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Abstract—Variable splitting is an old but widely used technique which

aims at dividing an initial complicated optimization problem into simpler
sub-problems. In this work, we take inspiration from this variable
splitting idea in order to build efficient Markov chain Monte Carlo
(MCMC) algorithms. Starting from an initial complex target distribution,
auxiliary variables are introduced such that the marginal distribution
of interest matches the initial one asymptotically. In addition to have
theoretical guarantees, the benefits of such an asymptotically exact data
augmentation (AXDA) are fourfold: (i) easier-to-sample full conditional
distributions, (ii) possibility to embed while accelerating state-of-the-art
MCMC approaches, (iii) possibility to distribute the inference and (iv)
to respect data privacy issues. The proposed approach is illustrated on
classical image processing and statistical learning problems.

I. MOTIVATIONS

Numerous machine learning, signal and image processing problems

involve the estimation of a hidden object of interest x ∈ R
d based

on (noisy) observations y ∈ R
n. This unknown object of interest

can stand for parameters of a given model in machine learning

[1] or may represent a signal or image to be recovered within an

inverse problem. The main approaches to solve these problems can

be casted into the class of optimization-based methods. The latter

are known to be fast, efficient and might scale into big data and

high-dimensional settings. [2]. A widely used optimization-based

approach is the alternating direction method of multipliers (ADMM)

[3]–[5] which is based on a technique called variable splitting.

By the introduction of auxiliary variables, the ADMM simplifies,

accelerates and can distribute the inference task [6], [7]. When the

log-likelihood is supposed differentiable, optimization algorithms can

provide confidence intervals on the pointwise estimation. However,

this is not the case in general and people often resort to simulation-

based methods such as Markov chain Monte Carlo (MCMC) [8] to

quantify this estimation uncertainty. The price to pay for the latter

can be high and even computationally prohibitive in high-dimensional

settings since the Markov chain might fail to explore efficiently the

parameter space.

To deal with these issues, we propose to rely on variable splitting

to build novel MCMC algorithms, as detailed in the next section.

II. PROPOSED APPROACH

Starting from an initial complicated target distribution with density

(w.r.t. the Lebesgue measure)

π(x) ∝ exp(−f1(x)− f2(Ax)), (1)

we introduce an auxiliary variable z such that the new target density

becomes

πρ(x, z) ∝ exp(−f1(x)− f2(z)− φρ(Ax, z)), (2)

where φρ stands for a divergence measuring the discrepancy be-

tween x and z [9], [10]. The marginal of interest under (2) is

assumed to match (1) when ρ → 0 leading to an asymptotically

exact data augmentation (AXDA) scheme [11]. When φρ(Ax, z) =
(2ρ2)−1 ‖Ax− z‖22, the distance in total variation between the

marginal under (2) and (1) can be controlled exactly for a fixed ρ > 0
[11].

Interestingly, inferring from this AXDA model with a simulation-

based method can be undertaken naturally with a special instance of

a Gibbs sampler [8], [12] described in Algorithm 1. Similarly to the

ADMM, the two functionals f1 and f2 are now dealt with separately

which preludes simpler sampling steps which can be parallelized in

some cases [10], [13]. If a conditional distribution cannot be sampled

easily even after the splitting step, one can embed efficient existing

MCMC algorithms within Algorithm 1 such as proximal MCMC

ones [14], [15]. In the following, we describe and illustrate the main

benefits of using the proposed approach on two image processing

problems.

III. ILLUSTRATIONS

Image deblurring with total variation prior – We consider an

image deconvolution problem where an original image x of size

256×256 (d = 65536) is blurred via a 5×5 Gaussian blur kernel with

standard deviation equal to 2, see Figure 1. The likelihood has been

supposed to be Gaussian while the total variation (TV) prior has been

considered to model spatial constraints. The potential φρ has been

chosen to be quadratic leading to a Gaussian x-conditional which

can be sampled efficiently in the Fourier domain. The z-conditional

distribution has been dealt with by embedding the proximal Moreau-

Yosida unadjusted Langevin algorithm (P-MYULA) [15] since this

distribution is not differentiable. The results are shown in Table I

and Figure 2 where the proposed approach has been also compared

to the deterministic approaches of [6] and [16]. Note that the proposed

approach leads to reconstruction results similar to optimization-based

methods, can accelerate the convergence of state-of-the-art algorithms

with a well chosen parameter ρ while providing at the same time

uncertainty quantification.

Poisson image restoration under log-concave prior – Another

application of the proposed approach that has been considered is

the restoration of images contaminated with Poisson noise [17].

The main difficulty of this problem is that the posterior distribution

obtained with a Poisson likelihood and a log-concave and possi-

bly non-differentiable prior cannot be sampled with state-of-the-art

algorithms. Indeed, P-MYULA assumes that the smooth potential

of (1) is gradient-Lipschitz which is not the case with the Poisson

log-likelihood. Fortunately, the proposed approach, by introducing

appropriate auxiliary variables and by embedding P-MYULA, is able

to sample efficiently from the posterior distribution. Illustrations and

results can be found in Figure 3.

IV. CONCLUSION

We proposed a novel MCMC approach which takes inspiration

from variable splitting, a widely-used optimization technique. This

leads to simpler sampling steps which can be addressed efficiently

by embedding state-of-the-art approaches while accelerating the latter

in some cases.



Algorithm 1: Split Gibbs sampler

Input: Functions f , g, φρ, parameter ρ, total number of

iterations TMC, number of burn-in iterations Tbi,

initialization z(0)

1 for t← 1 to TMC do

2 % Drawing the variable of interest

3 Sample x(t) according to πρ

(

x|z(t−1)
)

;

4 % Drawing the splitting variable

5 Sample z(t) according to according to πρ

(

z|x(t)
)

;

6 end

Output: Collection of samples
{

x(t), z(t)
}TMC

t=Tbi+1

asymptotically distributed according to (2).

Fig. 1. Image deblurring with TV prior. (left) Original image, (middle) noisy
and blurred image and (right) MMSE estimate computed with Algorithm 1.

100 101 102 103 104

Iteration t

105

106

107

108

109

1010

f
1
(x
)
+
f
2
(x
)

P-MYULA

10−1

100

101

ρ

Fig. 2. Image deblurring with TV prior. Convergence of the Markov chains
associated to Algo. 1 w.r.t ρ (from guppie green to blue) and P-MYULA (red)
toward the typical set of π.

TABLE I
IMAGE DEBLURRING WITH TV PRIOR. PERFORMANCE RESULTS FOR BOTH

OPTIMIZATION AND SIMULATION-BASED ALGORITHMS AVERAGED OVER

10 RUNS. FOR MCMC ALGORITHMS, THE SNR HAS BEEN CALCULATED

WITH MMSE ESTIMATES.

SALSA FISTA Algo. 1 P-MYULA

time (s) 1 10 470 3600

time (× var. split.) 1 10 1 7.7

nb. iterations 22 214 ∼ 10
4

10
5

SNR (dB) 17.87 17.86 18.36 17.97

5

10

15

Fig. 3. From left to right: original image, noisy and blurred observation,
MMSE estimate computed with Algo 1 and associated 95% credibility
intervals.
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