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ABSTRACT

Events in music frequently exhibit small-scale temporal
deviations (microtiming), with respect to the underlying
regular metrical grid. In some cases, as in music from the
Afro-Latin American tradition, such deviations appear sys-
tematically, disclosing their structural importance in rhyth-
mic and stylistic configuration. In this work we explore the
idea of automatically and jointly tracking beats and micro-
timing in timekeeper instruments of Afro-Latin American
music, in particular Brazilian samba and Uruguayan can-
dombe. To that end, we propose a language model based
on conditional random fields that integrates beat and onset
likelihoods as observations. We derive those activations
using deep neural networks and evaluate its performance
on manually annotated data using a scheme adapted to this
task. We assess our approach in controlled conditions suit-
able for these timekeeper instruments, and study the micro-
timing profiles’ dependency on genre and performer, illus-
trating promising aspects of this technique towards a more
comprehensive understanding of these music traditions.

1. INTRODUCTION

Across many different cultures, music is meter-based, i.e.,
it has a structured and hierarchical organization of pulsa-
tions. Within this metrical structure, the different pulsa-
tions interact with one another and produce the sensation
of rhythm, inducing responses in the listeners such as foot
tapping or hand clapping. In the so-called “Western” mu-
sic tradition, that hierarchical structure often includes the
beat and downbeat levels, where the former corresponds
to the predominant perceived pulsation, and the latter has
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a longer time-span that groups several beats into bars. In
some cases, the events in music present small-scale tempo-
ral deviations with respect to the underlying regular met-
rical grid, a phenomenon here referred to as microtiming.
The interaction between microtiming deviations and other
rhythmic dimensions contribute to what has been described
as the sense of ‘swing’ or ‘groove’ [8, 9, 30]. The sys-
tematic use of these deviations is of structural importance
in the rhythmic and stylistic configuration of many musi-
cal genres. This is the case of jazz [9, 10, 20, 38], Cuban
rumba [2], Brazilian samba [32, 39] and Uruguayan can-
dombe [22], among others. Consequently, the analysis of
these music genres without considering microtiming leads
to a limited understanding of their rhythm.

Samba and candombe are musical traditions from Brazil
and Uruguay, respectively, that play a huge role in those
countries’ popular cultures. Both genres have deep African
roots, partly evidenced by the fact that their rhythms result
from the interaction of several rhythmic patterns played by
large ensembles of characteristic percussive instruments.
Candombe rhythm is structured in 4/4 meter, and is played
on three types of drums of different sizes and pitches—
chico, repique and piano—, each with a distinctive rhyth-
mic pattern, the chico drum being the timekeeper. 1 Samba
rhythm is structured in 2/4 meter, and comprises sev-
eral types of instruments—tamborim, pandeiro, chocalho,
reco-reco, agogô, and surdo, among others. Each instru-
ment has a handful of distinct patterns [16], and more than
one instrument may act as the timekeeper. Because of this
combination of several timbres and pitches, the texture of a
samba performance can become more complex than that of
a candombe performance, where only three types of drums
are present. Nevertheless, both rhythms have in common
that they exhibit microtiming deviations at the sixteenth
note level [22, 28, 32], with no deviations in the beat posi-
tions. 2 This is illustrated in Figure 1 for the recording of
a tamborim playing in the samba de enredo style.

1 In this musical context, the role of timekeeper is assigned to an instru-
ment that plays an invariable rhythmic pattern (i.e., an ostinato) usually
at a high rate, thus defining the subdivision of the beat.

2 In other musical forms, such as waltz, microtiming may be mostly
on beats.



1.1 Related Work

Microtiming has been studied in the context of Music In-
formation Retrieval (MIR) for many years [2, 8, 17]. Be-
sides the interest in characterizing microtiming for musi-
cological studies, it is important for music synthesis appli-
cations, since it is a central component for “humanizing”
computer generated performances [18]. Depending on the
musical context, microtiming can take the form of tempo
variations, like rubato or accelerando, or small-scale devi-
ations of events with respect to an underlying regular met-
rical grid [22]. Therefore, in order to study microtiming
deviations one has to know the expected position of the
events within the metrical grid and the actual articulated
positions—which can be inferred from information related
to the onset positions, the tempo and/or the beats.

Most of the proposed methods for microtiming analysis
are based on manually annotated data. Laroche et al. [27]
proposed a method for the joint estimation of tempo, beat
positions and swing in an ad-hoc fashion. The proposal ex-
ploits some simplifications: assuming constant tempo and
swing ratio, and propagating beat positions based on the
most likely position of the first beat. More recent works
perform semi-automatic analysis still relying on informed
tempo [9, 10], or using an external algorithm for its esti-
mation [30]. Within the context of candombe and samba,
microtiming characterization has also been addressed us-
ing either semi-automatic or heuristic methods [17,22,32].

In other rhythm-related MIR tasks such as beat and
downbeat tracking, graphical models (GM) such as hidden
Markov models or dynamic Bayesian networks are widely
used [4, 19, 25, 36]. GMs are capable of encoding musi-
cal knowledge in a flexible and unified manner, providing
structure to the estimations and usually a gain in perfor-
mance for different models across genres [14]. In partic-
ular, Conditional Random Fields (CRFs) are discrimina-
tive undirected GMs for structured data prediction [37].
CRFs relax some conditional independence assumptions
of Bayesian Networks, which allows for modeling com-
plex and more general dependency structures, thus mak-
ing them appealing for music modeling. CRFs have been
applied in MIR tasks such as beat tracking [13] or audio-
to-score alignment [21], and have been successfully com-
bined with deep neural networks (DNNs) [11, 15, 24].

1.2 Our Contributions

This work takes a first step towards fully-automatic track-
ing of beats and microtiming deviations in a single for-
malism, applied to the analysis of two (usually underrepre-
sented) Afro-Latin American music genres, namely Brazil-
ian samba and Uruguayan candombe. More precisely, we
introduce a CRF model that uses beat and onset activations
derived from deep learning models as observations, and
combines them to jointly track beats and microtiming pro-
files within rhythmic patterns at the sixteenth note level.
To the best of our knowledge, this is the first work that ex-
plores the use of CRFs for tracking microtiming and beats
jointly. This temporal granularity is in accordance with the
type of microtiming deviations present in the music tradi-

tions under study. Following previous works [9], we derive
microtiming labels from annotated onsets and use them to
evaluate the proposed system, attaining promising results
towards more holistic and descriptive models for rhythm
analysis. We also study the usefulness of this approach
in controlled conditions, as a first assessment of its ca-
pabilities. We explore our microtiming representation in
some applications, namely the extraction of microtiming
profiles of certain instruments, and the study of differences
between musical genres based on their microtiming traits.

2. PROPOSED METHOD

2.1 Language Model

The proposed language model consists of a linear-chain
CRF [26, 37]. Formally, the conditional probability of a
label sequence y = (y1, ..., yT ) of length T given an input
sequence of observations x = (x1, ..., xT ) is given by:

p(y|x) =
1

Z(x)

T∏
t=1

ψ(yt, yt−1)φ(yt, xt), (1)

where ψ is the transition potential and φ is the observation
potential. They play a role similar to transition and obser-
vation probabilities in dynamic Bayesian networks or hid-
den Markov models, with the difference that the potentials
in a CRF do not need to be proper probabilities, hence the
need for the normalization factor Z(x).

In our model, depicted in Figure 2, the output labels y
are a function of three variables that describe the position
inside the beat, the length of the beat interval in frames,
and the microtiming within the beat-length pattern at the
sixteenth note level. Formally,

yt := (ft, lt,mt), (2)

where ft is the frame counter with ft ∈ F = {1, ..., lt},
lt ∈ L = {lmin, ..., lmax} is the number of frames per
beat, which relates to the tempo of the piece; and the mi-
crotiming mt ∈ M = {m1, ...,mN}. The observations
x are based on estimated beat and onset likelihoods, as de-
tailed later. The problem of obtaining the beat positions
and microtiming profiles is then formulated as finding the
sequence of labels y∗ such that y∗ = arg maxyp(y|x).

2.1.1 Microtiming Tracking

Both in samba and candombe, timekeeper instruments usu-
ally play a beat-length rhythmic pattern that articulates sev-
eral sixteenth notes [16], as shown in Figures 1 and 3 for
the tamborim. In order to provide a common framework
for comparing both music genres, we focus our study on
the microtiming deviations of beat-length rhythmic pat-
terns articulated by timekeeper instruments in groups of
four sixteenth notes. 3 To that end, we consider the fol-
lowing hypothesis, which we explain further below:

• The tempo is constant within a beat.

3 Note that minor adjustments to the proposed model allow for the
tracking of microtiming deviations in other kinds of rhythmic patterns.
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Figure 1. Example of microtiming deviations at the sixteenth note level for a beat-length rhythmic pattern from the
tamborim in samba de enredo.

• The microtiming profile changes smoothly only at
beat transitions.

• The tempo is between 120 and 135 BPM, to ensure
an appropriate temporal resolution.

We define the microtiming descriptor m at frame t as:

mt := (m1
t ,m

2
t ,m

3
t )

wheremi
t :=

∆i
t

lt
∈ [ i4 +δiL,

i
4 +δiU ], and ∆i

t is the distance
in frames between an articulated sixteenth note and the be-
ginning of the beat interval, as shown in Figure 1. Thus,
each mi

t models the position of the i-th sixteenth note with
respect to the beginning of the beat, relative to the total beat
length. For instance, the value of the microtiming descrip-
tor for a rhythmic pattern of four isochronous sixteenth
notes, i.e., located exactly on an equally-spaced metrical
grid, is m = (0.25, 0.50, 0.75), indicating the articulation
of events at 1/4, 1/2 and 3/4 of the beat interval respec-
tively. To account for different microtiming profiles, the
value of mi

t is estimated within an interval determined by
lower and upper deviations bounds, δiL and δiU , modeled as
positive or negative percentages of the beat interval length.
The proposed microtiming descriptor provides an intuitive
idea of how the articulated sixteenth notes deviate within
the rhythmic pattern from their isochronous expected po-
sitions. It is independent of tempo changes, since it is nor-
malized by the estimated beat interval length, allowing for
studies on microtiming–tempo dependencies.

The definition of the microtiming descriptor mt can be
related to the swing-ratio, s, proposed in previous work
[9,30], though the two differ in various aspects. The swing-
ratio is defined in terms of the inter-onset intervals (IOIs)
of a long–short rhythmic pattern, such that s ≥ 1 is the
ratio between the onbeat IOI (longer interval) and the off-
beat IOI (shorter interval). In contrast, the mt descriptor
is composed by three microtiming–ratios, mi

t, whose IOIs
are defined with respect to the beginning of the beat instead
of the previous onset as in [9, 30]. However, it is possible
to convert the model proposed here into the swing-ratio by
redefining m as ms := m1

t , and then, from the estimated
ms, computing s =

m1
t

1−m1
t

. With such modifications, the
model could be applied to the studies presented in [9, 30].

ft−1 ft

lt−1 lt

mt−1 mt

xt−1 xt

Figure 2. CRF graph. Observations and labels are indi-
cated as gray and white nodes respectively.

2.1.2 Transition Potential ψ

The transition potential is given in terms of ft, lt, and mt

(see Equation 2) by:

ψ(yt, yt−1) := ψf (ft, ft−1, lt, lt−1)ψm(mt,mt−1, ft−1, lt−1)

Similar to [13,25], we force frame counter ft to increase
by one, at each step, up to the maximum beat length con-
sidered, and to switch to one at the end of the beat. Beat
duration changes are unlikely (i.e., tempo changes are rare)
and only allowed at the end of the beat. We constrain these
changes to be smooth, giving inertia to tempo transitions.
Those rules are formally expressed by:

ψf (ft, ft−1, lt, lt−1) :=



1 if ft = (ft−1 mod lt−1) + 1,
ft−1 6= lt−1

1− pf if lt = lt−1,
ft = 1, ft−1 = lt−1

pf
2

if lt = lt−1 ± 1, ft = 1
0 otherwise

The microtiming descriptor mt changes smoothly and
only at the end of the beat, that is:

ψm(mt,mt−1, ft−1, lt−1) :=



1 if mt = mt−1,
ft−1 6= lt−1

1− pm if mt = mt−1,
ft−1 = lt−1

pm
2

ifmt
i = mt−1

i ± 0.02 ∀i,
ft−1 = lt−1

0 otherwise



In the transition potential, pf and pm represent the prob-
ability of changing the beat interval length (i.e., tempo) and
the probability of changing the microtiming profile at the
end of the beat, respectively. The values of 1−pf and pf/2
were chosen following previous works, whereas 1 − pm
and pm/2 were similarly set in order to make the possible
microtiming transitions equally likely.

Sincemi
t is given in percentage with respect to the inter-

beat-interval (IBI), the resolution with which microtiming
can be estimated in the model is also percentual, and it is
given by the relation between the sampling rate SR of the
features and the BPM: res = BPM

60SR . It has been shown in
the literature that a resolution of 0.02 of the IBI is sufficient
for representing microtiming deviations [17, 32]. To keep
computational complexity low but at the same time guaran-
teeing a resolution res = 0.02, we use observation features
sampled at 110 Hz and we study pieces whose tempo is
within range of 120 to 135 BPM. Note that these assump-
tions are valid in the music under study, and they could
be adapted to a different music genre, e.g. increasing sam-
pling rate to increase the BPM interval.

2.1.3 Observation Potential φ

The observation potential depends on the beat and onset
likelihoods, the frame counter ft and the microtiming mt:

φ(ft,mt, xt) :=


bt if ft = 1

ot − bt if ft
lt
∈mt

1− ot otherwise

where bt and ot are beat and onset likelihoods, respectively.
The onset likelihood was estimated using the ensemble of
recurrent neural networks for onset activation estimation
from madmom [3]—we refer the interested reader to [5,12]
for further information. We designed a simple DNN for the
beat likelihood estimation and trained it on candombe and
samba. 4 It consists of 6 layers, namely: batch normal-
ization, dropout of 0.4, bidirectional gated recurrent unit
(Bi-GRU) [6] with 128 units, batch normalization, another
identical Bi-GRU layer, and a dense layer with two units
and a softmax activation.

We use a mel-spectrogram as input feature for the DNN.
The short–time Fourier transform is computed using a win-
dow length of 2048 samples and a hop of 401 samples, to
ensure a sampling rate of 110 Hz with audio sampled at
44.1 kHz. We use 80 mel filters, comprising a frequency
range from 30 Hz to 17 kHz.

3. DATASETS

In our experiments we use a subset of the candombe dataset
[35] and the BRID dataset [29] of Brazilian samba.
candombe dataset: it comprises audio recordings of
Uruguayan candombe drumming performances in which
ensembles of three to five musicians play the three differ-
ent candombe drums: chico, piano and repique. It has

4 The training proved necessary because the timekeeper pattern of can-
dombe rhythm has a distinctive accent displaced with respect to the beat
that misleads beat–tracking models trained on “Western” music [34].

separated stems of the different drums, which facilitates
the microtiming analysis. We focus our study on the chico
drum, which is the timekeeper of the ensemble. We select
a subset of the recordings in the dataset, in which the chico
drum plays a beat-length pattern of four sixteenth notes,
for a total of 1788 beats and 7152 onsets.
BRID dataset: it consists of both solo and ensemble per-
formances of Brazilian samba, comprising ten different in-
strument classes: agogô, caixa (snare drum), cuı́ca, pan-
deiro (frame drum), reco-reco, repique, shaker, surdo,
tamborim and tantã. We focus our study on the tam-
borim, which is one of the timekeepers of the ensemble.
We select a subset of the solo tracks, in which the tam-
borim plays a beat–length rhythmic pattern of four six-
teenth notes (shown in music notation 5 in Figure 3), for
a total of 396 beats and 1584 onsets.

Figure 3. Example of the beat-length rhythmic pattern of
the tamborim from the samba dataset in music notation.

3.1 Ground-Truth Generation

The microtiming ground-truth is inferred following the ap-
proach of [9], in which the onsets are used to derive the
swing-ratio annotations. Analogously, we compute the
microtiming ground-truth using the annotated onsets, ob-
taining one value of m = (m1,m2,m3) for each beat.
In order to mitigate the effect of onset annotation errors
and sensori-motor noise, we use a moving-median filter to
smooth the microtiming ground-truth, with a centered rect-
angular window of length 21 beats, as shown in Figure 4.
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Figure 4. Example of the microtiming values for a chico
drum recording in the candombe dataset. Dark and light
lines represent the ground-truth with and without median
filtering, respectively.

5 The symbol ‘>’ refers to an accent, and ‘↓’ implies to turn the tam-
borim upside down and execute the strike backwards.



4. EXPERIMENTS

4.1 Experimental Setup

We investigate the performance of the model and whether
the microtiming descriptor is useful for analyzing the mu-
sic at hand. To that end, we scale the candombe dataset to
match the size of the samba dataset at test time by selecting
excerpts in each track. We assess the model’s performance
using manually annotated onsets and beats, from which
we derive our ground-truth as explained in Section 3.1.
To evaluate if the microtiming estimation affects the beat
tracking, we compare the model’s performance with a sim-
plified version of it that only tracks beats. This version has
only variables ft and lt (see Figure 2); the same potential
ψf is used, and the observation potential is simply bt (the
beat likelihood) at beat positions and 1− bt otherwise. We
assess the microtiming estimation by: varying the pm mi-
crotiming transition parameter—allowing smooth changes
within the piece or no changes at all; and varying the toler-
ance used on the F-measure (F1) score. Finally, we discuss
our main findings on the potential of jointly tracking beats
and microtiming.

4.1.1 Implementation, Training and Evaluation Metrics

The DNN beat likelihood model is implemented in Keras
2.2.4 and Tensorflow 1.13.1 [1, 7]. We use the Adam op-
timizer [23] with default parameters. Training is stopped
after 10 epochs without improvement in the validation loss,
to a maximum of 100 epochs. We train the network with
patches of 500 frames and a batch size of 64, leaving one
track out and training with the rest, which we split in 30%
and 70% for validation and training respectively, among
the same genre. The onset activation was obtained with
madmom version 0.16.1 [3], and the mel-spectra was com-
puted using librosa 0.6.3 [31].

We evaluate the model using the F1 score for beat track-
ing with a tolerance window of 70 ms, as implemented
in mir eval 0.5 [33]. To evaluate the microtiming esti-
mation, we first select the correctly estimated beats, then
compute F1 for each estimatedmi

t with tolerance windows
of different lengths, and the overall score as the mean F1
(F1mt =

∑
i F1mi

t
/3).

4.2 Results and Discussion

The results on the microtiming tracking are depicted in
Figure 5, which shows the F1 scores as a function of the
tolerance. The different colors represent the different pm
values. We evaluate the model for the set of values pm =
{0, 0.001, 0.06}, that is no, very unlikely and more likely
microtiming changes respectively. Those values were ob-
tained from statistics on the data in preliminary experi-
ments. We searched for microtiming ratios within the in-
terval [0.25, 0.29]×[0.42, 0.5]×[0.67, 0.75], for microtim-
ing dimensions i = 1, 2, 3 respectively. This corresponds
to δL = (0,−0.03,−0.08) and δU = (0.04, 0, 0). 6 As il-

6 Symmetric windows around the isochronus sixteenth note positions
were used for the microtiming ratios in preliminary experiments with no
gain in tracking performance and a higher computational burden.
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Figure 5. Mean microtiming F-measure score on the two
datasets.

lustrated in Figure 5, we found that the restriction of a con-
stant microtiming profile (pm = 0) along the piece relates
to a worse performance, specially with small tolerances.
We hypothesize that this occurs because in some samba ex-
cerpts the microtiming ratio changes are percentually big-
ger than those tolerances, leading to an inaccurate estima-
tion. From considering the dependency of the F1 score
with respect to the tolerance, we observe that is possible to
achieve a reasonable F1 score from 0.025 on. The results
with the best compromise in terms of variance and median
are achieved with pm = 0.001, which aligns with the hy-
pothesis that microtiming profiles change very smoothly
over time. We explored different tolerances since we are
working with frames which are noisy, and the comparison
with the smoothed ground truth still makes sense with large
tolerances.
We found that the beat tracking performance of the model
reaches a 95.7% F1 score, being equivalent to the beat
tracking only version. The high F1 score in beat tracking
is not surprising given that the DNN was trained using data
of the same nature (acoustic conditions and genre) and the
sets are homogeneous. As mentioned before, state-of-the-
art beat tracking systems based on DNNs fail dramatically
in this specific scenario [34], particularly tracking the beats
in time-keeper instruments in candombe, because the data
is too different from what was used in their training. We do
not consider this as a challenging beat tracking case, but a
training stage was needed to perform adequately.

During our experiments we observed that the microtim-
ing descriptor mt could be used to help beat tracking in
some cases. Informing the microtiming profile a priori,
by setting δiL and δiU , can disambiguate beat positions by
helping the joint inference. This could allow to apply non
pre-trained beat tracking models to candombe recordings,
which usually fail in estimating the beat location by dis-
placing it one sixteenth note (due to an accent in the rhyth-
mic pattern). Aligned to that idea, the model could be use-



ful in scenarios where onsets from other instruments are
present. Besides, when the beat tracking is incorrect, the
obtained microtiming profile can be descriptive of the type
of mistake that occurs by contrasting the obtained profile
with the expected one. The same case mentioned before—
a lag of a sixteenth note in the beat estimation—shows in
the microtiming estimation as unexpected forward posi-
tions in the second and third sixteenth notes, with a syn-
chronous fourth one, which is the candombe microtiming
profile lagged by a sixteenth note position.
Microtiming description and insights: Figure 4 illustrates
an example of microtiming profile for an excerpt of the
candombe dataset. This example shows the microtiming
variations per beat interval along the complete recording.
In the performance of the example, the rhythmic pattern
is played with the same microtiming profile in the whole
track. This microtiming template is characteristic of some
patterns of candombe drumming [34], and it is present in
several recordings of the dataset. We noticed that micro-
timing profiles do not present significant variations within
tempo changes in the candombe dataset. However, the pre-
sented method can be used to characterize curves of mi-
crotiming vs. tempo that could be informative of musical
phenomena for other music genres or datasets.
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a beat that shows no microtiming, that is, where all onsets
are evenly spaced.

As shown in Figures 6 and 7, the microtiming descriptor
mt encodes musical features that are informative about
the music genre, instrument type or performer. These
two figures show the microtiming profile for all beats
from tamborim and chico recordings, using the annota-
tions for better visualization. Firstly, by observing the ‘no-
microtiming’ reference in the figures that corresponds to
mt = (0.25, 0.50, 0.75), it becomes clear that both samba
and candombe present considerable microtiming devia-
tions in their time-keeper instruments. Even though the
rhythmic patterns from both instruments present deviations
that tend to compress the IOI in a similar manner, the mi-
crotiming profile differs for each music style, being more

drastic in the case of the tamborim. This analysis should be
extended to other samba instruments in order to determine
if differences are due to the rhythmic pattern of a particular
instrument; or if different patterns within the same genre
tend to follow the same microtiming profile (characteristic
of the genre). Figure 7 shows the microtiming profiles of
each performer. It is quite clear that performers tend to be
consistent with their microtiming, opening the perspective
of studying microtiming profiles for performer characteri-
zation, as was done for jazz [9].
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Figure 7. Microtiming distribution depending on per-
former (top musician plays candombe and the others play
samba). A dot at (0.25, 0.50, 0.75) indicates the point of
no microtiming.

5. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a language model that per-
forms automatic tracking of beats and microtiming devi-
ations in a single formalism. We applied this model to
Afro-Latin American music, particularly Brazilian samba
and Uruguayan candombe, and we focused our study on
beat–length rhythmic patterns of timekeeper instruments,
with four articulated sixteenth notes. The promising results
we obtained with our method using a ground-truth derived
from annotated onsets indicate it can facilitate automatic
studies of these rhythms. This work intends to take a fur-
ther step towards holistic systems that produce consistent
and coherent estimations of music content.

As future work, we plan to extend our model to de-
scribe the microtiming profile depending on the nature of
the rhythmic pattern being played, i.e., whether they ar-
ticulate 2, 3, 4 or more notes, and to explore the useful-
ness of our model in challenging scenarios in comparison
to heuristic methods.
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