
HAL Id: hal-02419426
https://hal.science/hal-02419426v1

Submitted on 19 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed and Clustering-Based Algorithm for the
Enumeration Problem in Abstract Argumentation

Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex

To cite this version:
Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex. A Distributed and Clustering-
Based Algorithm for the Enumeration Problem in Abstract Argumentation. 22nd International Con-
ference on Principles and Practice of Multi-Agent Systems (PRIMA 2019), Oct 2019, Torino, Italy.
pp.87-105, �10.1007/978-3-030-33792-6_6�. �hal-02419426�

https://hal.science/hal-02419426v1
https://hal.archives-ouvertes.fr

Official URL

DOI : https://doi.org/10.1007/978-3-030-33792-6_6

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/25025

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Doutre, Sylvie and Lafages, Mickaël and

Lagasquie-Schiex, Marie-Christine A Distributed and Clustering-Based

Algorithm for the Enumeration Problem in Abstract Argumentation.

(2019) In: International Conference on Principles and Practice of Multi-

Agent Systems (PRIMA 2019), 28 October 2019 - 31 October 2019

(Torino, Italy).

A Distributed and Clustering-Based

Algorithm for the Enumeration Problem

in Abstract Argumentation

Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex(B)

IRIT, UT1-UT3, Toulouse, France
{doutre,mickael.lafages,lagasq}@irit.fr

Abstract. Computing acceptability semantics of abstract argumenta-tion frameworks
is receiving increasing attention. Large-scale instances, with a clustered structure, have
shown particularly difficult to compute. This paper presents a distributed algorithm,
AFDivider, that enumer-ates the acceptable sets under several labelling-based
semantics. This algorithm starts with cutting the argumentation framework into
clusters thanks to a spectral clustering method, before computing simultaneously in
each cluster parts of the labellings. This algorithm is proven to be sound and complete
for the stable, complete and preferred semantics, and empirical results are presented.

Keywords: Abstract argumentation · Algorithms · Clustering · Enumeration

1 Introduction

Argumentation is a reasoning model which has been of application in multi-agent
systems for years (see [16] for an overview). The development of argumentation
techniques and of their computation drives such applications.

Among the various argumentation models, the one that is considered in this
paper has been defined by Dung [23]: an abstract argumentation framework (AF)
considers arguments as abstract entities, and focuses on their attack relation-
ships, hence representing arguments and their underlying conflicts by a directed
graph. Which arguments can be accepted is defined by [23] as a collective notion,
by a semantics: a set of arguments is collectively acceptable under the seman-
tics. Four semantics (grounded, stable, complete and preferred) were defined by
Dung, and a variety of other semantics have followed (see [6] for an overview).
Several enrichments of the argumentation framework have also been proposed
(e.g. [7,17]).

Supported by the ANR-11-LABEX-0040-CIMI project of the CIMI International Cen-
tre for Mathematics and Computer Science in Toulouse.

_https://doi.org/10.1007/978-3-030-33792-6 6

The enumeration of all the acceptable sets of an AF under a given semantics
is a problem that has received a lot of attention (see [21] for an overview). This
problem has been shown to be computationally intractable for some of the above-
mentioned semantics [25]. A competition, ICCMA, that compares argumentation
solvers on their ability to solve this problem (and other decision problems) was
created a few years ago.1 The last editions of this competition have been ana-
lyzed: [12,34] highlight that some AF instances have been particularly hard to
solve, and that others were not solved at all, considering the preferred semantics
notably. Many of these instances are of Barabási–Albert (BA) type [1], which is
a structure found in several large-scale natural and human-made systems, such
as the World Wide Web and some social networks [4]. More generally, these hard
graphs are non-dense, but contain parts which are dense:2 such graphs have a
clustered structure.

Recent algorithms, proposed for an efficient enumeration of the acceptable
sets, are based on a cutting of the AF [18,24,27], along with, for some of them, the
use of distributed, parallel computation in each part, to construct the acceptable
sets [19]. In this research line, our paper presents a new “cutting and distributed
computing” algorithm, called AFDivider, for the enumeration of the acceptable
sets of an AF, under the stable, preferred and complete labelling semantics. The
cutting of the AF is done in a new way, using spectral clustering methods. Com-
pared to the existing approaches, the added value of AFDivider is its way to
split the AF and thus to distribute the solving hardness of the whole AF into
smaller parts, the reunifying process requiring less checks than the construc-
tion of the labellings over the whole AF. AFDivider is shown to be sound and
complete. The algorithm has been empirically tested, and the results have been
compared to those of two solvers of the ICCMA 2017 edition, Pyglaf [3] and
ArgSemSAT [20].

The paper starts with presenting the background of this work (Sect. 2), before
describing the algorithm (Sect. 3). Soundness and completeness of the algorithm
are proven in Sect. 4. A preliminary empirical analysis is conducted (Sect. 5).
Related works are presented in Sect. 6. Perspectives for future work are then
opened.

2 Background

2.1 Abstract Argumentation

According to [23], an abstract argumentation framework consists of a set of
arguments and of a binary attack relation between them.

1 International Competition on Computational Models of Argumentation (ICCMA)
http://argumentationcompetition.org/.

2 The density in an argumentation graph is the ratio “number of existing attacks”
over “number of potential attacks” (this last number is equal to n2 with n being the
number of arguments).

Definition 1 (AF). An argumentation framework (AF) is a pair Γ = 〈A,R〉
where A is a finite3 set of abstract arguments and R ⊆ A×A is a binary relation
on A, called the attack relation: (a, b) ∈ R means that a attacks b.

Hence, an argumentation framework can be represented by a directed graph
with arguments as vertices and attacks as edges. Figure 1 shows an example of
an AF.

Acceptability semantics can be defined in terms of labellings [6,15].

Definition 2 (Labelling). Let Γ = 〈A,R〉 be an AF, and S ⊆ A. A labelling
of S is a total function ℓ : S → {in, out, und}. The set of all labellings of S is
denoted as L (S). A labelling of Γ is a labelling of A. The set of all labellings of
Γ is denoted as L (Γ).

We write in(ℓ) for {a|ℓ(a) = in}, out(ℓ) for {a|ℓ(a) = out} and und(ℓ)
for {a|ℓ(a) = und}.

a

b

c

d

ef

gh

i j

k l m

n

Fig. 1. Example of an argumentation framework AF .

Definition 3 (Legally labelled arguments, valid labelling). An in-labelled
argument is said to be legally in iff all its attackers are labelled out. An out-
labelled argument is said to be legally out iff at least one of its attackers is
labelled in. An und-labelled argument is said to be legally und iff it does not
have any attacker that is labelled in and one of its attackers is not labelled out.
A valid labelling is a labelling in which all arguments are legally labelled.

Let Γ = 〈A,R〉 be an AF, and ℓ ∈ L (Γ) be a labelling. Different kinds of
labelling can be defined:

Definition 4 (Admissible, complete, grounded, preferred and stable
labellings). ℓ is an admissible labelling of Γ iff for any argument a ∈ A such
that ℓ(a) = in or ℓ(a) = out, a is legally labelled. ℓ is a complete labelling of Γ

iff for any argument a ∈ A, a is legally labelled. ℓ is the grounded labelling of Γ

iff it is the complete labelling of Γ that minimizes (w.r.t ⊆) the set of in-labelled
arguments. ℓ is a preferred labelling of Γ iff it is a complete labelling of Γ that
maximizes (w.r.t ⊆) the set of in-labelled arguments. ℓ is a stable labelling of
Γ iff it is a complete labelling of Γ which has no und-labelled argument.

3 According to [23], the set of arguments is not necessarily finite. Nevertheless, in this
paper, it is reasonable to assume that it is finite.

Note that each complete labelling includes the grounded labelling. This prop-
erty will be used by the algorithm presented in Sect. 3 in order to compute the
AF labellings in a distributed way. Let Γ = 〈A,R〉 be an AF, and L (Γ) be its
set of labellings, semantics can be defined.

Definition 5 (Semantics). A semantics σ is a total function σ that associates
to Γ a subset of L (Γ). The set of labellings under semantics σ, with σ being
either the complete (co), the grounded (gr), the stable (st) or the preferred (pr)
semantics, is denoted by Lσ(Γ). A labelling ℓ is a σ-labelling iff ℓ ∈ Lσ(Γ).

Example 1. Let us consider the AF given in Fig. 1. Table 1 shows the labellings
corresponding to the different semantics (the other possible labellings are not
given). Note that this AF has no stable labelling.

2.2 Clustering Methods

A cluster in a graph can be defined as a connected subgraph. Finding clusters
is a subject that has been widely studied (see [31,35]). The clustering approach
implemented in our algorithm is based on a spectral analysis of a defined simi-
larity matrix of the graph. We chose this clustering method as it is well suited
for a non-dense graph (see Sects. 3.1 and 3.2 for more explanation). We give here
a succinct description of this approach (for details, see [36]):

Table 1. Labellings of the AF of Fig. 1 under the grounded, complete, preferred and
stable semantics.

arguments σ

a b c d e f g h i j k l m n gr co pr st

ℓ1 in out out out in out in out in und und und out in × ×

ℓ2 in out out in out in out in out und und und out in × ×

ℓ3 in out out out in out in out in und und und und und ×

ℓ4 in out out in out in out in out und und und und und ×

ℓ5 in out out und und und und und und und und und und und × ×

ℓ6 in out out und und und und und und und und und out in ×

Computation of a similarity matrix of the graph. In this squared matrix,
the values represent how much two nodes are similar according to a given
similarity criterion, and the rows may be seen as the coordinates of the graph
nodes in a similarity space.

Computation of the Laplacian matrix of this similarity matrix. The rows of
this Laplacian matrix represent how much a node is similar to the others
and how much each of its neighbours contributes to its global similarity with
its neighbourhood.

Computation of the eigenvectors (see [33]) of the Laplacian matrix with their
associated eigenvalues.

These eigenvalues are sorted by increasing order. A number n of them is
kept with their associated eigenvectors.4

A matrix whose columns are the remaining eigenvectors is built. Its rows
represent the new node coordinates in a space that maximizes the proximity
between similar nodes. In that space, the euclidean distance between two
nodes shows how much a node is similar to another.

Then a simple algorithm of clustering such as KMeans is applied to that
new data set, seeking for a partition into n parts, based on the coordinates
of the nodes (see [30] for more information about KMeans algorithm).

An illustration of this method on the running example is given in Sect. 3.2
while the similarity criterion used is explicited in Sect. 3.1.

3 The Algorithm

This section presents the AFDivider algorithm designed for the complete, stable
and preferred semantics (denoted by σ). It computes the semantics labellings
of an AF by first removing trivial parts of the AF (the grounded labelling, as
done in [18]), then cutting the AF into clusters and computing simultaneously
in each cluster labelling parts, before finally reunifying compatible parts to get
the σ-labellings of the whole AF. Each of these steps will be presented and then
illustrated on the running example.

Algorithm 1: AFDivider algorithm.

Data: Let Γ = 〈A, R〉 be an AF and σ be a semantics
Result: Lσ ∈ 2L (Γ): the set of the σ-labellings of Γ

1 ℓgr ← ComputeGroundedLabelling(Γ)
2 CCSet ← SplitConnectedComponents(Γ, ℓgr)
3 for all γi ∈ CCSet do in parallel

4 ClustSet ← ComputeClusters(γi)
5 L

γi
σ ← ComputeCompLabs(σ, ClustSet)

6 Lσ ← ∅
7 if ∄γi ∈ CCSet s.t. L

γi
σ = ∅ then Lσ ← {ℓgr} ×

∏

γi∈CCSet L
γi
σ

8 return Lσ

4 Sorted in ascending order, the eigenvalue sequence represents how the similarity
within clusters increases as the number of clusters grows. Obviously, the more clus-
ters, the more homogeneous they will get, but also, the more cases to compute. A
compromise between the number of clusters and homogeneity is needed. A heuris-
tic (called “elbow heuristic”) to find the appropriate number of dimensions to keep,
consists in detecting the jump in the eigenvalues sequence.

3.1 Description

Given an argumentation framework Γ = 〈A,R〉, the AFDivider algorithm (Algo-
rithm1) starts with computing the grounded labelling of Γ (line 1). Indeed in
each of the semantics σ we are interested in, the arguments labelled in or out

in the grounded labelling are labelled in the same way in all the σ-labellings. It
is a fixed part. Note that the function ComputeGroundedLabelling(Γ) returns
a partial labelling of Γ in which the arguments are labelled in or out. The und-
labelled arguments according to the grounded semantics do not belong to ℓgr.

Γ is then split into disjoint sub-AFs obtained after removing the arguments
labelled in or out in the grounded labelling (line 2). The CCSet variable is the
set of connected components computed.

Given that there is no relation between them, the labelling computation
of those connected components can be made in a simultaneous way (line 3)
according to the chosen semantics.

For each of these connected components, a clustering is made (line 4) using
the spectral clustering method presented in Sect. 2.2. The similarity matrix on
which the spectral analysis relies is a kind of adjacency matrix where the direc-
tionality of edges is omitted and where the matrix values are the number of
edges between two arguments. Basically, the more an argument will be related
to another, the more similar the two arguments will be considered.

This similarity criterion is particularly relevant for non-dense graphs with a
clustered structure. Indeed, it produces sparse matrices and as a consequence the
eigenvector equation system to solve will be simplified as there will be many zero
values. This is what motivated our choice for the spectral clustering method.

After this clustering process, ComputeCompLabs (Algorithm2) is called to
compute in a distributed way all the labellings of the connected component
according to σ (line 5).

Finally, given that ℓgr is a fixed part of all σ-labellings of Γ and that all the
connected components are completely independent, to construct the σ-labellings
of the whole AF, a simple Cartesian product is made (line 7) between the
labellings of all the components and the grounded one.

If one of the components has no labelling then the whole AF has no labelling
(so Lσ = ∅).

Consider now Algorithm 2 that computes the component labellings in a dis-
tributed way, relying on the clustering made. The σ-labellings of each cluster are
computed simultaneously (line 1). Unlike the case of connected components used
in Algorithm1, there exist attacks between clusters. In order to compute all the
possible σ-labellings of a given cluster, every case concerning its inward attacks
(attacks whose target is in the current cluster but the source is from another
cluster) have to be considered. Given that the sources of an inward attack could
be labelled in, out or und in their own cluster, the σ-labellings of the current
cluster have to be computed for all the labelling combinations of inward attack
sources.

Algorithm 2: ComputeCompLabs algorithm.

Data: Let ClustSet be a set of cluster structures for a component γ, σ be a
semantics

Result: Lσ ∈ 2L (γ): the set of the σ-labellings of γ

1 for all κj ∈ ClustSet do in parallel L
κj
σ ← ComputeClustLabs(σ, κj)

2 Lσ ← ReunifyCompLabs(
⋃

κj∈ClustSet L
κj
σ , ClustSet)

3 if σ = pr then Lσ ← {ℓ |ℓ ∈ Lσ s.t. ∄ℓ ′ ∈ Lσ s.t. in(ℓ) ⊂ in(ℓ ′)}
4 return Lσ

Note that having “well shaped” clusters (i.e. clusters with few inter cluster
attacks) reduces considerably the number of cases to compute, as there are few
edges cut. Thus this algorithm is well suited for clustered non-dense graphs.

Once that, for all clusters, the ComputeClustLabs function has computed the
σ-labellings for all the possible cases (this is done by calling any sound and com-
plete procedure computing the semantics labellings), the ReunifyCompLabs

function is called in order to reunify compatible labelling parts. Labelling parts
are said to be compatible together when all the targets of the inter cluster attacks
are legally labelled in the resulting reunified labelling.

A special step has to be done for the preferred semantics as this reunify-
ing process does not ensure the maximality (w.r.t ⊆) of the set of in-labelled
arguments (so not all of the labellings produced in line 2 are preferred ones). A
maximality check is done (line 3) in order to keep only the wanted labellings.

Note that, when computing the stable semantics, the set of labellings Lσ

returned by the function ReunifyCompLabs may be empty. It happens when
one of the component clusters has no stable labelling.

3.2 An Illustrating Example

In this section, the behaviour of our algorithms is illustrated on the AF given
in Fig. 1 for the preferred semantics, as it is the most complex semantics of the
three targeted ones.

The first step consists in computing the grounded labelling in order to
eventually split the AF into sub-AFs. The grounded labelling of the AF
restricted only to the in-labelled and out-labelled arguments is: ℓgr =
{(a, in), (b, out), (c, out)}.

Removing arguments a, b and c from the AF produces two connected com-
ponents, as illustrated in Fig. 2.

Then simultaneously γ1 and γ2 are clustered using the spectral clustering
method This is done by several steps. First, we consider the similarity matrices
of γ1 and γ2 according to our criterion, i.e. the number of attacks between
arguments. They may also be seen as the adjacency matrices of the weighted
non-directed graphs obtained from γ1 and γ2 (see Fig. 3). Given that the AF
relation density is low, the matrices are rather sparse.

d

ef

gh

i

(a) Component 1: 1.

j

k l m

n

(b) Component 2: 2.

Fig. 2. Connected components resulting from the grounded removal pre-processing.

d

ef

gh

i

1

2

1

2

1

1

(a) Component 1: 1.

j

k l m

n

1

1

1

1

2

(b) Component 2: 2.

M 1
a =

d e f g h i

d 0 2 0 1 0 0

e 2 0 1 0 0 0

f 0 1 0 2 0 0

g 1 0 2 0 1 0

h 0 0 0 1 0 1

i 0 0 0 0 1 0

(c) Similarity matrix of 1.

M 2
a =

j k l m n

j 0 1 1 0 0

k 1 0 1 0 0

l 1 1 0 1 0

m 0 0 1 0 2

n 0 0 0 2 0

(d) Similarity matrix of 2.

Fig. 3. Step 1 of the spectral clustering.

Once the AF similarity matrix is constructed, data are projected in a new
space in which similarity is maximised. If a certain structure exists in the data
set, we will see in that space some agglomerates appear, corresponding to the
node clusters. To do this projection, we compute the n smallest eigenvalues5

of the Laplacian matrix obtained from the similarity matrix and the vectors
associated with them (this n is an arbitrary parameter; in this example we
have chosen to keep all the vectors, i.e. n = 5). Indeed, the eigenvectors found
will correspond to the basis of that similarity space and the eigenvalues to the
variance on the corresponding axes. Given that we are looking for homogeneous
groups, we will consider only the axis on which the variance is low, and so the
eigenvectors that have small eigenvalues. The space whose basis is the n selected
eigenvectors (corresponding to the n smallest eigenvalues) is then a compression
of similarity space (i.e. we keep only the dimension useful for a clustering).

5 There exist algorithms, such as Krylov-Schur method, able to compute eigenvectors
from smallest to greatest eigenvalue and to stop at any wanted step (e.g. the number
of vectors found). With such an algorithm it is not necessary to find all the solutions
as we are interested only in the small eigenvalues.

Let us take as an example the case of γ2. Its degree matrix M
γ2

d and its
Laplacian matrix M

γ2

l are given in Fig. 4.

M 2

d =

j k l m n

j 2 0 0 0 0

k 0 2 0 0 0

l 0 0 3 0 0

m 0 0 0 3 0

n 0 0 0 0 2

(a) Degree matrix of 2.

M 2

d −M 2
a =M 2

l =

j k l m n

j 2 −1 −1 0 0

k −1 2 −1 0 0

l −1 −1 3 −1 0

m 0 0 −1 3 −2

n 0 0 0 −2 2

(b) Laplacian matrix of 2.

Fig. 4. Step 2 of the spectral clustering for γ2.

The eigenvalues of M
γ2

l sorted in ascending order are:

[

λ1 λ2 λ3 λ4 λ5

2.476651 × 10−16 5.857864 × 10−1 3.000000 3.414214 5.000000
]

and their associated eigenvectors are:

v1 v2 v3 v4 v5

−0.4472136 0.4397326 7.071068 × 10−1 0.3038906 0.1195229
−0.4472136 0.4397326 −7.071068 × 10−1 0.3038906 0.1195229
−0.4472136 0.1821432 −5.551115 × 10−17 −0.7336569 −0.4780914
−0.4472136 −0.4397326 −2.775558 × 10−16 −0.3038906 0.7171372
−0.4472136 −0.6218758 −1.665335 × 10−16 0.4297663 −0.4780914

Now that the similarity space is found, the following step is to find how many
groups we have in that space. This number can be founded using the eigenvalue
sequence sorted in ascending order and identifying in this sequence the “best
elbow” (i.e. the point that corresponds to a quick growth of the variance, see
Fig. 5). In our example, the number of clusters determined by that heuristic is 2.

1 2 3 4 5

−2

0

2

4

Fig. 5. Step 3 of the spectral
clustering. (Color figure online)

To compute that “best elbow” we consider
the second derivative (green line with triangles)
of the ascending order sequence. As the second
derivative represents the concavity of the eigen-
value sequence, we can take the first value of
the second derivative above a certain threshold
(red line without symbol) determined experi-
mentally (i.e. the first position where the eigen-
value sequence is enough convex).

The first point of the second derivative,
corresponding to the concavity formed by the
first three eigenvalues, is the first value above
the threshold; so we determine that the “best
elbow” is in position 2.

Once the number of clusters is chosen, we must to find the partition of the
set of arguments. This is done using a KMeans type algorithm [30]6 applied on
the kept eigenvectors following the chosen number of clusters (see Fig. 6).

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

j
k

l

m
n

v1

v 2

Fig. 6. Step 4 of the spectral clustering.

The matrix composed by the kept
eigenvectors (the two first eigenvec-
tors, 2 being the number of clusters):

v1 v2

j −0.4472136 0.4397326
k −0.4472136 0.4397326
l −0.4472136 0.1821432
m −0.4472136 −0.4397326
n −0.4472136 −0.6218758

The lines of this matrix corre-
spond to the coordinates of the nodes
in the compressed similarity space. With a KMeans algorithm we can find groups
of datapoint in that space and so have the partition of arguments we wanted
(here {j, k, l} and {m,n}).

The complete result given by the spectral clustering is shown in Fig. 7. κ1

and κ2 are the clusters determined from γ1, and κ3 and κ4 are the ones from γ2.

h

i

(a) 1.

d

ef

g

(b) 2.

j

k l

(c) 3.

m

n

(d) 4.

Fig. 7. Identified clusters.

After the clustering, the next step of our algorithm is the computation of
preferred labellings. This computation is made simultaneously in the different
clusters using an external solver (one of the best solvers identified in the ICCMA
competition, see [34]). Recall that, for each cluster, every case concerning its
inward attacks (attacks whose target is in the current cluster but the source is
from another cluster) have to be considered. Given that the sources of an inward
attack could be labelled in, out or und in their own cluster, the σ-labellings
of the current cluster have to be computed for all the labelling combinations of
inward attack sources. For instance, for κ1 (resp. κ4), three cases for h and so
for i (resp. for m and so for n) must be considered. Whereas for κ2 and κ3, there
is no inward attack, the computed labellings only depend on the content of the
cluster. The tables in Fig. 8(a) show the computed labelling parts for each cluster.

6 Given n observations, a KMeans algorithm aims to partition the n observations into k

subsets such that the distance between the elements inside each subset is minimized.
Here we have n = 5 and k = 2.

Notice that although three cases are computed for κ4, only two labellings are
obtained. This is due to the maximality of the preferred semantics. Indeed, even
though m is attacked by an und-labelled argument, n may be labelled in as it
defends itself against m. As a consequence, m would be labelled out.

The last step of our algorithm is the reunifying phase (line 2, Algorithm 2). In
this step, the constructed labellings are those in which all the target arguments
are legally labelled. As an example, ℓκ1

1
cannot be reunified with ℓ

κ2

2
as h would

be illegally out-labelled. Figure 8(b) shows the valid reunified labellings for each
component.

Fig. 8. Labellings computed using our algorithm.

In that particular example all the reunified labellings are maximal w.r.t ⊆ of
the set of in-labelled arguments, so the maximality check (line 3, Algorithm2)
does not change the set of labellings.7

Finally, the preferred labellings of the whole AF are constructed by perform-
ing a Cartesian product of the component labellings and of the grounded one.
See the final computed preferred labellings in Table 1, Sect. 2.1 (labellings ℓ1

and ℓ2).

4 Soundness and Completeness

This section presents formal properties of AFDivider : soundness and complete-
ness for the complete, the stable and the preferred semantics. Let σ be one of

7 To highlight the necessity of the maximality check, let us take as minimal example
the AF defined by 〈{a, b}, {(a, b), (b, a)}〉 and a partition of it in which each argument
is in a different cluster. For each cluster, we will have three possible labellings as
the inward attack source may be labelled in, out or und in the other cluster. The
reunifying phase will thus admit the labelling {(a, und), (b, und)} which is not a
preferred labelling.

these three semantics. To be sound for σ means that the algorithm produces
only σ-labellings. To be complete for σ means that the algorithm produces all
the σ-labellings. In other words, given σ, AFDivider produces only and all the
σ-labellings.

In order to prove these properties, we rely on the notions of top-down and
bottom-up semantics decomposability introduced in [5] and then developed in [9].
In a few words, a semantics σ is said to be top-down decomposable if, for all AF
Γ and for all its partitions into sub-AFs, the set of σ-labellings of Γ is included in
the set of valid labellings obtained by reunifying the σ-labellings of its sub-AFs.
A semantics σ is said to be bottom-up decomposable if, for all AF Γ and for all
its partitions into sub-AFs, the set of valid labellings obtained by reunifying the
σ-labellings of its sub-AFs is included in the set of σ-labellings of Γ . A semantics
is said to be fully decomposable if it is top-down and bottom-up decomposable.
These notions of top-down and bottom-up semantics decomposability can also
be defined w.r.t. a specific type of partition. For instance, the partition selector
denoted by SUSCC only produces partitions in which SCCs (Strongly Connected
Components) are not split into different parts. In [9] it has been proven that:

The stable and complete semantics are fully decomposable.

The preferred semantics is top-down decomposable.

The preferred semantics is fully decomposable w.r.t to SUSCC .

Proposition 1. AFDivider is sound and complete for the complete and the sta-
ble semantics.

Sketch of proof. Let σ be a fully decomposable semantics. Let Γ = 〈A,R〉
be an AF. Let ℓgr be the grounded labelling of Γ restricted to the in-labelled and
out-labelled arguments. Let Ω = {ωgr, ω1

1
, . . . , ω1

n1
, . . . , ωk

1
, . . . , ωk

nk
} be a

partition of A such that ωgr is the set of arguments labelled in ℓgr and such that

for all i and j, ω
j
i is the set of arguments corresponding to the cluster j of the

component i determined by the component clustering performed by AFDivider.
Given that for all clusters, the labellings are computed for all possible

labellings of the cluster inward attack sources, and given that σ is fully decom-
posable, the set of valid reunified labellings produced by AFDivider is equal to
Lσ(Γ).

And so AFDivider is sound and complete for the complete and the stable
semantics. �

Proposition 2. AFDivider is sound and complete for the preferred semantics.

Sketch of proof. Let σ be the preferred semantics. Let Γ = 〈A,R〉 be
an AF. Let ℓgr be the grounded labelling of Γ restricted to the in-labelled and
out-labelled arguments. Let {γ1, . . . , γk} be the set of all connected components
obtained by AFDivider after removing ℓgr. Let Ω = {ωgr, ω1

1
, . . . , ω1

n1
, . . . ,

ωk
1
, . . . , ωk

nk
} be a partition of A such that ωgr is the set of arguments labelled in

ℓgr and such that for all i and j, ω
j
i is the set of arguments corresponding to the

cluster j of the component γi determined by the component clustering performed
by AFDivider.

Given that the preferred semantics is top-down decomposable, and given that
for all clusters, the labellings are computed for all possible labellings of the clus-
ter inward attack sources, then for each component γi, Lpr(γi) is included in
the set of valid reunified labellings produced by the function ReunifyCompLabs

(Algorithm2, line 2). The maximality check (line 3) makes Algorithm2 sound
and complete for the preferred semantics.

Let Ω′ = {ωgr, ω
1, . . . , ωk} be a partition of A such that ωgr is the set of

arguments labelled in ℓgr and such that for all i: ωi =
⋃ni

j=1
(ωi

j). Let S =

{(a, b)|∃i s.t. (a, b) ∈ (ωgr × ωi) ∩ R} be the set of all attacks going from an
argument labelled in ℓgr to an argument non present in ℓgr. Note that all the
sources of these attacks are out-labelled in ℓgr. Let Γ ′ = 〈A,R′〉 with R′ = R\S,
be the AF obtained from Γ when removing the attacks in S. Given that the
sources of attacks removed to obtained Γ ′ from Γ are all out-labelled arguments,
we have Lσ(Γ ′) = Lσ(Γ). Note that Ω′ ∈ SUSCC(Γ ′). Indeed, for all i, (ωgr ×
ωi) ∩ R′ = ∅ and for all j 	= i, (ωj × ωi) ∩ R′ = ∅.

Given that the preferred semantics is fully decomposable w.r.t. SUSCC then
the set of valid labellings obtained by reunifying the σ-labellings of the sub-
AFs corresponding to Ω′ equal to Lσ(Γ ′). Given that Algorithm2 is sound
and complete for the preferred semantics, the Cartesian product made in Algo-
rithm1 (line 7) computes exactly Lσ(Γ ′). As a consequence, Algorithm1 com-
putes exactly Lσ(Γ). AFDivider is thus sound and complete for the preferred
semantics. �

5 Experimental Results

In this section we present some experimental results conducted with the AFDi-
vider algorithm. The experiments have been made on some hard instances of
the ICCMA competition, which are mostly of Barabási–Albert (BA) type. They
all are non-dense and have a clustered structure.

To compute the labellings of a cluster given a particular labelling of its inward
attack sources, we have used an already existing solver called “Pyglaf ”, one of
the best solvers at the ICCMA 2017 session, which transforms the AF labelling
problem into a SAT problem [3]. In this paper, we compare our algorithm (using
Pyglaf) with Pyglaf itself, and with ArgSemSAT [20], for the preferred, the
complete and the stable semantics.

For each experiment, we used 6 cores of a Intel Xeon Gold 6136 processor,
each core having a frequency of 3 GHz. The RAM size was 45GB. As at least
two of the three used solvers are multithreaded (Pyglaf and AFDivider), we have
chosen to compare them using both CPU and real time (the CPU time includes
the user and the system times). Note that, for our algorithm, the durations cover
both the clustering time and the computation of labellings time. The timeout
has been set to 1 h for the real time.

Table 2. Experimental results (PR: preferred, CO: complete, ST: stable, MO : “Memory Overflow”, TO : “stop with TimeOut”, “−”:
“missing data”). The time result format is “minutes: seconds. centiseconds”.

i1 i2 i3 i4 i5 i6 i7 i8

PR Nb lab. (≈) 0.28 × 10
6

1.07 × 10
6

1.28 × 10
6

1.37 × 10
6

1.96 × 10
6

4.47 × 10
6

11.75 × 10
6

10.74 × 10
9

AFDivider end state MO

CPU time 0:07.35 0:14.05 0:19.89 0:31.39 0:28.01 0:46.27 12:15.16

real time 0:05.84 0:27.98 0:20.42 0:35.05 0:31.31 1:09.10 12:39.21

Pyglaf end state TO TO TO

CPU time 0:45.33 6:18.60 11:06.51 15:21.07 54:49.31

real time 0:39.00 6:04.37 10:12.22 14:51.09 54:20.72

ArgSemSAT end state TO TO TO TO TO TO TO TO

ST Nb lab. (≈) Idem preferred case

AFDivider end state MO

CPU time 0:06.52 0:13.29 0:18.01 0:28.50 0:26.66 0:45.56 1:39.14

real time 0:06.26 0:13.20 0:18.78 0:31.02 0:29.46 0:50.79 1:48.30

Pyglaf end state TO

CPU time 0:05.43 0:17.31 0:24.78 0:31,50 0:41.69 1:13.10 3:35.76

real time 0:03.02 0:09.22 0:14.76 0:18.43 0:21.15 0:42.57 1:53.95

ArgSemSAT end state TO TO TO TO TO TO TO TO

CO Nb lab. (≈) 0.80 × 10
9

5.22 × 10
9

9.31 × 10
9

11.93 × 10
9

16.18 × 10
9

49.58 × 10
9 - 22 × 10

15

AFDivider end state MO MO MO MO MO MO MO MO

Pyglaf end state TO TO TO TO TO TO TO TO

ArgSemSAT end state TO TO TO TO TO TO TO TO

Table 2 gives the obtained results on 8 significant instances:8 i1 to i8
for respectively BA_120_70_1.apx, BA_100_60_2.apx, BA_120_80_2.apx,
BA_180_60_4.apx, basin-or-us.gml.20.apx, BA_100_80_3.apx, amador-
transit_20151216_1706.gml.80.apx and BA_-200_70_4.apx. Note that these
instances have a number of labellings under the preferred and stable semantics
that is particularly large (more than a hundred thousand), and even larger for
the complete semantics.

In Table 2, it is worth noting that, first, none of the chosen instances is solved
by ArgSemSAT ; second, that none of the three solvers can provide results for the
complete semantics; third, that our algorithm is far better than Pyglaf on those
instances for the preferred semantics.9 Actually, we can observe a real order of
magnitude change which increases with the hardness of the instances: from 39 s to
5 s for i1 and from almost one hour to 31 s for i5 (i6 to i8 being unsolved by Pyglaf
in less than one hour). The last chosen instance (i8), with its more than ten billion
preferred labellings, presents a memory representation challenge; a compressed
representation of the labellings is to be found to tackle such instances. This is
also the case for the complete semantics. Finally, concerning the stable semantics,
Pyglaf and AFDivider give similar results: in term of real time, Pyglaf is slightly
better except on i7. Nevertheless, it is worth noting that, in term of CPU time,
AFDivider is generally better than Pyglaf; this last point needs further studies.

Overall, these preliminary experimental results show that the AF clustering
approach brings a real added value in terms of resolution time in the case of
the preferred semantics, and that an additional analysis will be necessary for
identifying how to improve the results for the other semantics.

6 Related Work

There exist many approaches for enumerating semantics labellings, but most
of them are non-direct, in the sense that they reduce the semantics computa-
tion to other problems (most of the time to the SAT problem). Such non-direct
approaches may use some kind of cutting process and even distributed compu-
tation (it is the case of Pyglaf [3]). Direct approaches, such as AFDivider, are
less common. It is with the existing direct approaches that we compare in this
section the AFDivider algorithm.

Here are some direct approach algorithms which use some kind of cut-
ting techniques:10 [24], that presents an algorithm based on a dynamic anal-
ysis of an argumentation framework; [27], where the algorithm computes the
labellings of an AF following its SCC decomposition; [18], where the R-PREF

8 amador-transit_20151216_1706.gml.80.apx and basin-or-us.gml.20.apx are
instances which come from real data of the traffic domain.

9 Note that Pyglaf is also multi-core. Moreover, when we compare Pyglaf and AFDi-

vider, we use a computer with the same number of cores. So the fact that there is a
more important parallelization in AFDivider (so more threads) is not what explains
the difference in runtime for the preferred semantics.

10 For an overview on the different AF splitting possibilities see [8].

algorithm is based on [27]’s approach, with the addition of applying the decom-
position process recursively when the labellings under construction break the
SCCs; [19], where the P-SCC-REC algorithm, inspired by notions introduced in
[5,10,28,29], is the parallelized version of R-PREF ; [11], where the algorithm
splits the AF in two parts (without breaking SCCs), and computes their labelling
before reunifying them. Let us compare AFDivider with these approaches in two
respects.

First, on their ability to break SCCs: [27] and [11] do not do so; [18] and [19]
can do so, given a current SCC and an ancestor labelling, but only when the
ancestor labelling has some particular effects on the current SCC; [24] always
breaks SCCs as at each step at most one argument is added or removed from
the considered sub-AF. Nevertheless, this way of updating argument after
argument in [24] generates a lot of computations and uses a lot of memory.
AFDivider, and this is one of its advantages, breaks SCCs whenever it is well
suited to have well shaped clusters.

Second, on their ability to compute the labellings in a distributed way: [11,18,
24,27] are fully sequential. AFDivider and [19] use distributed computation,
but in [19], the computation of one labelling is mainly sequential (it is very
unlikely that the greedy phase suffices to generate a labelling). Furthermore
parallelizing following labellings could overload the CPUs as the number of
solutions in hard AF problems may be huge.

To conclude, what distinguishes best AFDivider from the other ones is that
cutting the AF into clusters limits the combinatorial effect due to the number
of labellings, to the cluster. The other approaches propagate this effect to the
whole AF. This property makes AFDivider well suited for non-dense AF with a
clustered structure. Indeed, in such a structure, the reunifying phase will be less
expensive than exploring the whole AF to construct each of the labellings.

An incremental algorithm that computes labellings has been proposed in [2]
but it does not concern the enumeration problem. Other works such as [14,22,37]
might be related to our approach as they analyze some kind of AF matrices;
however, it is not done in order to cluster the AF.

7 Conclusion

AFDivider is the first algorithm that uses spectral clustering methods to com-
pute semantics labellings. After removing the trivial part of the AF (grounded
labelling), the algorithm cuts the AF into small pieces (the identified clusters),
then it computes simultaneously (in each cluster) labelling parts of the AF,
before reunifying compatible parts to get the whole AF labellings. Soundness
and completeness of this algorithm are proven for the stable, the complete and
the preferred semantics.

We compared the behaviour of our algorithm with other ones that also use
some kind of clustering. Among the various advantages of our method (its ability

to break SCCs and to compute the labellings in a distributed way), we high-
lighted the fact that cutting the AF into clusters has the great advantage of
limiting the solving hardness to the clusters. This algorithm is particularly well
suited for non-dense AFs with a clustered structure, such as the ones which are
among the hardest instances of the ICCMA competition.

An empirical analysis of AFDivider on the benchmarks of the competition is
underway and some preliminary results are presented in this paper. Nevertheless,
more exhaustive experiments are planned, in particular:

an analysis of the impact of the partition on the solving time, from a random
one to a clustered one; different clustering methods may also be compared;

a complete comparison with the other existing solvers used in ICCMA compe-
tition including the 2019 edition (for instance, CoquiAAS [26], or µ-toksia [32],
which is the winner of the 2019 edition);

and finally the use of AFDivider for the other tasks, on the other semantics,
of the competition (see [13]).

Another interesting question to answer is how to know in a reasonable time if an
AF is well suited for the AFDivider algorithm. In fact, this is a double question:
“what is a theoretical characterization of such an AF?” and “given an AF, what is
the computational cost for checking whether it respects this characterization?”.

Moreover, among future works, this approach may be extended to enriched
argumentation frameworks (e.g. with a support relation or with higher-order
interactions), and to other acceptability semantics.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

2. Alfano, G., Greco, S., Parisi, F.: Efficient computation of extensions for dynamic
abstract argumentation frameworks: an incremental approach. In: IJCAI, pp. 49–
55 (2017)

3. Alviano, M.: The pyglaf argumentation reasoner. In: OASIcs-OpenAccess Series in
Informatics, vol. 58 (2018)

4. Barabási, A.L., et al.: Network Science. Cambridge University Press, Cambridge
(2016)

5. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L.W.N., Villata,
S.: On input/output argumentation frameworks. In: COMMA, pp. 358–365 (2012)

6. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation seman-
tics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

7. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework
with recursive attacks. Int. J. Approximate Reasoning 52(1), 19–37 (2011)

8. Baroni, P., Giacomin, M., Liao, B.: Locality and modularity in abstract argumen-
tation. In: Handbook of Formal Argumentation, pp. 937–979. College Publication
(2018)

9. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., Van Der Torre, L., Villata, S.:
On the input/output behavior of argumentation frameworks. Artif. Intell. 217,
144–197 (2014)

10. Baroni, P., Giacomin, M., Liao, B.: On topology-related properties of abstract
argumentation semantics. a correction and extension to dynamics of argumentation
systems: a division-based method. Artif. Intell. 212, 104–115 (2014)

11. Baumann, R., Brewka, G., Wong, R.: Splitting argumentation frameworks: an
empirical evaluation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS
(LNAI), vol. 7132, pp. 17–31. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29184-5_2

12. Bistarelli, S., Rossi, F., Santini, F.: Not only size, but also shape counts: abstract
argumentation solvers are benchmark-sensitive. J. Log. Comput. 28(1), 85–117
(2018)

13. Bistarelli, S., Santini, F., Kotthoff, L., Mantadelis, T., Taticchi, C.: Int. Competi-
tion on Computational Models of Argumentation (2019). https://www.iccma2019.
dmi.unipg.it/

14. Butterworth, J., Dunne, P.: Spectral techniques in argumentation framework anal-
ysis. COMMA 287, 167 (2016)

15. Caminada, M.: On the issue of reinstatement in argumentation. In: JELIA, pp.
111–123 (2006)

16. Carrera, Á., Iglesias, C.A.: A systematic review of argumentation techniques for
multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015)

17. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar
argumentation frameworks. In: Godo, L. (ed.) ECSQARU, pp. 378–389 (2005)

18. Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: An SCC recursive meta-
algorithm for computing preferred labellings in abstract argumentation. In: KR
(2014)

19. Cerutti, F., Tachmazidis, I., Vallati, M., Batsakis, S., Giacomin, M., Antoniou, G.:
Exploiting parallelism for hard problems in abstract argumentation. In: AAAI, pp.
1475–1481 (2015)

20. Cerutti, F., Vallati, M., Giacomin, M., Zanetti, T.: ArgSemSAT-2017 (2017)
21. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for

solving reasoning problems in abstract argumentation-a survey. Artif. Intell. 220,
28–63 (2015)

22. Corea, C., Thimm, M.: Using matrix exponentials for abstract argumentation. In:
SAFA Workshop, pp. 10–21 (2016)

23. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357
(1995)

24. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

25. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the exten-
sions of abstract argumentation frameworks. In: IJCAI, pp. 1145–1152 (2017)

26. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS v3.0. ICCMA 2019 Solver
Description (2019)

27. Liao, B.: Toward incremental computation of argumentation semantics: a
decomposition-based approach. Ann. Math. Artif. Intell. 67(3–4), 319–358 (2013)

28. Liao, B., Huang, H.: Partial semantics of argumentation: basic properties and
empirical. J. Logic Comput. 23(3), 541–562 (2013)

29. Liao, B., Jin, L., Koons, R.C.: Dynamics of argumentation systems: a division-
based method. Artif. Intell. 175(11), 1790–1814 (2011)

30. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

31. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed
networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

32. Niskanen, A., Järvisal, M.: µ-toksia. Participating in ICCMA 2019 (2019)
33. Robert, M.K.: Elementary linear algebra. University of Queenland (2013)
34. Rodrigues, O., Black, E., Luck, M., Murphy, J.: On structural properties of argu-

mentation frameworks: lessons from ICCMA. In: SAFA Workshop, pp. 22–35
(2018)

35. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
36. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416

(2007)
37. Xu, Y., Cayrol, C.: Initial sets in abstract argumentation frameworks. J. Appl.

Non-Classical Logics 28(2–3), 260–279 (2018)

