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We give a series of very general sufficient conditions in order to ensure the uniqueness of large solutions for -∆u + f (x, u) = 0 in a bounded domain Ω where f : Ω × R → R + is a continuous function, such that f (x, 0) = 0 for x ∈ Ω, and f (x, r) > 0 for x in a neighborhood of ∂Ω and all r > 0.

Introduction

Let Ω ⊂ R N be a bounded domain and f : Ω × R → R + a continuous function such that f (x, 0) = 0 and r → f (x, r) is nondecreasing for x ∈ Ω, and f (x, r) > 0 for x in a neighborhood of ∂Ω and all r > 0. This paper deals with the uniqueness question of the solution of the equation

-∆u + f (x, u) = 0 in Ω, (1.1) 
1 satisfying the blow-up condition

lim d(x)→0 u(x) = ∞, (1.2) 
where d(x) := dist (x, ∂Ω). Whenever a solution to (1.1)-(1.2) exists it is called a large solution or an explosive solution. Although, thanks to [START_REF] López-Gómez | Uniqueness of large solutions for non-monotone nonlinearities[END_REF]Corollary 3.3], in the one-dimensional case N = 1 with f (x, u) ≡ f (u) the above problem admits a unique solution, the question of ascertaining whether or not (1.1)-(1.2) possesses a unique solution received only partial answers even in the autonomous case when f (x, u) ≡ f (u) is independent of x ∈ Ω. Astonishingly, when N = 1 the large solution can be unique even when f (u) is somewhere decreasing (see [START_REF] López-Gómez | Uniqueness of large solutions for non-monotone nonlinearities[END_REF] and [START_REF] López-Gómez | Multiplicity of large solutions for quasi-monotone pulse-type nonlinearities[END_REF]), which measures the real level of difficulty of the problem of characterizing the set of f (x, u) for which (1.1)-(1.2) has a unique positive solution; it is an extremely challenging problem.

Existence of large solutions is associated to the Keller-Osserman condition. When f is independent of x, this condition was introduced in [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] for proving the first existence results of large solutions in a smooth bounded domain. It reads When f = f (x, r) a more general version called in this paper (KO-loc) is introduced in [START_REF] López-Gómez | Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems[END_REF] and in [START_REF] Véron | Large Solutions of Elliptic Equations with Strong Absorption[END_REF]. It asserts that, for any compact subset K of Ω, there exists a continuous nondecreasing function h K : R + → R + such that f (x, r) ≥ h K (r) ≥ 0 for all x ∈ K and r ≥ 0

where h K satisfies

∞ a ds H K (s) -H K (a) < ∞ for some a > 0 where H K (s) = s 0 h K (t)dt. (1.5)
The condition (KO-loc) guarantees the existence of a maximal solution, u max , to equation (1.1). It is obtained as the limit of a decreasing sequence of large solutions {u n } n∈N in an increasing sequence of smooth domains {Ω n } n∈N such that Ω n ⊂ Ω and ∪ n≥1 Ω n = Ω (see e.g. [START_REF] López-Gómez | Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems[END_REF], [START_REF] Véron | Large Solutions of Elliptic Equations with Strong Absorption[END_REF], [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF]). However, it is not always true that the maximal solution is a large solution. This property depends essentially of the regularity of the domain. If f (x, u) = u p with p > 1, the necessary and sufficient condition for such a property to hold is given by [START_REF] Labutin | Wiener regularity for large solutions of nonlinear equations[END_REF][START_REF] Marcus | Maximal solutions for -∆u + u q = 0 in open and finely open sets[END_REF]. The existence of a minimal large solution necessitates a minimum of assumptions, either on the regularity of Ω or on the function f (x, r) (see [START_REF] Véron | Large Solutions of Elliptic Equations with Strong Absorption[END_REF]). Actually, if Ω is the interior of its closure there exists a decreasing sequence of smooth domains Ω n such that

∩ n≥1 Ω n = Ω. If f is defined in Ω × R
where Ω is a neighborhood of Ω with the same monotonicity and (KO-loc) properties therein as in Ω × R, and if f (x, r) ∂Ω > 0, then a sequence of large solutions {u n } n∈N can be constructed in Ω n and the limit, u , of the {u n } n∈N is a candidate for being the minimal large solution, u min , since it remains smaller than any large solution in Ω. If f (x, r) ∂Ω = 0, then the construction of the minimal solution is possible as soon as for any n > 0 (1.1) admits a solution with value n on ∂Ω. For this a minimal regularity condition on ∂Ω is needed, the Wiener condition [10, p. 206]. Furthermore, because of the maximum principle and the fact that f (x, 0) = 0 and f (x, r) > 0 for all r > 0 when x belongs to some neighborhood V of ∂Ω the above (KO-loc) assumption can be weakened in the sense that the function h K : R + → R + satisfying (1.4) and (1.5) has to exist only when K is a compact subset of V.

The main property of u max and u min is that any solution u of (1.1)-(1.2), should it exists, satisfies u min (x) ≤ u(x) ≤ u max (x) for all x ∈ Ω.

The problem of uniqueness reduces to prove that u max = u min . The first results in this direction dealing with f (x, u) = u p for some p > 1, using the asymptotic expansion of any large solution, are proved in [START_REF] Bandle | Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior[END_REF]. In this approach, the regularity of the boundary is a crucial assumption. The key point is to prove that

lim d(x)→0 u max (x) u min (x) = 1.
After this relation is obtained the uniqueness follows from the fact that there holds

((1 + )r) p ≥ (1 + )f (r) for all , r ≥ 0.
For regular domains Ω, this technique was substantially refined in [START_REF] López-Gómez | Optimal uniqueness theorems and exact blow-up rates of large solutions[END_REF] and [START_REF] López-Gómez | Metasolutions of Parabolic Problems in Population Dynamics[END_REF] to cover the nonautonomous case when f (x, u) = a(x)u p for some non-negative function a(x) such that a(x) > 0 for sufficiently small d(x) (see also [START_REF] Cirstea | Existence and uniqueness of blow-up solutions for a class of logistic equations[END_REF], [START_REF] Cirstea | Solutions with boundary blow-up for a class of nonlinear elliptic problems[END_REF], [START_REF] Costin | Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry[END_REF] and [START_REF] Costin | Uniqueness of large solutions[END_REF]). The asymptotic expansion of a large solution near the boundary requiring so many assumptions, both on the nonlinearity f and on the regularity of ∂Ω, that a new method was introduced in [START_REF] Marcus | Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF] in order to bypass this step. To apply that method the boundary has to satisfy the local graph condition, an assumption which is used also in this article. According to it, for every P ∈ ∂Ω, there exist a neighborhood Q P of P , a positive oriented basis, { ν 1 , . . . , ν N }, obtained from the canonical one by a rotation, and a function

F ∈ C(R N -1 ; R) such that F (0, . . . , 0) = 0, Q P ∩ Ω = Q P ∩ {x ∈ R N : x N < F (x 1 , . . . , x N -1 )} + P , (1.6) 
where the coordinates (x 1 , . . . , x n ) in (1.6) are expressed with respect to the basis { ν 1 , . . . , ν N } (see Figure 1.1). Naturally, ∂Ω satisfies the local graph property if it is Lipschitz continuous. Similarly, in order to avoid the use of the asymptotic expansions of the large solutions near the boundary in the proof of the uniqueness, another technique was introduced in [START_REF] López-Gómez | Uniqueness of radially symetric large solutions[END_REF], and later refined in [START_REF] Cano-Casanova | Blow-up rates of radially symmetric large solutions[END_REF] and [START_REF] López-Gómez | Uniqueness of large positive solutions[END_REF], in a radially symmetric context, based on the strong maximum principle. This technique, which works out even in the context of cooperative systems, [START_REF] López-Gómez | Uniqueness of large positive solutions for a class of radially symmetric cooperative systems[END_REF], will be combined in this paper with the technique of [START_REF] Marcus | Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF] in order to get the new findings of this paper.

As far as concerns the nonlinearity f (•, r), in most of the previous papers it is imposed that its rate of decay (or blow-up) near ∂Ω is a precise function of d(x) (see, e.g., [START_REF] Du | Blow-up solutions for a class of semilinear elliptic and parabolic equations[END_REF][START_REF] García-Melián | Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up[END_REF][START_REF] López-Gómez | The boundary blow-up rate of large solutions[END_REF][START_REF] López-Gómez | Optimal uniqueness theorems and exact blow-up rates of large solutions[END_REF][START_REF] Ouyang | The uniqueness of blow-up for radially symmetric semilinear elliptic equations[END_REF][START_REF] Ouyang | The exact boundary blow-up rate of large solutions for semilinear elliptic problems[END_REF][START_REF] Véron | Large Solutions of Elliptic Equations with Strong Absorption[END_REF][START_REF] Xie | Uniqueness and blow-up rate of large solutions for elliptic equation -∆u = λub(x)h(u)[END_REF][START_REF] Zhang | Blow-up rates of large solutions for elliptic equations[END_REF][START_REF] Zhang | Blow-up rates of large solutions for semilinear elliptic equations, Commun[END_REF]). Throughout this paper it is assumed that x → f (x, r) decays completely nearby ∂Ω in the sense that, for every z ∈ ∂Ω, there exists δ > 0 such that |x -z| < δ and x ∈ Ω imply

f (x, + r) -f (x + ν N , + r) ≥ f (x, ) -f (x + ν N , ) ≥ 0 for all r, ≥ 0, if x + ν N ∈ Ω and ∈ (0, δ).
(1.7)

where ν N = (0, ..., 0, 1) if (1.6) holds. Note that this assumption is not intrinsic to the domain since it depends of the choice of the neighborhood Q P and the frame { ν 1 , . . . , ν N }. In the special case 

Q P when f (x, r) = a(x) f (r)
where f : R → R is monotone nondecreasing, positive on (0, ∞) and vanishes at 0, and a ∈ C(Ω) is nonnegative and positive in a neighborhood of ∂Ω, the assumption (1.7) holds if and only if x → a(x) decays nearby ∂Ω in the sense that

0 ≤ a(x + ν N ) ≤ a(x) if x + ν N ∈ Ω and ∈ (0, δ). (1.8)
If Ω has a Lipschitz boundary, then there is a truncated circular cone C γ = C ∩ B δ such that any point P ∈ ∂Ω is the vertex of the image I P (C γ ) of C γ by an isometry I P of R N and I P (C γ ) ⊂ Ω c . In such case, ν N can be chosen to be the axis of rotational symmetry of C γ .

In this paper, associated to f (x, u), we consider the function g defined on Ω × R + by

g(x, ) := inf{f (x, + u) -f (x, u) : u ≥ 0}, for all (x, ) ∈ Ω × R + . (1.9)
There always holds g ≤ f and g(x, .) is monotone nondecreasing as f (x, .) is. Thus, if g satisfies (KO-loc), so does f , but the converse is not true in general as it is shown in the Appendix. Moreover, if f (x, .) is convex for all x ∈ Ω, then f = g. This is due to the fact that

f (x, u + ) -f (x, u) = 0 ∂ r u f (x, u + s)ds ≥ 0 ∂ r u (x, u + s)ds = f (x, u + ) -f (x, u ) for all u ≥ u ≥ 0, > 0 and x ∈ Ω, since the right partial derivative ∂ r u f (x, u) of u → f (x, u) is nondecreasing with u. Hence, the minimum of u → f (x, u + ) -f (x, u)
is achieved at u = 0 and therefore, f = g. Finally, if f decays completely nearby ∂Ω, then g also decays in the sense that

0 ≤ g(x + ν N , r) ≤ g(x, r) for all r ≥ 0, if x + ν N ∈ Ω and ∈ (0, δ).
(1.10)

Furthermore, taking = 0 in (1.7), it becomes apparent that f satisfies the same inequality (1.10) as g.

The following equation

-∆u + g(x, u) = 0 in Ω, (1.11) 
closely related to (1.1) plays a fundamental role in our study. Following [23, Def. 2.6], we introduce the following concept.

Definition Let z ∈ ∂Ω. We say that equation (1.11) possesses a strong barrier at z if there exists a number r z > 0 such that, for every r ∈ (0, r z ], there exists a positive supersolution u = u r,z of

(1.11) in Ω ∩ B r (z) with u r,z ∈ C(Ω ∩ B r (z)) and lim y → x y ∈ Ω ∩ Br (z) u r,z (y) = ∞ for all x ∈ Ω ∩ ∂B r (z).
(1.12)

Notice that the local supersolution u r,z of (1.11) is also a supersolution of (1.1) since g ≤ f . Our first result is the following.

Theorem 1.1 Suppose that Ω is Lipschitz continuous and f ∈ C(Ω × R) satisfies f (x, 0) = 0, r → f (x, r
) is nondecreasing for all x ∈ Ω, and f (., r) decays completely nearby ∂Ω as it is formulated in (1.7). Assume, in addition, that the function g ∈ C(Ω × R) defined from f by (1.9) is positive on a neighborhood V of ∂Ω and satisfies (KO-loc); that is, for any compact subset K ⊂ V there exists a continuous nondecreasing function h K : R + → R + such that g(x, r) ≥ h K (r) ≥ 0 for all x ∈ K and r ≥ 0, The assumption that g satisfies (KO-loc) is actually an assumption on f . Indeed, f must grow sufficiently fast at ∞ so that g still satisfies (KO-loc). This assumption is weaker than the superadditivity with constant C introduced in [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF], according with it f (x, u + ) ≥ f (x, u) + f (x, ) -C for all x ∈ Ω and u, ≥ 0.

(1.14)

Under the superadditivity assumption, there holds, for any , u ≥ 0, that

g(x, ) ≥ f (x, + u) -f (x, u) ≥ f (x, ) -C.
Therefore, if f satisfies (KO-loc), so does g. Our second result, valid under a weaker assumption on Ω, requires a new assumption on f . Theorem 1.2 Assume that Ω satisfies the local graph property and that the assumptions on f and g in Theorem 1.1 hold. Suppose, moreover, that there exists φ ∈ C 2 (R + ) such that φ(0) = 0, φ(r) > 0 for r > 0, and φ (r) ≥ 0 and φ (r) ≤ 0 for all r ≥ 0, for which the function f verifies the inequality

f (x, r + φ(r)) f (x, r) ≥ 1 + φ (r) for all r ≥ 0 and x ∈ Ω, (1.15) 
for some sufficiently small > 0. Then, the problem (1.1)-(1.2) possesses at most one solution.

Although the assumption on (f, φ) may look unusual, it turns out that when φ(r) = r it is equivalent to

r → f (x, r) r is nondecreasing on (0, ∞), (1.16) 
which is the assumption used in [START_REF] Marcus | Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF]. Since (1.16) implies that

f (x, r + ln(1 + r)) r + ln(1 + r) ≥ f (x, r) r or, equivalently, f (x, r + ln(1 + r)) f (x, r) ≥ 1 + ln(1 + r) r for all r ≥ 0, (1.17) which entails f (x, r + ln(1 + r)) f (x, r) ≥ 1 + 1 + r for all r ≥ 0, (1.18) 
and (1.18) is (1.15) for the special choice φ(r) = ln(1 + r), it becomes apparent that (1.15) is substantially weaker than (1.16).

Proof of Theorem 1.1

Since Ω is a Lipschitz continuous bounded domain, it satisfies the local graph property at each point of the boundary. Let P ∈ ∂Ω and consider a basis { ν 1 , . . . , ν N } and a neighborhood Q P satisfying (1.6). Throughout this proof, it is assumed that any point of R N is expressed in coordinates with respect to { ν 1 , . . . , ν N }. Setting

x := (x 1 , ..., x N -1 ) for every x = (x 1 , ..., x N -1 , x N ) ∈ R N ,
and denoting by B (P ) the ball of R N -1 with center P = ( P , 0) and radius , we can assume that

Q P = {x ∈ R N : |x -P | < , |x N -P N | < h} = B (P ) × (P N -h, P N + h)
for some > 0, h > 0 such that ∂Ω is bounded away from the "top" and the "bottom" of Q P and ∂Ω ∩ Q P = ∂Ω ∩ Q P (see Figure 1.1). Thus, setting

Θ := (Q P ∩ Ω) -ν N , ≥ 0, (2.1) 
the existence of 1 > 0 such that

Θ ⊂ Ω for all 0 < < 1 (2.2)
is guaranteed. Subsequently, we denote

Γ 0, := (Q P ∩ ∂Ω) -ν N , Γ ∞, := (∂Q P ∩ Ω) -ν N , for all ≥ 0, (2.3) 
(see Figure 2.2) and consider 0 := min{ 1 , δ}, where δ is the one of (1.7). Then, the following lemma of technical nature holds. Lemma 2.1 Under the assumptions of Theorem 1.1, the problem

   -∆ + g(x, ) = 0 in Θ 0 = 0 in Γ 0,0 = +∞ in Γ ∞,0 , (2.4) 
admits, at least, a positive solution, .

Proof. As we are imposing that = 0 on Γ 0,0 , our singular boundary condition is reminiscent of those considered previously in [START_REF] Marcus | Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF][START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF]. To construct one can argue as follows. First, consider any increasing sequence of nonnegative functions, 

{b n } n∈N ⊂ C 0,1 (∂Θ 0 ), satisfying b n (x) = 0 for all x ∈ Γ 0,0 lim n→∞ b n (x) = +∞ for all x ∈ Γ ∞,0 ,
-∆L + g(x, L) = 0 in Θ 0 L = b n on ∂Θ 0 . (2.5)
The solution is the unique minimizer of the lower semicontinuous convex functional

J(L) = Θ0 1 2 |∇L| 2 + G(x, L) dx with G(x, L) = L 0 g(x, s)ds,
defined over the affine space of functions in H 1 (Θ 0 ) with trace b n on ∂Θ 0 . Since {b n } n∈N is increasing, it follows from the maximum principle that

L n ≤ L n+1 for all n ≥ 1.
Since g satisfies the strong barrier property there exists r P > 0 such that, for any r ∈ (0, r P ], there exists a supersolution u r,P of (1.11) in Ω∩B r (P ) which is continuous in Ω∩B r (P ). Up to changing Q P we can assume that for some r ∈ (0, r P ],

B r (P ) ∩ ∂Ω = Q P ∩ ∂Ω = Γ 0,0 and Ω ∩ B r (P )

⊂ Q P ∩ Ω = Θ 0 .
By the maximum principle, L n ≤ u r,P in B r (P ) ∩ ∂Ω. Since ∂Ω is Lipschitz and the L n remain locally bounded in a neighborhood of Q P ∩ ∂Ω, it follows by [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF]Th. 8.29] that they are locally Hölder continuous near Q P ∩ ∂Ω and hence the sequence {L n } n∈N is locally uniformly continuous near Q P ∩ ∂Ω. Therefore, the pointwise limit

:= lim n→∞ L n
is well defined in Θ 0 and achieves finite values in Ω ∩ B r (P ) since it is dominated by u r,P . In what follows we prove that is continuous in Ω ∩ Q P , vanishes on Γ 0,0 and satisfies (2.4). For every ζ ∈ Θ 0 consider r > r > 0 so that Br (ζ) ⊂ Θ 0 . Obviously, there exists an integer n 0 such that L n | Br(ζ) is well defined for all n ≥ n 0 . Let m denote the maximal positive large solution of

-∆m + g(x, m) = 0 in B r (z).
Then, we have that

0 ≤ L n (x) < ||m|| C(Br(z)) for all x ∈ Br (z) and n ≥ n 0 .
Thus, combining a rather standard compactness argument together with the interior Schauder estimates there exists a subsequence, {L n k } k∈N , which converges locally uniformly to in Θ 0 . Clearly satisfies (2.4), and since the sequence {L n } n∈N is locally Hölder continuous up to Q P ∩ ∂Ω, vanishes on Γ 0,0 .

The next result provides us with a supersolution of (1.1) in Θ . Proposition 2.2 For every ∈ (0, 0 ), the function

ū (x) = u min (x + ν N ) + (x + ν N ), x ∈ Θ ,
provides us with a supersolution of (1.1) in Θ such that ū = +∞ on ∂Θ .

Proof. The fact that ū = +∞ on ∂Θ follows readily from the definition. Indeed, by (2.1) and

(2.3), we have that x + ν N ∈ ∂Ω if x ∈ ∂Θ \ Γ ∞, . Thus, ū (x) ≥ u min (x + ν N ) = +∞ for all x ∈ ∂Θ \ Γ ∞, .
On the other hand, by (2.4), we have that, for every x ∈ Γ ∞, ,

ū (x) ≥ (x + ν N ) = +∞.
Therefore, ū = +∞ on ∂Θ . Now, restricting ourselves to Θ , it follows from (2.4) that

-∆ū (x) = -∆u min (x + ν N ) -∆ (x + ν N ) = -f (x + ν N , u min (x + ν N )) -g(x + ν N , (x + ν N )).
by the monotonicity of f we find that

-∆L = f (x, u max ) -f (x, u min ) ≥ 0 in Ω L = 0 on ∂Ω,
and, consequently, applying the maximum principle, we can infer that L = 0. This ends the proof of Theorem 1.1.

3 Proof of Theorem 1.2

We assume that u max is a large solution, i.e. satisfies (1.1)-(1.2). The next result which has the same expression as Lemma 2.1 needs actually a slightly different proof due to the fact that the boundary may not be regular at all. Lemma 3.1 Under the assumptions of Theorem 1.2, there exists a nonnegative function ∈ C 1 (Θ 0 ), bounded on any compact subset of Ω ∩ Q P , satisfying

-∆ + g(x, ) = 0 in Θ 0 = +∞ on Γ ∞,0 . (3.1) 
Proof. Since the equation (1.11) admits a strong barrier at P , we can assume that there admits a supersolution in B ρ (P ) ⊂ Q P , where Q P is the cylinder of diameter ρ. Hence, B ρ (P ) ⊂ Q P and B ρ (P ) ∩ Ω ⊂ Q P ∩ Ω = Θ 0 . We denote the barrier by u ρ,P . For σ > 0 small compared to ρ we consider a domain Θ σ such that

Ω ∩ Θ σ ⊂ Θ σ ⊂ Ω ∩ Θ σ
2 , and we denote by Γ 0,σ its upper boundary and by Γ ∞,σ its lateral and lower boundaries. We can assume that Γ 0,σ is Lipschitz continuous. Let = n,σ be the solution, obtained by minimization, of

   -∆ + g(x, ) = 0 in Θ σ = 0 on Γ 0,σ = n on Γ ∞,σ .
Since u ρ,P ∈ C(Ω ∩ B ρ (P )) is positive in Ω ∩ B ρ (P ), for sufficiently small σ we have that n,σ ≤ u ρ,P in Θ σ ∩ B ρ (P ). Thus, By the maximum principle n,σ ≤ n ,σ in Θ σ if n > n and σ < σ.

When σ ↓ 0, n,σ increases and converges to a function := n which satisfies

   -∆ + g(x, ) = 0 in Θ 0 ≤ u ρ,P on Γ 0,0 = n on Γ ∞,0 .
As g satisfies (KO-loc), n remains locally bounded in Θ 0 . Therefore, n ↑ as n → ∞. Clearly, is bounded on any compact set K ⊂ Ω ∩ Q P , it belongs to C 1 (Θ 0 ), by standard elliptic regularity theory, and satisfies (3.1). Now, suppose that u(x) is any positive solution of (1.1)-(1.2) and consider

ūε (x) := u(x + ε ν N ) + (x + ε ν N ), x ∈ Θ ε , (3.2) 
for sufficiently small ε > 0. The argument of the proof of Proposition 2.2 works out mutatis mutandis to show that ūε is a supersolution of (1.1) in Θ ε . Moreover, by (2.2), u is bounded on ∂Θ ε for sufficiently small ε > 0. Thus, arguing as in the last step of the proof of Theorem 1.1, it follows from the strong maximum principle that

ūε (x) = u(x + ε ν N ) + (x + ε ν N ) ≥ u max (x), for all 0 < ε ≤ ε 0 , x ∈ Θ ε . (3.3)
As there exists a decreasing sequence ε n ↓ 0 as n ↑ +∞ such that the function

= lim n→∞ (• + ε n ν N ) solves (3.1), particularizing (3.3) at ε = ε n and letting n ↑ +∞ yields u(x) + (x) ≥ u max (x) for all x ∈ Θ 0 . (3.4) 
On the other hand, by the definition of u max there holds

u max (x) + (x) ≥ u(x) for all x ∈ Θ 0 .
Therefore, for every x ∈ Θ 0 , we have that

(x) ≥ u max (x) -u(x) ≥ 0. (3.5) 
Finally, in order to infer from (3.5) that u(x) = u max (x) for all x ∈ Θ 0 , we will use the next result of technical nature.

Lemma 3.2 Let u 1 (x) and u 2 (x) be positive solutions of (1.1)-(1.2) such that

lim d(x)↓0 u 2 (x) -u 1 (x) ϕ(u 1 (x)) = 0. (3.6)
Then, u 1 = u 2 in Ω.

Proof. For sufficiently small ε > 0, consider the function v defined by

v := u 1 + εϕ(u 1 ), (3.7) 
where ϕ is the function introduced in the statement of Theorem 1.2. We claim that v ≥ u 2 in a neighborhood of ∂Ω. Indeed, by (3.6), for any > 0 there exists δ > 0 such that if d(x) < δ, then

u 2 (x) -u 1 (x) ϕ(u 1 (x)) ≤ ε = v(x) -u 1 (x) ϕ(u 1 (x)) . 
Thus, v(x) ≥ u 2 (x) provided d(x) ≤ δ. On the other hand, since ϕ ≤ 0, we have that

-∆v = -∆u 1 -εϕ (u 1 )∆u 1 -εϕ (u 1 )|∇u 1 | 2 ≥ -(1 + εϕ (u 1 ))∆u 1 = -(1 + εϕ (u 1 ))f (x, u 1 (x)).
where a ∈ C(Ω) is nonnegative and positive near ∂Ω and f : R + → R + is continuous and nondecreasing, vanishes at 0 and satisfies (1.3).

1-If a > 0 on ∂Ω, then the Keller-Osserman condition holds in V, where V is a neighborhood of ∂Ω, because the function a can be extended to Ω c as a continuous and positive function by Whitney embedding theorem (see e.g. [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]). It is a completely open problem to find out sufficient conditions in the case where a > 0 vanishes on the boundary.

2-If ∂Ω is C 2 and, for some α > 0,

g(x, r) ≥ d α (x)u p
it is proved in [START_REF] Marcus | The Boundary Trace and Generalized Boundary Value Problem for Semilinear Elliptic Equations with Coercive Absorption[END_REF] that the strong barrier property holds. When ∂Ω is Liptschiz the distance function loses its intrinsic interest and has often to be replaced by the first eigenfunction φ 1 of -∆ in H 1 0 (Ω). In such case, we conjecture that the strong barrier property holds if g(x, r) ≥ φ α 1 (x)u p for some α > 0.

3-If ∂Ω is C 2 and g(x, r) ≤ e -κ d(x) r p with κ > 0 and p > 1, then the strong barrier property does not hold. Indeed, it is proved in [START_REF] Marcus | Boundary trace of positive solutions of nonlinear elliptic inequalities[END_REF] that, for every a ∈ ∂Ω and k > 0, the problem Taking a point a ∈ ∂Ω ∩ B c 2r (z), for any k > 0 there exists n = n(k) such that v a,k ≤ n(k) on Ω ∩ ∂B r (z). Since v a,k = 0 on ∂Ω ∩ B r (z), it follows that v a,k ≤ u n . Thus, letting k → ∞, yields u min ≤ u r,z , which is a contradiction. 

F

  (s) -F (a) < ∞ for some a > 0 where F (s) = s 0 f (t)dt.(1.3)
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 11 Figure 1.1: The neighborhood Q P
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 13 where h K satisfies (1.5). If the equation (1.1) possesses a strong barrier at any z ∈ ∂Ω, then the problem (1.1)-(1.2) possesses a unique solution, i.e. u min = u max .
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 22 Figure 2.2: The domain Θ

-

  ∆u + e -κ d(x) u p = 0 in Ω, u = kδ a on ∂Ω, (4.2)admits a unique positive solution, v a,k . Furthermore, the nonlinearity r → r p satisfies the Keller-Osserman condition. Hence, the equation-∆u + e -κ d(x) u p = 0 in Ω (4.3)admits a minimal, u min , and a maximal, u max , large solution (probably they are equal). However, v a,k ↑ u min when k → ∞. Arguing by contradiction, assume that the equation satisfies the strong barrier property at z ∈ ∂Ω. Then, there exists r > 0 such that the solution u := u n of the problem-∆u + e -κ d(x) u p = 0 in B r (z) ∩ Ω, u = n on Ω ∩ ∂B r (z), u = 0 on ∂Ω ∩ B r (z), converges, as n → ∞, to a barrier function u r,z ∈ C(Ω ∩ B r (z)) satisfying -∆u + e -κ d(x) u p = 0 in B r (z) ∩ Ω, u = ∞on Ω ∩ ∂B r (z).

4 -

 4 If ∂Ω is C 2 and g(x, r) = e -1 d α (x) r p , with 0 < α < 1 and p > 1, it is proved in[START_REF] Shishkov | Diffusion versus absorption in semilinear elliptic equations[END_REF] that the limit when k → ∞ of the solutions v a,k of-∆u + e -1 d α (x) u p = 0 in Ω u = kδ a on ∂Ω,(4.4)is a solution of -∆u + e -1 d α (x) u p = 0 in Ω which vanishes on ∂Ω \ {a} and blows up at a. We conjecture that the strong barrier property holds if g(x, r) ≥ e -1 d α (x) r p .

Thus, owing to (1.7)- (1.10), it becomes apparent that -∆ū (x) ≥ -f (x, u min (x + ν N )) -g(x, (x + ν N ))

for every x ∈ Θ . Finally, by the definition of g(x, u) (see (1.9)), we find that

Therefore, ū is a supersolution of (1.1) in Θ , which ends the proof.

We can complete now the proof of Theorem 1.1. By (2.2), u max is bounded on ∂Θ for all 0 < ≤ 0 . Thus, it follows from the strong maximum principle that

To prove (2.6) we argue by contradiction. Since

) fails, then, for some ∈ (0, 0 ), there exists an open subset,

Thus, setting v := u max -ū , we find from Proposition 2.2 and assumption (2.7) that

while v = 0 on ∂D. Consequently, v < 0 in D, which implies u max < ū in D and contradicts the assumption (2.7). This contradiction shows the above claim. Now, letting ↓ 0 in (2.6) yields

Therefore, it becomes clear that

Finally, setting L := u min -u max ≤ 0, Hence,

Consequently, thanks to (3.7) and (1.15), it is clear that

in Ω. So, v is a supersolution of (1.1) and hence, v ≥ u 2 in Ω for sufficiently small ε > 0. Thus, letting ε ↓ 0 yields u 1 ≥ u 2 in Ω. By symmetry, u 1 = u 2 holds, which ends the proof.

Dividing (3.5) by ϕ(u(x)) and letting d(x) ↓ 0, yields

Consequently, by Lemma 3.2, we find that u = u max . This ends the proof of Theorem 1.2.

Appendix

On the Keller-Osserman condition

The next result shows how imposing the Keller-Osserman condition on the associated function g is stronger than imposing it on f . Proposition 4.1 There are increasing functions f that satisfy (KO) and such that the corresponding function g does not.

Proof. To construct such an example, one can consider any function f such that By the properties of u 2 and u 3 , such a sequence of intervals exists. For this choice we have that, for any given > 0 and u > 0, [u, + u] ⊂ I n for sufficiently large n > 0 and hence,

Thus, g( ) = 0. Therefore, g ≡ 0, which does not satisfy (KO).

On the strong barrier property

The general problem of finding conditions so that the strong barrier property occurs is open. We give below some cases where it holds and a case where it does not. They all deal with nonlinearity of the form f (x, r) = a(x) f (r) (4.1)