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1UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
2Laboratoire Interfaces & Fluides Complexes, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
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We introduce a novel microscopic model for gravity-driven dense granular flows at small iner-
tial numbers, involving friction, geometry, and nonlocal collisional effects. Through the detailed
description of the exchange mechanisms between a fluid phase and a solid one, the model allows
to build a complete phase diagram including erosion, sedimentation, and stationary-flow regimes.
The predictions are confronted to original results from discrete-element-method simulations, and
to experiments from the literature. The quantitative agreement allows to characterize the size and
shape of the cooperative regions, and to unify various configurations, observations, and observables
from the literature.

Gravity-driven flows of granular matter are in-
volved in a wide variety of situations, ranging
from industrial processes to geophysical phenom-
ena, such as avalanches or landslides [1]. These
flows are characterized by the coexistence of solid
and fluid phases, whose stability is directly re-
lated to the erosion and sedimentation processes
occurring at the solid-fluid interface. This prob-
lem has not yet been solved despite the develop-
ment of semi-empirical mean-field approaches [2–
6]. To settle this issue, we build a microscopic
model involving friction, geometry, and a nonlo-
cal cooperativity emerging from the propagation
of collisions. This picture enables us to obtain a
detailed description of the exchange mechanisms
between the fluid and solid phases, and ultimately
a complete phase diagram of erosion and sedi-
mentation, in quantitative agreement with exper-
iments.

Over the last two decades, different theoretical ap-
proaches have been proposed in order to describe dense
granular flows. The most widely used models are based
on the µ(I)-rheology [3–7]. It consists in a semi-empirical
description of granular matter, through an effective fric-
tion coefficient µ function of an inertial number I. In
parallel, semi-empirical models have been developed to
describe the dynamics of avalanches, defined as a dense
granular flow atop a static granular solid. This type of
systems exhibits complex behaviours due to the intrinsic
transfers between the fluid and solid phases at their in-
terface. Specifically, the erosion of the solid phase by the
avalanche feeds the fluid phase, and thus the avalanche,
while the sedimentation of the fluid phase tends to stop
the motion. The BCRE model was proposed to account
for this coupled dynamics [2, 8, 9]. Two key ingredients
are at the heart of such an approach: i) the intuitive idea
that the evolution of the sharp interface between the two
phases is determined by its local tilt angle θ (see Fig. 1);

and ii) the assumed existence of a neutral angle θ∗, such
that for θ > θ∗ erosion occurs, and for θ < θ∗ sedimen-
tation occurs. However, while such a neutral angle is an
appealing phenomenological feature, it has had no mi-
croscopic justification so far, and cannot be evaluated a
priori.

In this Letter, we propose a microscopic description
of the erosion and sedimentation processes at play in a
dense granular flow driven by gravity. The model in-
volves a flowing layer of grains over a static but erodible
one, at small inertial number, and includes a nonlocal
contribution related to collisions. Its predictions are di-
rectly confronted to numerical results obtained from a
Discrete Element Method (DEM), in the two canonical
configurations: an inclined plane and a heap. Despite
its simplicity, the proposed model is able to quantita-
tively describe the observed phase diagram, as well as
the transitions between sedimentation, stationary flow,
and erosion. Moreover, the model allows to rationalize
an important observable in inclined-plane experiments
from the literature: the stop angle of a granular flow.

Inspired by previous works [10–12], we consider the
discrete nature of a granular assembly. As schematized
in Fig. 1, we introduce a bidimensional description, with
a moving layer of R grains (counted vertically), i.e. the
fluid phase, above a static layer, i.e. the solid phase.
The grains are identical spheres of diameter d, and mass
m, with a friction coefficient µ. The roughness of the
solid-fluid interface is characterized by an angle ϕsol with
respect to the normal to the interface, quantifying the an-
gular depth of the hole between two grains. In the follow-
ing, we focus on the motion of one single grain from the
fluid phase, in contact with the solid phase. This grain
is subjected to the weight of the R grains constituting
the moving layer, and, in order to move forward, it has
to frictionally slide and/or roll over the underlying static
layer of grains, but no jump is allowed. The instanta-
neous position of the moving grain is described through
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FIG. 1. A dense fluid granular phase (yellow) moves over
an underlying static solid granular phase (orange). Locally,
the solid-fluid interface makes an angle θ with the horizon-
tal plane. The instantaneous position of a particular grain,
moving above a static grain n, is described through the an-
gle ϕ between the normal to the interface and the contact
interparticle-distance unit vector ~er. The moving grain starts
at angular position −ϕsol, with angular velocity ϕ̇+

n , and ar-
rives at +ϕsol, with angular velocity ϕ̇−n . Also shown is the
effective potential energy Epot as a function of angular posi-
tion ϕ, during the first step of the grain motion, within one
cycle where ϕ ∈ [−ϕsol,+ϕsol]. The two essential features are
the barrier energy ∆EB at maximum, and the final energy
gain ∆EK.

a single variable: the angle ϕ between the normal to the
interface and the contact interparticle-distance unit vec-
tor ~er (see Fig. 1).

The motion is divided into two subsequent steps: first,
the grain starts at angular position −ϕsol with angular
velocity ϕ̇+

n , and then moves above a static grain indexed
by n, until it arrives at +ϕsol with angular velocity ϕ̇−n ;
secondly, it elastically collides the next static grain in-
dexed by n + 1, which induces a sharp change of its ve-
locity, as well as secondary elastic collisions within the
fluid and solid phases – and thus nonlocal energy trans-
fers. A new and similar cycle then starts, with an ini-
tial angular velocity ϕ̇+

n+1. The restitution coefficient

α = (ϕ̇+
n+1/ϕ̇

−
n )2 is defined as the ratio between the ki-

netic energies of the moving grain after and before the
collision.

During the first step above, the total force exerted on
the moving grain is oriented along ~eϕ, since the com-
ponent along ~er is null in virtue of the action-reaction
law. It contains two contributions: the transverse pro-
jection Rmg sin(ϕ+ θ)~eϕ of the weight and the dynamic
Amontons-Coulomb friction force −µRmg cos(ϕ + θ)~eϕ

generated by the normal projection of the weight on the
static grain.

The total force can thus be written as
−(1/d)dEpot/dϕ, where Epot(ϕ) = Rmgd{cos(ϕ +
θ) − cos(ϕsol − θ) + µ [sin(ϕ+ θ) + sin(ϕsol − θ)]} is
an effective potential for the motion (see Fig. 1), and
where the origin of energies has been arbitrarily chosen
at ϕ = −ϕsol. At ϕ = arctan(µ) − θ, this potential is
maximal, resulting in an energy barrier:

∆EB = Rmgd[
√

1 + µ2− cos(ϕsol− θ) +µ sin(ϕsol− θ)] .
(1)

If the moving grain has enough initial kinetic energy
md2(ϕ̇+

n )2/2 to overcome the barrier, it gains the kinetic
energy:

∆EK = 2Rmgd (sin θ − µ cos θ) sinϕsol , (2)

at the end of the first step, and its velocity becomes ϕ̇−n =
[(ϕ̇+

n )2 + 2∆EK/(md
2)]1/2.

Up to now, we have not considered the contacts be-
tween grains in the fluid and solid layers, leading to the
nonlocal cooperative effects observed for dense granular
flows. In our model, they naturally come into play dur-
ing the second step of motion. Indeed, after the primary
elastic collision with the n+ 1th static grain (see Fig. 1),
the velocity of the considered moving grain changes sud-
denly and secondary elastic collisions occur within the
fluid and solid phases. The energy transferred by the
moving grain to the static grain during the primary col-
lision is assumed to be proportional to the incoming en-
ergy, and reads amd2(ϕ̇−n )2/2, with a a constant prefactor
comprised between 0 and 1. After the primary collision,
the energies of the moving grain and the knocked static
grain thus temporarily become (1 − a)md2(ϕ̇−n )2/2 and
amd2(ϕ̇−n )2/2 before the energy reallocation. Then, cas-
cades of secondary collisions are triggered in both phases.
In a minimal description, we assume that they involve:
i) the numbers Nflu and Nsol of grains involved in the
collisions in each phase; and ii) some equipartition of the
energy among those grains. For the fluid phase in partic-
ular, this results in the primary energy loss of the moving
grain being redistributed over the Nflu moving grains –
an energy reallocation that forms the essence of nonlocal-
ity. Over the primary and secondary collisions, the total
energy loss ∆E0 for the moving grain thus reads:

∆E0 =
md2

2

[
(ϕ̇−n )2 − (ϕ̇+

n+1)2
]

=
amd2

2Nflu
(ϕ̇−n )2 . (3)

As a consequence, the restitution coefficient must be
α = 1−a/Nflu. Recalling the above link between ϕ̇−n and
ϕ̇+
n through ∆EK, one finally gets the central recursive

relation:

(ϕ̇+
n+1)2 = α

[
(ϕ̇+

n )2 +
2∆EK

md2

]
. (4)
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Assuming a global translational invariance in the sys-
tem [10–12], and thus looking for the fixed point of
Eq. (4), one gets (ϕ̇+

∞)2 = 2α∆EK/[md
2(1 − α)]. In

this homogeneous state, during each cycle, the kinetic
energy gained by the moving grain when getting down
the effective potential is exactly compensated by the
loss due to the subsequent collisional cascade, such that
∆EK = ∆E0.

The homogeneous state is stable only if the associated
kinetic energy E∞K = md2(ϕ̇+

∞)2/2 = α∆EK/(1− α), set
by Eq. (2), is larger than the barrier ∆EB, set by Eq. (1),
giving a limiting condition :

α

1− α
∆EK(θsed,R) = ∆EB(θsed,R) , (5)

which determines the sedimentation angle θsed(R). If
θ < θsed, the lowest layer (at least) of the fluid phase
stops, and R decreases.

A similar reasoning allows to discuss erosion. In the
homogeneous state, and over one complete cycle of tra-
jectory for the considered moving grain, the solid phase
receives the energy amd2(ϕ̇−∞)2/2 = Nflu∆EK. Consid-
ering the total number Nsol of static grains involved in
the secondary collisions within the solid phase, and the
equipartition of energy among those grains, the static
grain at the solid-fluid interface receives a kinetic energy
Nflu∆EK/Nsol, set by Eq. (2). The homogeneous state
above is stable only if that kinetic energy remains smaller
than the own energy barrier ∆EB(θ,R+ 1) of the static
grain, set by Eq. (1). The limiting condition:

Nflu

Nsol
∆EK(θero,R) = ∆EB(θero,R+ 1) , (6)

determines the erosion angle θero(R). If θ > θero, the
highest layer (at least) of the solid phase starts to flow,
and R increases.

In order to close the set of Eqs. (5) and (6), one needs
to specify further the cooperativities Nflu and Nsol. In
the bulk, for both phases, the cooperative regions contain
ξ grains, and are determined by their fractal dimension
D, and thus their length ∼ ξ1/D. However, if the phase
thickness is smaller than ξ1/D, the cooperative regions
feel the boundaries and the bulk result might be modi-
fied. For the solid phase supported on a rigid substrate,
one expects a simple reflecting boundary condition, en-
suring that Nsol = ξ is maintained. In contrast, for the
fluid phase, the fluid-air interface acts as a free-volume
reservoir and, as such, is expected to truncate the neigh-
bouring cooperative regions. The number of grains in the
latter becomes ∼ ξ1−1/DR. This suggests a crossover
from a linear behaviour in R to a saturation at ξ, as the
ratio R/ξ1/D overcomes 1. Therefore, we propose the
Ansatz: Nflu(R) = ξ

[
1− exp

(
−R/ξ1/D

)]
.

To test the predictions of the model, we performed
DEM simulations for two canonical experimental config-
urations. For the inclined-plane configuration (Fig. 2,

FIG. 2. Snapshots of the DEM simulations for the two canoni-
cal configurations for granular flows: (top) inclined-plane flow
with fixed angle and thickness; (bottom) heap flow with fixed
flow rate. The color maps refer to the velocity of each grain,
as indicated in the scale bar.

top), the solid phase is made of a single layer of grains
glued on the incline. The stop angle θstop is defined as
the minimal angle of the substrate for which a flow is
observed. As shown in Fig. 3, it is a decreasing function
of the layer thickness R, like in previous results [13–17].
Specifically, θstop first rapidly decreases before saturat-
ing to a constant value. Moreover, the DEM data are in
close agreement with the experimental data reported by
Pouliquen for glass beads [13]. For the heap configura-
tion (Fig. 2, bottom), DEM simulations confirm that the
heap angle θheap and the thickness R of the fluid layer
self-adjust until a stationary state is reached. As shown
in Fig. 3 for the latter state, θheap is significantly larger
than θstop, but follows a similar monotonically decaying
trend with R towards a saturation value.

We now turn to a comparison of all these observations
to the predictions of our microscopic model. The evo-
lutions of θsed and θero with R can be computed nu-
merically from Eqs. (5) and (6), provided that the five
relevant dimensionless parameters of the model, µ, ϕsol,
a, ξ, and D are fixed. The coefficient a was estimated
to be close to 0.5 [10], while the effective friction coef-
ficient is fixed to µ = tan(20◦) [13], and ϕsol spans the
range [23.4◦, 30◦] [18]. Thus, ξ and D are the only free
parameters. As shown in Fig. 3, the model quantitatively
captures all the DEM and experimental data, using the
best-fit values: ξ = 6 and D = 1.3. Interestingly, these
outputs suggest chain-like cooperative regions contain-
ing a few grains, which is reminiscent of the force-chain
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FIG. 3. The θ-R phase diagram. Ensemble of results from:
i) DEM simulations in the two canonical configurations for
granular flows, i.e. inclined plane (θstop) and heap (θheap) ; ii)
inclined-plane experimental results (θstop) by Pouliquen [13]
; and iii) predictions (θero, θsed) from the model through
Eqs. (5) and (6). In the model, the fixed parameters are
µ = tan(20◦) [13], a = 0.5 [10], and ϕsol ∈ [23.4◦, 30◦] (see
light purple and light orange regions in the diagram) [18],
and the two adjustable parameters are ξ = 6 and D = 1.3.
The horizontal dashed line indicates θ = arctan(µ), and the
vertical one indicates R = 1.

architecture in static granular contact [19, 20].

All together, Fig. 3 embodies the θ-R phase diagram
of granular flows, for a particular set of parameters
µ, ϕsol, a, ξ, and D. This central outcome exhibits
the erosion, stationary-flow, and sedimentation domains,
through their respective boundaries. Several observa-
tions can be made. First, θero(R) > θsed(R). There-
fore, stationary flows appear to exist for a continuum of
angles θ comprised in between these two distinct bound-
aries. Interestingly, this opens a gap within the BCRE
picture [8], in which a single neutral angle θ∗ accounts
for both the sedimentation and erosion processes. Sec-
ondly, θero and θsed both decay monotonically with R,
and tend to a constant value at large R. For θsed, these
are direct consequences of both the energy equipartition
and cooperativity truncation mechanisms. Indeed, a de-
crease of R implies that less grains share the energy loss
of the considered moving grain, which renders flow and
erosion more difficult. Surface flow in yielded athermal
granular media thus appears to be inhibited by the trun-
cation of the cooperativity – as opposed to surface flow
in ideal supercooled liquids at equilibrium [21]. Thirdly,

the saturation values are self-consistently above the ulti-
mate solid-friction limit arctan(µ) [13, 22]. Finally, the
decay of θsed(R) allows to justify why θstop is indeed a
proper measurement of θsed. In the inclined-plane con-
figuration, as one decreases the angle θ, it eventually
reaches θsed(R). By definition of the latter, the lowest
layer (at least) of the fluid phase stops and R reduces by
one (or more) units. Due to its monotony, θsed then in-
creases, and the sedimentation front propagates upwards
until the whole system is stopped.
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Methods
Model. The grains are identical spheres of diameter d,

and mass m, with a friction coefficient µ between them.
The latter encompasses sliding and rolling frictions, as
well as geometry. The angle ϕsol quantifying the angu-
lar depth of the hole between two grains ranges satisfies
23.4◦ ≤ ϕsol ≤ 30◦ for spherical grains in 3D [18], de-
pending if one considers the neck between two grains or
the tops.
DEM Simulations. Discrete Element Method (DEM)

numerical simulations were performed by means of the
software LIGGGHTS [23]. The granular media simu-
lated were made up of monodisperse spherical beads with
d = 1 mm. The Hertz-Mindlin model has been used to
characterize the contacts between grains. The follow-
ing micro-mechanical parameters were chosen: inelas-
tic coefficient e = 0.5, microscopic sliding friction co-
efficient µs = 0.5, microscopic rolling friction coefficient
µs = 0.01, Young’s modulus Y = 1 MPa, and Poisson
ratio ν = 0.45.

For the inclined-plane configuration (Fig. 2, top), an
horizontal periodic channel of 100d long and 20d large is
filled with a chosen thickness layer of beads. The plane is
inclined at an angle of 35◦ to set in motion the layer and
then rapidly fixed at a lower angle until the flowing layer
stops or reaches a stationary state. The inclination is
fixed by adjusting the direction of the gravity force. We
note that the stationary state was easily reached, thanks
to periodic boundary conditions along the flow direction.
In that case, the local velocity field follows approximately
a Bagnold profile, in agreement with previous works [24–
27].

For the heap configuration, a box of 400d length and
20d width is initially filled with grains. We measure the
fluid-layer thickness R, the heap angle θheap, and the
velocity field, for different flow rates Q. A continuous
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refill at the top compensates for the continuous loss at
the wall end (Fig. 2, bottom). The simulation is running
until a stationary state is reached. In addition, to obtain
reliable measurements for the heap configuration, several
issues were solved. First, there is a drastic influence of
lateral walls [28], avoided here thanks to periodic lateral
boundary conditions. Secondly, producing homogeneous
flows down a heap requires very large systems. Finally,
as previously shown [29], stable flows cannot be obtained
for very thin layers (R ≤ 5) in the heap configuration, as
intermittent/unstable flows are instead observed.
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