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EFFECTIVE FRICTION COEFFICIENT

Let us first consider a solid object sliding on a solid
plane while being submitted to a normal loading force F
(with F > 0). The solid-solid friction at the interface is
characterised by a sliding friction coefficient µS. Over an
infinitesimal tangential displacement dxS of the sliding
object, the latter experiences an energy diminution δWS

given by:

δWS = µSF|dxS| . (S1)

Similarly, for a solid sphere of radius a purely rolling
on a plane while being submitted to a normal loading
force F (with F > 0), the energy diminution δWR reads:

δWR = µRFa |dΩ| , (S2)

with µR the rolling friction coefficient and dΩ the in-
finitesimal angular variation.

Therefore, given the similarity between Eqs. (S1)
and (S2), it is reasonable to assume that when a spheri-
cal grain experiences both sliding and rolling friction the
total energy diminution δW is of the form:

δW = µeffF|dx| , (S3)

where µeff is an effective friction coefficient which takes
into account both sources of friction – sliding and rolling
– and where dx is the net infinitesimal tangential dis-
placement. This energy dissipation corresponds to a
Coulomb-like friction force Feff, opposed to the motion,
and satisfying:

|Feff| = µeffF . (S4)

The value of the effective friction coefficient depends
on the respective amounts of rolling and sliding in the
motion. For a purely sliding (resp. rolling) sphere, one
has µeff = µS (resp. µeff = µR). To the best of our
knowledge, it is not possible to know a priori the relation
between µeff and both µS and µR. The effective friction
coefficient is a coarse-grained parameter encompassing
rugosity, surface chemistry, geometry and motion.

COOPERATIVE ANSATZ

As explained in the main text, after the primary elas-
tic collision of the considered moving grain with the next
static grain indexed by n+1 (see Fig. 1 in the main text),
the velocity of the moving grain changes suddenly, and
cascades of secondary elastic collisions occur within the
fluid and solid phases. These cascades involve coopera-
tive regions of Nflu and Nsol grains in total, respectively.

We assume that, in the bulk, any cooperative region
of any of the two phases contains typically ξ grains and
has a typical fractal dimension D. The bulk cooperative
length is thus given by ∼ ξ1/D. Furthermore, we assume
that the fluid-air interface truncates the cooperative re-
gions of the fluid phase for thin enough fluid layers, i.e.
at small R/ξ1/D. The number of grains in such a trun-
cated cooperative region of the fluid phase thus becomes
essentially ∼ R ξ1−1/D, while at large R/ξ1/D it should
saturate to the bulk value ξ.

To interpolate these two limiting behaviours, we
have chosen the arbitrary ansatz: Nflu(R) =
ξ
[
1− exp

(
−R/ξ1/D

)]
. However, Fig. S1 shows that

the exact mathematical form employed is not crucial, as
other sufficiently sharp functions produce similar trends
for θsed(R) and θero(R). The only essential requirements
are that Nflu(R) first increases with R before saturating
to the bulk value.

NUMERICAL SIMULATIONS

Discrete Element Method (DEM) numerical simula-
tions were performed with the software LIGGGHTS [1].
The simulated granular media were made of identical
spherical beads with a d = 1 mm diameter. The Hertz-
Mindlin model was used to characterize the contacts be-
tween grains [2]. The following micromechanical param-
eters were chosen in order to reproduce the macroscopic
behaviour of realistic granular media: 0.5 restitution co-
efficient, µS = 0.5 bead-bead sliding friction coefficient,
µR = 0.01 bead-bead rolling friction coefficient, as well
as 1 MPa Young’s modulus and 0.45 Poisson ratio of the
beads. In particular, both friction coefficients, µS and
µR, have been fixed in order to quantitatively reproduce
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θero		:	ξ	erf(			/ξ1/D)
θsed		:	ξ	erf(			/ξ1/D)
θero		:	ξ[1-exp(-			/ξ1/D)]
θsed		:	ξ[1-exp(-			/ξ1/D)]
θero		:	ξ	tanh(			/ξ1/D)
θsed		:	ξ	tanh(			/ξ1/D)
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FIG. S1. Predictions of the sedimentation angle θsed and ero-
sion angle θero as functions of the fluid-layer thickness R (in
grain-diameter unit), through solutions of Eqs. (6) and (7)
in the main text, for three different functional forms for the
Nflu(R) ansatz, as indicated. In the model, the parameters
are µeff = tan(20◦), a = 0.5, ϕsol = 23.4◦, ξ = 4.7 and
D = 0.94 (see main text). The vertical dashed line indicates
R = 1.

the experimental results for spherical glass beads flowing
down an inclined plane [3]. The effective friction coeffi-
cient µeff of the granular medium is obtained by consid-
ering that µeff = tan[θstop(R →∞)] ≈ tan(20◦).

For the inclined-plane configuration, we investigate the
dependence of the stop angle with the fluid-phase thick-
ness [3, 4]. We use a rectangular channel of 100d height,
100d length and 20d width, filled with a layer of beads of
thickness R (in unit of d and counted vertically). Peri-
odic boundary conditions are applied along both length
and width directions. The plane is first inclined at an
angle of 35◦, in order to set the layer into motion, and
then the angle is rapidly fixed at a lower value θ. After
the system has reached a steady flowing state, the angle
is then reduced again progressively until the flowing layer
stops – at the stop angle. In practice, the inclination is
adjusted by artificially changing the direction of gravity.

For the heap configuration, we quantify the fluid-phase
thickness R and the angle θheap of the fluid-solid inter-
face, in the steady state, for different externally-imposed
flow rates Q. A rectangular box of 400d height, 400d
length and 20d width is initially filled with beads. Peri-
odic boundary conditions along the width direction are
applied. A slope appears due to the sudden removal of
the wall at x = 400d. A continuous refill starts at the top
(see Fig. 3(b) in the main text) in order to compensate for
the continuous loss of grains at the bottom exit. The sim-
ulation is ran until a steady state is reached. The system

self-adjusts its thickness R and angle θheap for a given
value of the flow rate Q. It should be emphasized that
obtaining reliable measurements in DEM simulations can
be difficult for the heap configuration. First, there is a
drastic influence of lateral walls [5], avoided here thanks
to periodic lateral boundary conditions. Secondly, pro-
ducing stationary flows down a heap requires very large
systems. A large enough, 20d wide, box is chosen in or-
der to avoid any correlation due to the periodic boundary
conditions. Moreover, as shown in Fig. S2, the length of
the simulation box is also very important. Indeed, the
observed heap angle θheap depends on the box length.
For the systems studied here, we observed a saturation
starting around a 300d box length. Accordingly, we con-
fidently chose a box with a 400d length in order to avoid
any effect of the box length. Thirdly, as previously sug-
gested [6, 7], the self-adjusted fluid-layer thickness is only
estimated through the position of the inflexion point in
the velocity profile related to the solid-fluid crossover.
Finally, as previously shown [8], stationary flows cannot
be obtained for the thinnest layers (R <∼ 5) in the heap
configuration, as intermittent, unstable flows are instead
observed.
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FIG. S2. Heap angle θheap as a function of simulation box
length (in grain-diameter unit), from DEM simulations in the
heap configuration with a flow rate Q = 21000 grains/s.
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