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Jean-Luc Gouzé ∗∗∗ Valentina Baldazzi ∗∗,∗∗∗

∗ INRA, UR1052, GAFL France
∗∗ INRA, UR1115, PSH France
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1. INTRODUCTION

In the context of agronomy, increasing efforts are made to
select varieties that respond to a large panel of criteria,
including abiotic and biotic stress tolerance, increased
yield and quality of food products. Genotype-phenotype
models have been considered as the tools of the future since
they can help to test the performance of new genotypes
under different environment and management conditions.

A kinetic model of sugar metabolism has been developed
by Desnoues et al. (2018) to simulate the accumulation of
different sugars (sucrose, glucose, fructose and sorbitol)
during peach fruit development as a set of parametric
ordinary differential equations (ODEs)

dx

dt
= f(x(t), I(t), v(t), p), t = DAB, (1)

x(t0) = x0, (2)

where t is the independent time variable in days after
bloom (DAB); x ∈ R10 is the concentration vector of
metabolites in the corresponding intra-cellular compart-
ment and x0 ∈ R10 in Eq(2) is the vector of the cor-
responding initial values. I ∈ R is time-dependent in-
put of carbon from the plant and v ∈ R7 is the vector
of time-dependent measured enzymatic activities; p =
(p1, . . . , p23) is the vector of parameters defining the re-
action rates; f(x(t), I(t), v(t), p) of Eq.(1) describes the
change in compounds concentrations. The model correctly
accounts for annual variability and for the genotypic vari-
ations observed in ten peach genotypes issued from a
progeny of 106 genotypes. Two major drawbacks of this
model are (a) the number of parameters to estimate and
(b) its integration time that can be costly due to non-
linearities and time-dependent input functions. Together,
these issues hamper the use of the model for the whole
genotypic progeny, for which few data are available (Six
data or less by sugar).

Several reduction and approximation approaches exist in
literature, each one addressing a specific aspect of model
complexity (Wei and Kuo, 1969; Cariboni et al., 2007;
Heinrich and Schuster, 1996; Wang et al., 2007). In this
work, we present a reduction strategy that combines differ-
ent methods in several parallel steps (Fig. 1). The purpose

Fig. 1. Schema of Model Reduction. (*) The tested reduc-
tion is accepted or rejected based on two comparison
criteria (∆AIC = AICreduced model−AICoriginal model

value and integration time)

is to obtain a simplified model showing comparable predic-
tions as the original model while reducing its integration
time and number of parameters.

2. METHODS

First, multivariate sensitivity analysis (Lamboni et al.,
2009) was applied to identify those parameters having a
significant influence on the outputs of the model, over the
whole dynamics and for all tested genotypes.

Second, we operated three structural simplifications in
terms of network and reactions rates to reduce the com-
plexity of the model:

• Removing temporal and phenotypic effects of the en-
zymes capacities: In the original model some of the
enzymatic capacities were assumed to vary over time
and/or depending on the phenotypic group, according
to experimental evidences (Desnoues et al. (2014)).



We systematically tested the possibility of removing
these effects.
• Flow linearization: Enzymatic reactions were origi-

nally represented by an irreversible Michaelis-Menten
equation. The objective of this step was to test a
linear approximation to improve the efficiency of the
numerical simulation.
• Removing futile cycles: In the model, the presence

of internal cycles lead to the appearance of thermo-
dynamically unfeasible loops i.e. reactions that run
simultaneously in opposite directions and have no
overall effect on the exchange fluxes of the system.
We removed each futile cycle by eliminating one of its
building reactions, while preserving the net exchange
flux of the system.

Third, timescale-based approaches and quasi-steady-state
approximation (López Zazueta et al., 2018; Heinrich and
Schuster, 1996) were applied to reduce the number of
ODEs of the model and obtain the final reduced model.

The quality of individual and combined reduction steps
was systematically evaluated with respect to the original
model according to two criteria of major importance for
our application: the Akaike Information Criterium (AIC)
and the integration time.

3. RESULTS AND CONCLUSIONS

Results from the reduction steps were combined into an
final reduced model. This model has only 9 parameters to
be estimated, linear flows, 9 ODEs and only one temporal
enzymatic capacity, common to all genotypes. Comparison
between the reduced and the original model showed an
equivalent fit quality (Table 1) and confirmed a strong
benefice for most genotypes, both in term of AIC score
and integration time (Fig. 2). The validity of our reduction
strategy was further verified by the calibration of ten
new genotypes of the inter-specific peach progeny, for
which few data are available. Results showed a satisfactory
agreement between model and experimental data (Fig. 3)
opening new promising perspectives for genetic studies and
virtual breeding.

Fig. 2. Left: ∆AIC between final reduced and original
models. Right: Gain in the integration time (%)
between original and final reduced models for ten
genotypes studied
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Table 1. NRMSE between model simulation
and experimental data for the final reduced
and original models. Calculated values of the
normalized root mean squared error (NRMSE)
are presented for each genotype, the four sug-

ars separately.

Model Genotype E1 E33E43F111E22F106F146H191C216C227

Original Sucrose 0.11 0.04 0.11 0.14 0.12 0.10 0.07 0.08 0.18 0.08
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Final Sucrose 0.10 0.04 0.11 0.16 0.12 0.09 0.07 0.08 0.14 0.06
Sorbitol 0.14 0.35 0.04 0.25 0.01 0.51 0.13 0.28 1.02 0.28
Fructose 0.19 0.55 0.24 0.25 0.21 0.14 0.12 0.19 0.48 0.17
Glucose 0.37 0.35 0.21 0.54 0.23 0.11 0.21 0.30 1.07 0.21

Fig. 3. Evolution of sugar concentration (mg gFW−1)
during fruit development (DAB, days after bloom)
for ten newly calibrated genotypes. Dots represent
experimental data, lines are simulations obtained with
the reduced model. Left: standard fructose genotypes,
right: low fructose genotypes
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López Zazueta, C., Bernard, O., and Gouzé, J.L. (2018).
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