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1IRIT, Université Paul Sabatier, CNRS, Toulouse, France
2Airbus, Toulouse, France

{thomas.pellegrini,jerome.farinas}@irit.fr
{estelle.e.delpech,francois.lancelot}@airbus.com

Abstract

In this paper, we describe the outcomes of the challenge orga-

nized and run by Airbus and partners in 2018 on Air Traffic

Control (ATC) speech recognition. The challenge consisted of

two tasks applied to English ATC speech: 1) automatic speech-

to-text transcription, 2) call sign detection (CSD). The regis-

tered participants were provided with 40 hours of speech along

with manual transcriptions. Twenty-two teams submitted pre-

dictions on a five hour evaluation set. ATC speech processing

is challenging for several reasons: high speech rate, foreign-

accented speech with a great diversity of accents, noisy com-

munication channels. The best ranked team achieved a 7.62%

Word Error Rate and a 82.41% CSD F1-score. Transcribing

pilots’ speech was found to be twice as harder as controllers’

speech. Remaining issues towards solving ATC ASR are also

discussed in the paper.

Index Terms: speech recognition, air traffic control, special-

ized language

1. Introduction

The recent advances in Automatic Speech Recognition (ASR)

and Natural Language Understanding (NLU) technologies have

opened the way to potential applications in the field of Air Traf-

fic Control (ATC).

On the controllers’ side, it is expected that these technolo-

gies will provide an alternative modality for controllers. As a

matter of fact, controllers have to keep track of all the clear-

ances they emit, this is nowadays made either by mouse input

or by hand – which generates a high workload for controllers.

The ongoing research project MALORCA1, for instance, aims

at improving ASR models for providing assistance at different

controller working positions.

On the pilots’ side, ASR of ATC messages could also help

decreasing pilots’ cognitive workload. Indeed, pilots have to

perform several cognitive tasks to handle spoken communica-

tions with the air traffic controllers:

• constantly listening to the VHF (Very High Frequency)

radio in case their call sign (i.e. their aircraft’s identifier)

is called;

• understanding the controller message, even if pro-

nounced with non-native accent and/or in noisy condi-

tions;

• remembering complex and lengthy messages.

In short, industrial stakeholders consider today that ASR

and NLU technologies could help decrease operators’ work-

1http://www.malorca-project.de/

load, both on pilots and on controllers’ sides. A first step to-

wards cognitive assistance in ATC-related tasks could be a sys-

tem able to (1) provide a reliable transcription of an ATC mes-

sage; and (2) identify automatically the call sign of the recipient

aircraft.

Although significant progress has been made recently in

the field of ASR — see, for example, the work of [1] and [2]

who have both claimed to have reached human parity in the

switchboard corpus [3] — ATC communications still offer chal-

lenges to the ASR community; in particular because it combines

several issues in speech recognition: accented speech, code-

switching, bad audio quality, noisy environment, high speech

rate and domain-specific language associated with a lack of vo-

luminous datasets [4]. The Airbus Air Traffic Control Speech

Recognition 2018 challenge was intended to provide the re-

search community with an opportunity to address the specific

issues of ATC speech recognition.

This paper is an attempt to provide an overview on the

challenge outcomes. Section 2 presents the specificity of ATC

speech as well as existing ATC speech corpora; section 3 de-

scribes the tasks, dataset and evaluation metrics used in the

challenge; section 4 briefly describes the best performing sys-

tems and analyses the results of the challenge. Perspectives are

discussed in section 5.

2. Specificity of ATC speech and existing
ATC speech corpora

ATC communications being very specific, voluminous generic

datasets like the SWITCHBOARD corpus [3] cannot be used

to build an ATC speech recognition system. Table 1 provides a

comparison of ATC speech vs. SWITCHBOARD speech. ATC

speech provides many challenges to automatic speech recogni-

tion: audio quality is bad (VHF), the language is English but

pronounced by non-native speakers, speech rate is higher than

in CTS [5] and there is also a lot of code switching. The only

advantage of ATC compared to CTS is that the vocabulary is

limited to the International Civil Aviation Organisation (ICAO)

phraseology [6].

Several ATC datasets have been collected in the past. Un-

fortunately most of them are either unavailable, lack challeng-

ing features of ATC or lack proper annotation. On top of this,

it was required that at least a small portion of the dataset had

never been disclosed so that it could be used for evaluation.

The HIWIRE database [7] contains military ATC-related

voice commands uttered by non-native speakers and recorded in

artificial conditions. The nnMTAC corpus [8] contains 24h of

real-life, non-native military ATC messages. Unfortunately, it is

http://dx.doi.org/10.21437/Interspeech.2019-1962



Table 1: CTS speech (SWITCHBOARD) vs. ATC speech.

SWITCHBOARD speech ATC speech

intelligibility good (phone quality) bad (VHF quality + noise)

accents US English diverse & non-native

lexicon & syntax oral syntax, everyday topics limited to ICAO phraseology and related

speech rate standard high

other - code switching, possible Lombard effect

not available outside of NATO2 groups and affiliates. Similarly,

the VOCALISE dataset [9] and the corpus of [10] (respectively

150h and 22h of real-life French-accented civil ATC communi-

cations) are not publicly available. ATCOSIM [11] is a freely

available resource composed of realistic simulated ATC com-

munications. Its limitations are its size (11h) and the fact that

it lacks real-life features. The NIST Air Traffic Control Corpus

[12] is composed of 70h of real-life ATC from 3 different US

airports and it is commercially available through the Linguistic

Data Consortium (LDC). Unfortunately, it is mainly composed

of native English and the call signs have not been annotated.

The corpus collected by [13] is freely available and contains

real-life non-native ATC speech. It is though quite small (20h)

and does not contain call sign annotations.

3. Challenge description

3.1. Two tasks: ASR and call sign detection (CSD)

The Airbus ATC challenge consisted in tackling two tasks: 1)

automatic speech-to-text transcription from authentic record-

ings in accented English, 2) call sign detection (CSD).

Aviation call signs (CS) are communication call signs as-

signed as unique identifiers to aircraft. They are expected to

adhere to the following pre-defined format: an airline code fol-

lowed by three to five numbers and zero to two letters. For

instance, ”ENAC School six seven november” is a call sign in

which ENAC school is a company name followed by two num-

bers (six and seven) and ”november” stands for the ’n’ character

in the aviation alphabet. One difficulty lies in the use of short-

ened spoken CS when there is no ambiguity.

3.2. Speech material

The dataset used for running the challenge is a subset of the

transcribed ATC speech corpus collected by Airbus [4]. This

corpus contains speech signals at 16 kHz sampling rate and 16

bits per sample. All the specific features of ATC mentioned

above are included in the corpus: non-native speech, bad au-

dio quality, code-switching, high speech rate, etc. On top of

this, call signs contained in the audio have been tagged, which

2North Atlantic Treaty Organization

Table 2: Number of speech utterances and average duration

within parentheses according to the speech program (AT: ATIS,

AP: Approach, TO: Tower).

ATIS AP TO

train 843 (27.6 s) 20227 (4.5 s) 6975 (4.3 s)

dev 102 (31.1 s) 2484 (4.3 s) 920 (4.2 s)

test 102 (30.4 s) 2600 (4.5 s) 893 (4.4 s)

allowed the challenge organizers to propose a ”call sign detec-

tion” task. Although the corpus is not publicly available, a sub-

set of it was made available to the challengers, for challenge use

only. Half of the whole corpus, totalling 50 hours of manually

transcribed speech, was used. Utterances were isolated, ran-

domly selected and shuffled. All the meta-information (speaker

accent, role, timestamps, category of control) were removed.

The corpus was then split into three different subsets: 40h of

speech together with transcriptions and call sign tags for train-

ing, 5h of speech recordings for development (leaderboard) and

5h for final evaluation, were provided to the participants at dif-

ferent moments during the challenge. The participants did not

have access to the ground-truth of the development and eval

subsets. They could make submissions to a leaderboard to get

their scores on the dev subset. Several criteria were consid-

ered to split the data into subsets that share similar character-

istics (percentages given in speech duration): 1) speaker sex

(female: 25%, male: 75%), 2) speaker job — ATIS (Airline

Travel Information System, mostly weather forecasts, 3%), pi-

lots (54%) and controllers (43%) —, the ”program” — ATIS

(3%), approach (72%), tower (25%). Table 2 shows the number

of utterances according to the program and the average mean

duration of the utterances. ATIS is characterized by utterances

of about 30 s in average longer than AP and TO with 4.5 second

utterances in average.

Links to the other available ATC datasets ([11, 12, 13])

were given to the challengers so that they could use them as

additional training data. Some participants did try to use exter-

nal data with no gains or even with performance drops.

3.3. Evaluation metrics

Evaluation was performed on both the ASR and CSD tasks.

ASR was evaluated with Word Error Rate (WER). Before com-

parison, hypothesis and reference texts were set to lower case.

These are compared through dynamic programming with equal

weights for deletions, insertions and substitutions. For CSD, F-

measure (F1 or F1-score) was used. A score Si of a submission

i was defined to combine WER and F1 as the harmonic mean

of the normalized pseudo-accuracy (pACCinorm
) and the nor-

malized F1 score (F1inorm
):

Si =
2× pACCinorm

× F1inorm

pACCinorm
+ F1inorm

where

pACCi = 1−min(1,WERi)

v : submissions’ scores vector

vinorm
=

vi −min(v)

max(v)−min(v)

The harmonic mean was chosen since it penalizes more

strongly than the arithmetic mean situations where one of the

two scores is low. Submissions were sorted by decreasing S

score values to get the final participant ranking.



(a) ASR performance in Word Error Rates on Eval (%) (b) CSD Performance in F1-score on Eval (%).

Figure 1: Performance of the 22 systems on the Eval subset.

Table 3: Results for the ASR and CSD tasks for the five best ranked teams.

ASR CSD

Team WER (%) ins (%) del (%) sub (%) F1 (%) p (%) r (%)

Vocapia-LIMSI 7.62 1.29 3.14 3.19 82.41 81.99 82.82

UWr 8.42 1.52 3.03 3.87 79.39 81.00 77.84

CRIM 9.41 1.21 4.51 3.69 80.17 84.94 75.91

UWB-JHU 8.76 1.55 3.42 3.80 77.04 84.05 71.11

Team5 9.55 1.80 3.97 3.79 77.62 84.27 71.94

4. Result analysis and system overview

In this section, we report detailed results for the two tasks ASR

and CSD. We also give a bird’s eye view on the approaches of

the best ranked predictions on the Eval subset.

4.1. Results

Figures 1a and 1b show the Word Error Rates (WER) for the

ASR task and the F1-scores for CSD, obtained by the 22 teams

ordered by their final ranking. Only the names of the entities

that gave a disclosure agreement are displayed.

VOCAPIA-LIMSI achieved the best results in both tasks

with a 7.62% WER and a 82.41% CSD F1-score. Globally

speaking, the best teams obtained impressive results with WERs

below 10% and below 8% for the winner. Table 3 gives more

details to analyze these results. One can see that almost all the

ASR systems produced twice as many deletions and substitu-

tions (around 3%) than insertions (around 1.5%).

Regarding CSD, the best systems yielded F1-score above

80%. Except for the two best systems with similar precision and

recall values (respectively 81.99% and 82.82% for VOCAPIA-

LIMSI), precision was larger than recall by a significant mar-

gin. This means that the number of missed CS is larger than

false alarms for these systems. This lack of robustness may be

explained by the variability with which call signs are employed:

sometimes in their full form, sometimes in partial forms. Three

teams including Queensland Speech Lab and U. Sheffield did

not submit CS predictions resulting in a zero score in CSD (no

visible bar in fig. 1b), and a final ranking that does not reflect

their good performance in ASR.

Table 4: Best ASR and CSD results according to the speech

program (AT: ATIS, AP: Approach, TO: Tower), the speaker job

(C: controllers, P: Pilots) and sex (F: female, M: male).

Program Speaker Sex

AT AP TO C P F M

WER 5.1 8.1 7.8 5.5 10.5 5.5 8.2

F1 82.8 81.4 86.8 79.0 88.6 80.9

To get more insights in these results, Table 4 shows the

highest ranked team WER and CSD F1-score according to the

program, speaker job, and speaker sex. As expected, ATIS

speech (mostly weather forecasts with limited vocabulary) is

easier to transcribe than Approach (AP) and Tower (TO), for

which similar WERs were obtained: 8.1% and 7.8%, respec-

tively. An interesting finding is that pilots’ speech (P) was much

more difficult to transcribe than controllers’ speech (C), with al-

most a factor two in WER, and 8% absolute difference in CSD

F1-score. This may be explained by the greater diversity of ac-

cents and speakers among pilots compared to controllers. Most

of the controllers are French native speakers contrarily to the

pilots. This could explain the better performance for controllers

since French-accented English is the most represented accent in

the corpus. Better performance was obtained for female speak-

ers compared to male speakers probably because 78% of the

female utterances are controller utterances. This is also inline

with results from the literature, where lower WERs on female

speech ranging from 0.7 to 7% were achieved depending on

speech type condition [14].



Table 5: Characteristics of the five best ranked teams’ ASR systems.

Acoustic frontend Acoustic Modeling Language Modeling
Team Features Data augmentation Modeling Context Complexity Lex. size LM Decoding Ensemble

Vocapia-LIMSI PLP-RASTA No HMM-MLP triphones 6M 2.2k 4-gram Consensus No
UWr-ToopLoox Mel F-BANK freq. shifting, noise CTC Conv-BiLSTM diphones 50M 2.2k 4-gram Lattice Yes
CRIM MFCC, ivectors noise BiLSTM-TDNN triphones 17M 190k RNNLM N-best Yes
UWB-JHU MFCC, ivectors volume, speed TDNN-F triphones 20M 2.2k 3-gram Lattice No
Team5 MFCC, ivectors reverb, speed, volume TDNN triphones 6M 2.7k 4-gram Lattice No

4.2. ASR system characteristics

Table 5 gives an overview of the ASR modules used by the

five best ranked teams. Regarding acoustic front-end, Vocapia-

LIMSI used Perceptual Linear Predictive (PLP) features with

RASTA-filtering [15, 16]. Except UWr-ToopLoox that used

Mel F-BANK coefficients, all the other participants used high-

resolution MFCC (40 to 80 coefficients) and 100-d i-vectors.

According to their findings, i-vectors bring very small gains.

For acoustic modeling, Vocapia-LIMSI used a hybrid HMM-

MLP model (Hidden Markov Models - Multi-Layer Percep-

tron). UWr-ToopLoox used an ensemble of six large mod-

els (50M parameters each), each comprised of two convolution

layers, five bidirectional Long Short-Term Memory layers (Bi-

LSTM) trained with the CTC (Connectionist Temporal Clas-

sification, [17]) objective function. CRIM also combined six

different models, three Bi-LSTM and three Time-Delay Neural

Networks (TDNN [18] using Kaldi [19]) [20]. UWB-JHU used

factorized TDNNs (TDNN-F, [21]), which are TDNNs whose

layers are compressed via Singular Value Decomposition.

Regarding developments specific to ATC speech, we no-

ticed the use of specific pronunciations for certain words: words

that correspond to letters (Alfa for A, Quebec for Q, using the

NATO phonetic alphabet), and other cases such as niner for

nine, and tree for three, for instance. Non-English word se-

quences, mostly French words, were denoted ’@’ in the manual

annotations. Some systems used a special token for non-English

words such as ’<foreign>’ and others simply mapped them to

an unknown token (’<UNK>’).

Finally, almost all the teams used the 2.2k word-type vo-

cabulary extracted from the challenge corpus. The participants

reported no gains when using neural language models rather

than n-gram models.

4.3. Call Sign Detection system characteristics

For CSD, two main approaches were implemented: on the one

hand grammar-based and regular expression (RE) methods, i.e.

knowledge-based methods, on the other hand machine learning

models. The first type of models requires adaptation to capture

production variants that do not strictly respect CS rules (pilots

and controllers often shorten CS for example). The second one,

namely neural networks, Consensus Network Search (CNS), n-

grams, perform better in this evaluation but are not able to detect

unseen CS. Vocapia-LIMSI combined both approaches (RE al-

lowing full and partial CSD together with CNS) and achieved

the highest scores.

5. Summary and discussion

In this paper, we reported and analyzed the outcomes of the

first edition of the Airbus and partners’ ATC ASR challenge.

The best ranked team achieved a 7.62% Word Error Rate and a

82.41% callsign detection F1-score on a 5-hour evaluation sub-

set. ATIS speech, consisting of mostly weather forecasts with

limited vocabulary, was shown to be easier to transcribe than

Approach and Tower speech interactions. Transcribing pilots’

speech was found to be twice as harder as controllers’ speech.

Some participants attempted to use external ATC speech

data for semi-supervised acoustic model training, and it was re-

vealed to be unsuccessful. This technique usually brings perfor-

mance gains, such as in [22]. This may be due to the fact that

the eval subset is very close to the trained one so that adding

external data just adds noise. This outcome reveals a robustness

issue that needs to be addressed. A large-scale speech data col-

lection is very much needed to solve ATC ASR. Several criteria

should be considered for this data collection: diversity in the

airports where speech is collected, diversity in foreign accents,

acoustic devices used for ATC, among others.

Regarding organizing a future challenge, using speech from

different airports for training and testing purposes should be

considered. This also would require systems with more gen-

eralization capabilities for the CSD task since most of the call

signs would be unseen during training.

Furthermore, to be successful, the major players in the field

should join forces for data collection but also to share the large

costs needed to manually transcribe the recordings. Finally,

much attention should be paid to legal aspects on data protec-

tion and privacy (in Europe, the recent General Data Protection

Regulation).
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