y )= x ∗ )

| KDefau l t ( se1 , se2 ) −>
H a s h t b l . add c l s e q ( SVar ( se1 , Clock ) )
( KAss ( ( s , K s i g n a l ) , SVar ( se1 , K s i g n a l ) ) ) ;

H a s h t b l . add c l s e q ( SVar ( " de f___ " ^ se2 , Clock ) )
( KAss ( ( s , K s i g n a l ) , SVar ( se2 , K s i g n a l ) ) )

|KWhen ( se1 , se2 ) −>
H a s h t b l . add c l s e q ( SVar ( s , Clock ) )
( KAss ( ( s , K s i g n a l ) , SVar ( se1 , K s i g n a l ) ) )

end

| KAss ( ( s , k ) , ex ) as e −>
H a s h t b l . add c l s e q ( SVar ( s , Clock ) ) e ;

) eqns ;
c l s e q

4.4 Solving the clock equation system

We first introduce the resolution algorithm, then we present

how to compute clock equivalence classes to avoid multiple

definitions of a clock, and finally get a reduced clock equa-

tion system (namely reduced normal form) based on the clock

equivalence classes.

(1) Transformation to normal form

The clock equation system extracted from the S-CGA pro-

gram will be solved as a system of equations of the form

h = h1 〈op〉 h2 (which is also called normal form), to effi-

ciently check the presence of a clock. That’s why, for ex-

ample, if the equation system contains more than one equa-

tion with the same clock on the left side, the execution of the

generated code will check the same control condition several

times, which is inefficient. As shown in section 3.2, there

are also other problems that need to be dealt with, such as

clock-to-clock cycles and complex relations.

Given two sets NFS and UNFS, NFS is a set of normalized

clock equations, and UNFS is a set of unnormalized ones for

example complex relations. In NFS, each clock equation is

uniquely defined to avoid multiple definitions, and the clock

variable in the left-hand side (LHS) cannot be in the right-

hand side (RHS) to avoid clock-to-clock cycles.

Algorithm 1: Resolution of the clock equation system.

• Step 1: given any equation eq of the clock equation sys-

tem, replace the clock variables in both sides of eq with

the corresponding definition which has been defined in



NFS (if it has been defined), and we get the new equa-

tion eq’.

• Step 2: if the LHS of eq’ is a clock expression and its

RHS is a clock variable, then we reverse eq’.

• Step 3: if the LHS of eq’ is a clock variable, and it exists

in the RHS, then Step 5, else Step 6.

• Step 4: if both LHS and RHS of eq’ are clock expres-

sions, namely a complex relation, then Step 5.

• Step 5: put eq’ into UNFS, then Step 8.

• Step 6: put eq’ into NFS, then Step 7.

• Step 7: for each equation ceq in UNFS, replace the clock

variables of both sides of ceq with eq’, and we get a

new equation ceq’, if the LHS and the RHS of ceq’ are

equivalent, then we eliminate it from UNFS, else we add

it into UNFS.

• Step 8: repeating Step 1 - Step 7 until there is no equa-

tion in the clock equations system.

• Step 9: if UNFS is empty, then return NFS, else return a

refuse information.

The corresponding OCaml expression is given as follows.

Here, we have two lists UNFS and NFS. When we add a new

equation to the list NFS, we need to replace other equations

in NFS using the new one.

l e t c l e q s 2 n f a c t i o n l i s t =
l e t c l e q s l i s t = a c t i o n 2 c l e q s l i s t a c t i o n l i s t in

l e t n f e q n l i s t= s e q n 2 n f e q n l i s t c l e q s l i s t in

l e t ( unfs , n f s )=
L i s t . f o l d _ r i g h t (

fun ( NFAss ( c l , c l e x p ) ) ( unfs , n f s )−>
l e t l= n f s r e p l a c e n f s ( c l k 2 e x p c l )
and r= n f s r e p l a c e n f s c l e x p in

i f b a s i c l then

i f o c c u r s l r then

( a d d _ u n f s l r unfs , n f s )
e l s e

( a p p l y ( NFAss ( e x p 2 c l k l , r ) ) unfs ,
a d d _ n f s l r n f s )

e l s e i f b a s i c r then

i f o c c u r s r l then

( a d d _ u n f s r l unfs , n f s )
e l s e

( a p p l y ( NFAss ( e x p 2 c l k r , l ) ) unfs ,
a d d _ n f s r l n f s )

e l s e

( a d d _ u n f s l r unfs , n f s )
) n f e q n l i s t ( [ ] , [ ] )
in

i f u n f s = [ ] then

n f s
e l s e

f a i l w i t h ( " c l e q s 2 n f � c a n n o t � s o l v e � t h e � sys tem " )

In the SIGNAL compiler, the clock analysis mainly relies

on a Boolean abstraction of programs, internally represented

as BDDs or SMTs for an efficient reasoning. In the Step 7,

we reuse BDD technology to check the equivalence between

LHS and RHS of a complex relation in UNFS.

(2) Computing clock equivalence class

As mentioned above, each clock equation is uniquely de-

fined in NFS to avoid multiple definitions. Here all the clock

equations are considered as boolean equations, so we reuse

the BDD technology to check the equivalence of boolean

equations, and put the corresponding clock variables into the

same equivalence class.

The OCaml expression is given as follows. Every boolean

equation has a unique BDD representation (exp2bdd), which

corresponds to an equivalence class. Moreover, we use a hash

table (esmap) to save the corresponding relations between

equivalence class and the clock variables it contains.

l e t rec e q _ c l a s s _ e x p=
f u n c t i o n

| NFVar ( sv , k1 ) as e −>
l e t i d=Clockeq2nf . e x p 2 q u o t i e n t e in

H a s h t b l . r e p l a c e esmap ( e x p 2 c l k e ) i d
| NFFunc ( f , [ ce ] ) −> e q _ c l a s s _ e x p ce
| NFFunc ( f , [ ce1 ; ce2 ] ) −>

e q _ c l a s s _ e x p ce1 ; e q _ c l a s s _ e x p ce2
| _ −> f a i l w i t h " e q _ c l a s s _ e x p "

l e t c p t _ e q _ c l a s s c l e q s l i s t = L i s t . i t e r (
f u n c t i o n

NFAss ( c l , c l e x p ) −> l e t i d =
Clockeq2nf . e x p 2 q u o t i e n t c l e x p in

H a s h t b l . r e p l a c e esmap c l i d ;
e q _ c l a s s _ e x p c l e x p ;

)

(3) Getting reduced normal form

To further efficiently check the presence of a clock, we use

the identity of the equivalence class to replace the clock vari-

ables in the normal form, and we just preserve one equation

for one identity. This form is called reduced normal form.

Here, we give the abstract syntax of the reduced normal form

in OCaml.

type c l a s s i d=
C l a s s i d of UseBDD .BDD. t

type c l a s s e x p r=
C C l a s s i d of UseBDD .BDD. t
| N o t c l of c l a s s e x p r
| Andcl of c l a s s e x p r ∗ c l a s s e x p r
| O rc l of c l a s s e x p r ∗ c l a s s e x p r
| D i f f c l of c l a s s e x p r ∗ c l a s s e x p r

type c l a s s e q s = ( c l a s s i d , c l a s s e x p r ) H a s h t b l . t



4.5 Hierarchical representation of clock equations

Before the construction of clock hierarchy, we add two steps,

i.e., associating actions to the clock equivalence class and de-

terministic sorting.

(1) Associating actions to the clock equivalence class

The construction of clock hierarchy is based on the re-

duced normal form, that is each node of the clock hierarchy is

an identity of a clock equivalence class. As well, we associate

the actions, such as inputs, outputs and value assignments, to

each clock equivalence class.

Compared with other constructs, the delay construct is a

dynamic operator since the properties induced on the signals

refer to different values of time indexes, so we can’t asso-

ciate its actions statically to the clock equivalence class (it

will be dealt with in the step of code generation). As shown

in section 4.3, the construct x := x1 de f ault x2 will be split

as two assignments: x = x1 and x = x2. The construct

x := x1 when x2 is translated into a unique assignment x = x1

in the equivalence class of x̂.

The OCaml expression is given as follows.

l e t c l s e q=H a s h t b l . c r e a t e 1000
l e t ddes=H a s h t b l . c r e a t e 1000
l e t dce s=H a s h t b l . c r e a t e 1000
l e t a t t a c h E q u a t i o n eqns=
L i s t . i t e r (

f u n c t i o n

| SAssSig ( s , e s ) −>
begin match es with

| SDelay ( s1 , se1 ) −>
H a s h t b l . add ddes ( SAssSig ( s , e s ) )

( SAssSig ( s , e s ) )
| S D e f a u l t ( se1 , se2 ) −>

l e t i d 1=H a s h t b l . f i n d ( C p t _ e q c l a s s . esmap )
( Hat ( se1 ) ) in

l e t i d 2=H a s h t b l . f i n d ( C p t _ e q c l a s s . esmap )
( Hat ( " de f___ " ^ se2 ) ) in

H a s h t b l . add c l s e q i d 1 ( SAss ( s , S I d e n t ( se1 ) ) ) ;
H a s h t b l . add c l s e q i d 2 ( SAss ( s , S I d e n t ( se2 ) ) ) ;
H a s h t b l . add dces ( SAss ( s , S I d e n t ( se1 ) ) )

( SAss ( s , S I d e n t ( se1 ) ) ) ;
H a s h t b l . add dces ( SAss ( s , S I d e n t ( se2 ) ) )

( SAss ( s , S I d e n t ( se2 ) ) )
| SWhen ( se1 , se2 ) −>

l e t i d 1=H a s h t b l . f i n d ( C p t _ e q c l a s s . esmap )
( Hat ( s ) ) in

H a s h t b l . add c l s e q i d 1 ( SAss ( s , S I d e n t ( se1 ) ) ) ;
H a s h t b l . add dc es ( SAss ( s , S I d e n t ( se1 ) ) )

( SAss ( s , S I d e n t ( se1 ) ) )
end

| SAss ( s , ex ) as e −>
l e t i d 1=H a s h t b l . f i n d ( C p t _ e q c l a s s . esmap )

( Hat ( s ) ) in

H a s h t b l . add c l s e q i d 1 e ;

H a s h t b l . add dc es e e
) eqns ;
c l s e q

l e t p l _ a t t a c h e q p l=L i s t . map (
f u n c t i o n

SProc ( n , i s , os , eqns , ws ) −>
i n p u t := ! i n p u t @ i s ;
o u t p u t := ! output@os ;
l e t c l s= a t t a c h E q u a t i o n eqns in

c l s
) p l

(2) Deterministic sorting

The code generation is based on both the clock hierarchy

and the conditional data dependencies. However, there may

be clock-to-data cycles when we combine the two intermedi-

ate representations. To cut the cycles, we first sort the clock

relations defined by the reduced normal form and the data

dependencies represented by the actions (such as inputs, out-

puts, and value assignments) which have been associated to

the clock equivalence classes, then we can get a total order

for the clock hierarchy because of the endochrony property.

The OCaml expression is given as follows. We use three

values -1, 0, 1 to express the order between two equations for

example eq1 and eq2, if eq1 is executed before eq2, then it

returns -1, if eq1 is executed after eq2, then it returns 1, else it

returns 0. The sorting principle is defined as, for example, if

the LHS of eq1 exists in the RHS of eq2, then eq1 is executed

after eq2, if the LHS of eq2 exists in the RHS of eq1, then eq1

is executed before eq2.

type s a c t i o n=
| Dass of s t r i n g ∗ sexp
| Cass of c l a s s i d ∗ c l a s s e x p r
| I n p u t of s t r i n g
| Outpu t of s t r i n g

l e t act_comp a c t 1 a c t 2=
i f a c t 1=a c t 2 then 0
e l s e

match ( ac t1 , a c t 2 ) with

| ( Dass ( s1 , e1 ) , Dass ( s2 , e2 ) ) −>
i f v a r _ i n _ s e x p s1 e2 then −1
e l s e i f v a r _ i n _ s e x p s2 e1 then 1
e l s e compare a c t 1 a c t 2
| ( Dass ( s1 , e1 ) , Cass ( C l a s s i d c l2 , c l e 2 ) ) −>

i f v a r _ i n _ c l a s s e x p r s1 c l e 2 then −1
e l s e i f s e x p _ i n _ c l a s s i d c l 2 e1 then 1
e l s e compare a c t 1 a c t 2
| ( Cass ( c l1 , c l e 1 ) , Cass ( c l2 , c l e 2 ) ) −>

i f c l a s s i d _ i n _ c l a s s e x p r c l 1 c l e 2 then −1
e l s e i f c l a s s i d _ i n _ c l a s s e x p r c l 2 c l e 1 then 1
e l s e compare a c t 1 a c t 2
| ( Cass ( C l a s s i d c l1 , c l e 1 ) , Dass ( s2 , e2 ) ) −>

i f s e x p _ i n _ c l a s s i d c l 1 e2 then −1
e l s e i f v a r _ i n _ c l a s s e x p r s2 c l e 1 then 1
e l s e compare a c t 1 a c t 2



| ( I n p u t s1 , I n p u t s2 ) −> compare s1 s2
| ( I n p u t s1 , _ ) −> −1
| ( _ , I n p u t s2 ) −> 1
| ( Outpu t s1 , Outpu t s2 ) −> compare s1 s2
| ( Outpu t s1 , _ ) −> 1
| ( _ , Outpu t s2 ) −> −1

(3) Construction of a clock hierarchy

It will be easier to construct a clock hierarchy based on

the deterministic sorting. Here we consider the sorting as a

depth first search (DFS) order. However, the resulting tree-

based representation of the equation systems over clocks can

be optimized in the sense that the insertion step during the

fusion chooses a parent with greatest depth, i.e., insertion as

deep as possible.

As shown in Fig.2, according to the algorithm [36] that

has been implemented in the compiler, C5 will be inserted

at the right side of C4, C2, C4 and C5 have the same parent

node C. If there exists clock inclusion C5 ⇒ C4, we can

insert C5 as a son node of C4 and at the right side of C42.

As shown in section 4.3, we have considered the condition-

clocks ([x], [¬x]) as white boxes, so here we can get more

precise clock inclusion relations. Moreover, when we insert

C5, all the actions which are executed before C5 have been

inserted into the hierarchy, so there is a limit branch of which

we can just insert the new node into the right side. To insert as

deep as possible, we can check the clock inclusion relations

between C5 and all the nodes which are executed after this

limit branch.

Figure 2 Optimization of the clock hierarchy

We give the basic algorithm as follows.

Algorithm 2: Construction of a clock hierarchy.

• Step 1: get an element from the sorted list.

• Step 2: if the current element is an equation from re-

duced normal form, namely it is the relation between

clock equivalence classes, we find its limit branch on

the hierarchy, and find a good insertion place based on

clock inclusions, then create a new node for the equiva-

lence class of the LHS of the equation.

• Step 3: if the current element is an action such as an

input, an output, or a value assignment, we find the cor-

responding equivalence class which has been inserted in

the hierarchy, and insert this action to the action list of

the corresponding equivalence class (here we don’t need

to sort the action list, because they have been sorted in

the sorting list).

• Step 4: Repeating Step 1- Step 3, until there is no ele-

ment in the sorting list.

4.6 Code generation and optimization

Here, the basic idea of code generation (Fig.3) is as in the

SIGNAL compiler: it is strongly guided by the clock hierar-

chy resulting from the clock calculus to structure the target

language program, and by the data dependencies not only to

locally order elementary operations in sequences, but also to

schedule component activations in a hierarchical target code.

However, all the actions have been added in the clock hierar-

chy, so the code generation become simpler. Moreover, the

generated code can be more optimized because of previous

enhancements. Furthermore, we can also do some optimiza-

tions based on clock inclusions at the generated code level.

Figure 3 Sequential code generation from SIGNAL programs



5 Related Work

We discuss in this section some related studies about two as-

pects: enhancements of the SIGNAL compilation process and

validation of the SIGNAL compilation process.

5.1 Enhancements of the SIGNAL compilation process

In the SIGNAL compiler, the control flow expressed by ab-

stract clocks serves to derive a control structure in automatic

code generation. Thus, the quality of clock calculus has a

strong impact on the correctness and efficiency of implemen-

tations. There is some research about the enhancement of the

clock calculus of synchronous languages.

In [10], the authors denote that there is a limitation of

the clock calculus of the SIGNAL compiler, that is the SIG-

NAL compiler does not fully handle numerical expressions.

This has a strong impact on the analysis precision and on

the quality of generated code. Thus, the authors propose a

new clock abstraction, that is combined numerical-Boolean

abstraction, to eliminate this problem. In the new abstrac-

tion, every signal in a program is associated with a pair of the

form (clock, value), where clock is a Boolean function and

value is a Boolean or numeric function. They also use a SMT

(Satisfiability Modulo Theory) solver to reason on the new

abstraction.

With the same purpose, in [11] and [12], an interval-based

data structure referred to as Interval-Decision Diagram (IDD)

is considered for the analysis of numerical properties in SIG-

NAL programs.

In [37], the authors address the static analysis and code

generation for applications defined in MRICDF (Multi-Rate

Instantaneous Channel Connected Data Flow), which is a

visual actor-oriented polychronous formalism, strongly in-

spired by SIGNAL. The static analysis in MRICDF also relies

on a Boolean encoding of specifications, thus ignoring non-

Boolean properties. Moreover, a SMT-based implementation

of this static analysis is proposed as an efficient alternative to

the initial implementation using a prime implicant generator.

5.2 Validation of the SIGNAL compilation process

For a safety-critical system, it is naturally required that

the compiler must be formally verified as well to ensure

that the source program semantics is preserved. There are

many approaches to gain assurance that the transformation or

the translation of a specification or a program is semantic-

preserving. This can be done by directly building a theorem-

prover-verified compiler [38,39], by using translation valida-

tion [32, 40], proof-carrying code [41], semantics-anchoring

method [42, 43], etc.

A. Pnueli et al. propose the approach of translation vali-

dation to verify the code generator of SIGNAL [32]. In that

work, the authors define a language of symbolic models to

represent both the source and target programs, called Syn-

chronous Transition Systems (STS). A STS is a set of logic

formulas which describe the functional and temporal con-

straints of the whole program and its generated code. Then

they use BDD (Binary Decision Diagrams) representations to

implement the symbolic STS models, and their proof method

uses a SAT-solver to reason on the signal constraints. The

drawback of this approach is that it does not capture explic-

itly the clock semantics and in some cases, the code generator

eliminates the use of a local register variable in the generated

code and then, the mapping cannot be established. Addition-

ally, for a large program, the formula is very large, including

numerical expressions that make some inefficiency. More-

over, the whole calculation of a synchronous program or the

generated code is considered as one atomic transition in STS,

thus it does not capture the data dependencies between sig-

nals and does not explicitly prove the preservation of abstract

clocks in the compiler transformations.

In [44], the authors adopt translation validation to for-

mally verify that the clock semantics and data dependence are

preserved during the compilation of the SIGNAL compiler.

They represent the clock semantics, the data dependence of

a program and its transformed counterpart as first-order for-

mulas which are called Clock Models and Synchronous De-

pendence Graphs (SDGs) respectively. Then they introduce

clock refinement and dependence refinement relations which

express the preservations of clock semantics and dependence,

as a relation on clock models and SDGs respectively. Finally,

a SMT-solver is used for checking the existence of the correct

transformation relations.

In the work of [45], the authors encode the source SIG-

NAL programs and their transformations with Polynomial

Dynamical Systems (PDSs), and prove that the transforma-

tions preserve the abstract clocks and clock relations of the

source programs. By using simulation based on model check-

ing techniques, this approach suffers from the increasing of

the state-space when it deals with large programs.

These existing research mainly use the method of trans-

lation validation. However, translation validation treats the

compiler as a "black box", namely it checks the input and out-

put of each program transformation to validate the semantics



preservation. So it yields that one need to redo the validation

when the source program is changed.

In this paper, the OCaml implementation is a basis for the

formal verification of the compilation of SIGNAL with a the-

orem prover. This work would be reused by ones interested

in experimenting a new strategy for clock calculus and exper-

imenting a new proof technique for the correctness of clock

calculus. Actually, in [21], we have started the proof of se-

mantics preservation of the front-end of our compiler, which

is mechanized in the theorem prover Coq.

6 Conclusion and Future Work

This paper presents a simple and safe compiler, called

MinSIGNAL, from a subset of the synchronous dataflow

language SIGNAL to C, as well as its existing enhance-

ments. For the community of statically typed functional

languages, usual arguments on quality, safety and efficiency

about code written in OCaml are well known and accepted for

a long time. Thus, OCaml is used for the implementation of

MinSIGNAL. An analysis of the SIGNAL compilation pro-

cess and the existing enhancements are first given. Then, the

compiler MinSIGNAL is presented step by step in details.

This work is a basis for the formal verification of the compi-

lation of SIGNAL with a theorem prover such as Coq.

In [21], we have started the proof of semantics preserva-

tion of the front-end of our compiler, which is mechanized in

the theorem prover Coq. Moreover, we have given the back-

end of the compiler, including sequential code generation and

multi-threaded code generation with time-predictable proper-

ties. With the rising importance of multi-core processors in

safety-critical embedded systems or cyber-physical systems

(CPS), there is a growing need for model-driven generation

of multi-threaded code and thus mapping on multi-core. We

are currently working on the proof of semantics preservation

of the back-end of our compiler.
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