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Abstract

Previous work has shown that end-to-end neural-based speech

recognition systems can be improved by adding auxiliary tasks

at intermediate layers. In this paper, we report multitask learn-

ing (MTL) experiments in the context of connectionist tempo-

ral classification (CTC) based speech recognition at character

level. We compare several MTL architectures that jointly learn

to predict characters (sometimes called graphemes) and conso-

nant/vowel (CV) binary labels. The best approach, which we

call Char+CV-CTC, adds up the character and CV logits to ob-

tain the final character predictions. The idea is to put more

weight on the vowel (consonant) characters when the vowel

(consonant) symbol ‘V’ (‘C’) is predicted in the auxiliary-task

branch of the network. Experiments were carried out on the

Wall Street Journal (WSJ) corpus. Char+CV-CTC achieved the

best ASR results with a 2.2% Character Error Rate and a 6.1%

Word Error Rate (WER) on the Eval92 evaluation subset. This

model outperformed its monotask model counterpart by 0.7%

absolute in WER and also achieved almost the same perfor-

mance of 6.0% as a strong baseline phone-based Time Delay

Neural Network (”TDNN-Phone+TR2”) model.

Index Terms: automatic speech recognition, connectionist tem-

poral classification, multi-task learning

1. Introduction

Recent advances in automatic speech recognition (ASR) sys-

tems have enabled training neural “end-to-end” architectures

that attempt to map audio signals directly into text. A first

step towards end-to-end ASR was made with the so-called Con-

nectionist Temporal Classification (CTC) objective function in-

troduced by Graves et al. [1, 2]. By contrast, sequence-to-

sequence recurrent neural networks (RNNs), such as encoder-

decoders [3, 4], process sequences of audio features through

stacked layers. Higher-level representations are encoded and

fed to decision layers that output labels in an end-to-end fashion

for tasks that previously required significant human expertise.

There is strong evidence that end-to-end ASR systems im-

plicitly learn linguistically meaningful representations at in-

termediate layers, between the acoustic input and the final

symbolic output [5, 6]. The evidence is particularly strong

for phonetic-related properties in ASR end-to-end intermediate

representations [7, 8].

Multitask learning (MTL) approaches for end-to-end ASR

systems have gained momentum in the last few years [9, 10].

Recent work introduced the use of hierarchical MTL in speech

recognition with hierarchical CTC-based models [7, 11]. Per-

formance gains have been obtained by combining phone-label

predictions as an auxiliary task in training a spoken digit se-

quence recognizer, as in [12]. In [7], the authors proposed a

hierarchical CTC model for a subword-based ASR model with

an auxiliary phone-level CTC loss applied at an intermediate

layer of a neural network.

The present work develops an MTL approach inspired by

the ontology-based network architecture proposed for sound

event detection (SED) in [13]. The primary SED task aims at

classifying “low-level” sound events in categories such as “vi-

olin, piano”, “eating, breathing”, and “cat, dog”. Jimenez et

al. proposed a network that produces hierarchical outputs and

multilevel predictions. It is based on a simple ontology-based

layer defined with high-level classes such as “Music”,”Human”,

“Nature”, etc. The layer consists of a fixed binary matrix M

which allows the conversion of low-level sound predictions into

predictions of the high-level classes by simply summing up the

probabilities of the low-level categories that share a common

high-level category. This work showed that the higher-level

recognition task improves the primary task performance by a

large margin.

In this paper, we investigate the benefit of adding a con-

sonant/vowel recognition auxiliary task as our high-level sec-

ondary task to train character-based CTC models. We propose

and compare three MTL architectures involving the output of

the secondary task in three ways: i) as an independent output

head in the network (standard MTL), ii) on the top of the char-

acter recognition output head (similar to [13]), iii) as logits

summed to the character-level logits to promote the prediction

of a character being either a consonant or a vowel.

Since the CV and character logits are summed up, we call

this last architecture “Char+CV-CTC”. As we report in the

paper, the experiments carried out on the WSJ 80-hour train-

ing set [14] and the Eval92 test set for evaluation show that

Char+CV-CTC lead to the best results.

The paper is organized as follows. In Section 2, we begin

by briefly introducing the CTC approach that is used to train

our models at character and CV levels. We describe the various

MTL model variants in Section 3. The decoding methods used

in this work are described in Section 4. Finally, we evaluate

our models on the Wall Street Journal dataset and compare the

different multitask approaches in Section 5. As a side note, we

use “characters” and “graphemes” interchangeably throughout

the paper.

2. Connectionist Temporal Classification

Introduced in [1], CTC allows a system to automatically learn

alignments between speech frames X1,...,T and their label se-

quences K1,...,N (where N ≤ T , and T and N are the lengths

of the speech frame sequence and of the label sequence, respec-

tively). A CTC path is defined as a T -long sequence of output

labels with probability P i = p(1, ..., T ). In order to obtain

CTC alignments and cope with the difference in lengths be-



Figure 1: Architecture of the three MTL variants tested in this

work. “Char dense” and “CV dense”: fully-connected dense

layers with output dimensions equal to the number of target

characters and CV, respectively. MTL (1): standard MTL with

two heads, MTL (2): hierarchical chararcter to CV MTL, MTL

(3): Char+CV-CTC MTL.

tween the input and output sequences, Graves and colleagues

proposed a dynamic constrained procedure that adds a blank la-

bel ǫ between each label in sequence K. This procedure can

result in several possible paths (alignments) that yield to the ex-

pected label sequence K. For example, a sequence of three

characters such as “ABC”, along with a sequence of speech

frames of length T = 5, can lead to paths such as “A ǫ B B

C” or “A A B C ǫ”, etc.

During training, the CTC conditional probability function

marginalizes over the set of valid alignments computing the

probability for a single alignment step-by-step:

P (K|X1,...T ) =
∑

i∈θK

T∏

t=1

P
i
t (1)

where θK is the set of all possible paths that lead to the K label

sequence.

The CTC technique is generic and can be applied to phones,

characters and all types of (sub-)word units. In the present

work, we use it at character and consonant/vowel levels.

3. Proposed MTL approaches

In this work, we compare a standard character-based CTC

model with variants that involve the auxiliary task of recog-

nizing two higher-level categories: vowels and consonants, de-

noted as ‘V’ and ‘C’. For the auxiliary task, we used five units:

‘C’ for consonants, ‘V’ for vowels, the quote tag, the ǫ (blank)

symbol and the space label. The last three units are needed to

perform CTC properly. The ‘V’ symbol was chosen to represent

the letters ‘a’, ‘e’, ‘i’, ‘o’, ‘u’ and ‘y’ while ‘C’ represents all the

other letters. In this setting, the semi-vowel ‘w’ is considered

as a consonant. The character classification layer is comprised

of 29 units to predict the 26 characters of the English alphabet,

the quote tag, the ǫ symbol and the space label.

We compared three multitask variants, which are depicted

in Fig. 1 and described in the sections here-after. In Fig. 1, “char

CTC” and “CV CTC” indicate the placement of the two outputs

layers used respectively for the character and CV tasks. These

are the output layers on which the CTC loss objectives are opti-

mized. Log-softmax was used as the activation function of these

layers. “Char dense” and “CV dense” indicate fully-connected

layers with a number of neuron units equal to the number of

classes of characters (26+3) and CV (2+3), respectively.

In all the variants, we use the multitask loss defined in Eq.

(2). It is the convex combination of two CTC-loss functions:

L1, the CTC loss evaluated on the character predictions cor-

responding to p(ŷchar|x), and L2, the CTC loss evaluated on

the CV predictions corresponding to p(ŷcv|x), where ŷchar and

ŷcv denote the character and the CV sequence predictions for a

given utterance, respectively. Here, λ is a hyper parameter to

be tuned to a real value within [0, 1] that determines the weight

of each task loss. When λ = 1 (0), the task is reduced to the

monotask of character (CV) recognition.

L = λLchar + (1− λ)Lcv (2)

3.1. Standard MTL approach

The first variant, denoted MTL (1) in Fig. 1, is the standard

MTL approach with two output heads: one for the character

task (char) and one for the auxiliary task (CV).

3.2. Hierarchical MTL approach

The second variant, MTL (2), handles the two tasks in a hier-

archical manner where we first output char logits at the level of

the “char dense” layer depicted in Fig. 1. Then the logits corre-

sponding to vowels and to consonants are accumulated together

to get probabilities for ‘C’ and ‘V’, respectively. The relation-

ship between the characters and the CV level logits is a simple

matrix-vector product:

ẑcv = M · ẑchar (3)

where ẑchar and ẑcv are the character and CV logits outputted

by the respective fully-connected layers, and M is the mapping

matrix.

The binary matrix M of dimension Ncv×Nchar maps char-

acters to the ‘C’ and ‘V’ classes. M is fixed and is not modified

during training.

Char and CV probabilities are then obtained by applying

the softmax function on the respective logits. To be more pre-

cise, the CTC loss implementation used in this work uses log-

probabilities by applying the log-softmax activation function.

This variant was inspired by the so-called ontology-based

networks for sound event detection proposed in [13]. Indeed,

the CV categories can be viewed as a super class of the char-

acters. We do not call this variant ontology-based MTL since

there is no semantics involved in the char and CV categories.

3.3. Char+CV-CTC approach

The third variant MTL (3) is the main novel contribution of this

work. We combine the char and CV outputs by simply summing

up the outputs of the two fully-connected layers responsible for

each task. We sum up the logits rather than the probabilities in

order to keep the full range of real values possible and thereby

avoid squashing the values. Log-softmax is applied afterwards.

To do so, we replicate the CV probabilities with the transposed

version of the M matrix of variant (2):

ẑ
′

char = ẑchar +M
T · ẑcv (4)

Variant (3) was designed based on the idea that if the model

predicts that a certain character is a member of ‘V’, then we

should put more weight on the characters that actually are vow-

els, and likewise for consonants (’C’ class).



4. Decoding approaches

We used two decoding approaches: greedy decoding and

Weighted Finite-State Transducer (WFST)-based decoding. We

also tried the Prefix Beam Search algorithm [1] but as expected,

we obtained performance values better than greedy search but

worse than graph decoding so we chose to not report them.

Decoding algorithms are used to compute the final labels

for an input sequence X of length T . CTC outputs a set of

probabilities p(c|xt), t = 1, ..., T over the set of all possible

characters in the alphabet called Σ. Σ is comprised of all the

target characters plus a space, quote tag, and ǫ.

4.1. Greedy Decoding

We use the simple greedy approach as a baseline decoding

method. It does not use any language model or lexicon con-

straints. Instead, the best path is simply determined by selecting

the character of highest probability at each frame to recover a

character string. Then, the decoding procedure on the CTC se-

quence consists in collapsing repeated characters and removing

the blanks to get the final label sequence.

4.2. WFST-based decoding

In this work, we used a WFST-based decoding, which is one of

the most robust decoding techniques in ASR [15, 16]. More

specifically, we used a generalized decoding implementation

adapted to CTC outputs with a blank label proposed by Miao et

al. [17]. The output transcription corresponds to the most likely

path through the WFST, determined by the Viterbi algorithm.

The WFST takes as input a sequence of symbols, namely the

labels from a CTC model output, and emits a sequence of words

(a transcript). CTC-WFSTs require three graphs: i) the set of

CTC Labels called Tokens, ii) a word lexicon and iii) a language

model, all encoded as separate WFSTs. The three WFSTs are

merged, compiled and compressed into a single search graph.

5. Experimental setup

5.1. Speech material

The experiments were performed on the Wall Street Journal

corpus (WSJ, LDC93S6A). We used the Kaldi data prepara-

tion WSJ recipe. The 81 hours of transcribed speech were split

into train (95%) and development (5%) subsets and correpond

to the subsets used in the Eesen article [17]. Evaluation was

performed on the Eval92 set. The Dev93 set was used to fix the

optimal value of the λ mixing weight for MTL models.

Log-Mel filterbank coefficients with 40 frequency bins

were extracted together with first and second derivatives. The

features were then normalized via mean subtraction and vari-

ance normalization (CMVN) per-speaker. No speaker adapta-

tion techniques were used.

5.2. Time Reduction (TR)

As in [7], pairs of consecutive input frames were concatenated

for a reduction in time resolution at the input. This technique

helped to speed up training. Using an Nvidia GTX-1080 TI,

training took 34 hours instead of 58 hours without TR. We also

observed that TR improved performance.

5.3. Model description

Compared to standard feed-forward networks, RNNs have the

advantage of modeling temporal dynamics of sequences [2]. We

chose to use recurrent layers, namely bidirectional Gated Recur-

rent Unit layers (BiGRU) [18].

After trial and error tests, we opted for a model with four

BiGRU hidden layers with 2× 320 cells in each layer, giving a

total of 8.3M parameters.

Dropout (10% rate) [19] was applied on the output of each

BiGRU layer. The output layer uses the log-softmax activation

function. The network was trained on 100 epochs with a 32

batch size and the CTC objective function described in Section

2, the ADAM optimizer [20] with a 4e-5 learning rate and a 0.9

momentum value. For inference, we used greedy decoding with

no language model, and WFST-based decoding as implemented

in EESEN [17] with lexical expansion as proposed in the Kaldi

WSJ recipe [16]. The language model, available within the WSJ

release, is a trigram LM with a 20k word vocabulary. All the

models were implemented with the PyTorch library [21].

6. Evaluation

6.1. Results

Table 1 gives the character and word error rates (CER, WER)

obtained with our character-based CTC-GRU models using the

greedy and WFST-based decoding algorithms. In the top part of

the table, we report results from the literature on the same data

using models that have a similar architecture as ours, with four

layers and about 8 to 9 million learnable parameters.

Our baseline (character-based CTC-GRU) achieved a 7.4%

WER, which is very close to that of the character-based

CTC-LSTM models reported in [22, 17]. We also report

the performance of 7.1% WER obtained by a phoneme-based

HMM/DNN Kaldi system from [17]. This model is larger, be-

ing comprised of six hidden layers and 1024 units per layer

(9.2M parameters).

Table 1: Results on Eval92 in terms of character and word er-

ror rates (CER, WER). MTL (1), (2) and (3) correspond respec-

tively to the standard MTL, hierarchical MTL and Char+CV-

CTC models with the same architecture as the baseline mono-

task model CTC-GRU+TR2. TR2 (”Time-Reduction”) refers to

using acoustic feature frames concatenated every two frames.

Model Greedy Search WFST-based

CVER CER WER CER WER

TDNN-Phone [17] 7.1

CTC-LSTM [17] 7,3

CTC-LSTM [22] 9.2 30.1 8.7

TDNN-Phone+TR2 6.0

CTC-GRU 8.4 29.6 2.8 7.4

CTC-GRU+TR2 8.0 28.8 2.4 6.8

MTL (1) 5.2 7.8 27.3 2.3 6.6

MTL (2) 5.2 8.3 28.2 2.8 7.5

MTL (3) 4.5 7.7 27.5 2.2 6.1

As a baseline, our CTC-GRU achieved better results com-

pared to CTC-LSTM [22], with CER / WER of 8.4% / 29.6%

respectively, by naively choosing the most likely label at each

time step (greedy search). As expected, WFST-based decod-

ing gave much better results than greedy search. Our baseline

gave a 7.4% WER to be compared with the 29.6% WER with

greedy search. In the remainder of the paper, we only consider

the results obtained with WFST-based decoding.



We compare our baseline to a model trained using a Time

Reduction of two frames: CTC-GRU+TR2. Improvements of

0.4% and 0.6% absolute in CER / WER respectively were ob-

tained showing the positive impact of TR. This result was con-

firmed in our experiments with a hybrid HMM/TDNN phone-

based system. Using TR of two frames, we obtained a 6.0%

WER which is better than the 7.1% WER reported in [17].

These significant performance gains may be due to TR increas-

ing the receptive field size at the input of the networks. Interest-

ingly, Krishna et al. [17] only mentioned computation speed-

ups but did not justify the use of TR for its performance gains.

We used a TR of two frames in all our MTL models.

The main contribution of this work lies in the multitask

learning (MTL) models. We compare CTC-GRU+TR2 to the

three MTL models described in Section 3. The interpolation

constant λ was optimized on the dev set, the best value was

λ = 0.8. The influence of λ is discussed in Section 6.2.

MTL (1), which is the standard multitask model, performs

slightly better than the monotask CTC-GRU+TR2 model. By

contrast, the hierarchical variant MTL (2) performs slightly

worse. It seems that putting the auxiliary task directly on top

of the main task fully-connected layer reduces the main task

performance, contrary to the results of the ontology-based net-

works for sound event detection reported in [13].

The best results were obtained with MTL (3): 2.2% CER

and 6.1% WER. This corresponds to a 0.7% absolute (10% rel-

ative) gain in WER compared to CTC-GRU+TR2. Combin-

ing the two tasks by summing up their logits proved successful.

This may be explained by the fact that this addition puts more

weight on the vowel (consonant) characters when the vowel

(consonant) symbol V (C) is predicted.

6.2. Effect of the Interpolation λ Weight

We explored the effect of the mixing weight λ constant as de-

fined in Section 3. The closer the value is to 1, the closer the

learning is to the monotask situation. Fig. 2 shows the evolu-

tion of the CER and WER on the development set Dev93 with

respect to λ for MTL (3). The reference values of 4.9% CER

and 10.0% WER obtained with the monotask model counterpart

CTC-GRU+TR2 are also plotted.

Values of λ larger than 0.5 outperform the baseline and the

best performance is obtained for λ = 0.8, the value that was

used to report the results on the test subset in Table 1. This value

is close to 1, showing that the additional supervision brought by

the auxiliary task needs to be small to bring performance gains.

7. Conclusions

In this work, we presented a new multitask learning approach

for character-based CTC ASR recognition. This approach,

called Char+CV-CTC, consists in summing the logits of the pri-

mary and auxiliary tasks before outputting the primary task fi-

nal character predictions. We proposed the auxiliary task of

recognizing consonants (C) and vowels (V) based on a CTC

objective function. Several architectures were tested: a stan-

dard two-head model, a hierarchical character-to-CV model and

Char+CV-CTC.

Evaluation experiments were conducted on WSJ. All our

models use BiGRU stacked layers fed with concatenated fea-

ture frames (referred to as time reduction, TR). TR brings per-

formance gains and substantial computation time reductions.

Char+CV-CTC achieved the best ASR results with a 2.2% CER

and a 6.1% WER. This model outperformed its monotask model

Figure 2: Effect of varying the interpolation constant λ on the

WSJ dev93 set CER (%) and WER (%). For information, CTC-

LSTM [17] achieved a 10.8% WER on this subset.

counterpart by 0.7% absolute in WER. Another interesting re-

sult is that Char+CV-CTC achieves almost the same perfor-

mance as a phone-based hybrid HMM-TDNN model.

We plan to confirm these results on larger-scale speech

datasets such as Librispeech. Indeed, more experiments should

be run to explore our char+CV-CTC approach. It would be in-

teresting to try other ways of splitting the set of characters, in-

cluding randomly, in order to explain the improvement obtained

in the present work. It might come from the reduced number of

classes in the auxiliary task and not from the semantic proper-

ties of the arbitrary split of the characters into consonant/vowel

symbols.

Another future line of research will be to test Char+CV-

CTC variants in which the auxiliary task is performed by an

intermediate recurrent layer instead of the output layer. Indeed,

in [7], improvements were obtained by doing so in a hierarchi-

cal MTL approach combining phone and sub-word CTC tasks,

as the auxiliary and primary tasks, respectively.

8. Acknowledgements

This work was supported by Bpifrance within the LinTO project

(Programme des Investissements d’Avenir - Grands Défis du
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