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Abstract 

 

Cellulose aerogel beads were made with JetCutting technology and dried by supercritical 

CO2 extraction. Ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium propionate 

([DBNH][CO2Et]), was shown to be a suitable solvent due to its rheological and 

thermodynamic properties. The flow and viscoelastic properties of cellulose-[DBNH][CO2Et] 

solutions were studied in detail as a function of polymer concentration and solution 

temperature and compared to those of cellulose-1-ethyl-3-methylimidazolium acetate 

([Emim][OAc]). [DBNH][CO2Et] is thermodynamically better solvent as cellulose intrinsic 

viscosity is more than two times higher than that in [Emim][OAc]. This allows 

simultaneously fitting i) the processing window of the JetCutter technology which requires 

rather low solution viscosity at high shear rates and ii) cellulose concentration being high 

enough above the overlap to make intact aerogel beads. The beads were prepared from 2 and 

3 wt% cellulose-[DBNH][CO2Et] solutions and coagulated in water, ethanol and isopropanol. 

Bead sizes were from 0.5 to 0.7 mm when made from 2% solutions and up to 1.7 mm when 

prepared from 3% solution. Cellulose aerogel beads prepared by JetCutting possessed main 

characteristics similar to those of monolithic cellulose aerogels obtained from cellulose 

dissolved in other solvents: the specific surface area was 240 – 340 m2.g-1 at densities of 

0.04–0.07 g.cm-3.  
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1. Introduction 

 

Cellulose is an inexhaustible natural polymer; its use is reconsidered in our days due to 

the discoveries of non-toxic cellulose solvents and possibilities of making materials with 

various functionalities due to a large amount of reactive hydroxyl groups on anhydroglucose 

unit. Cellulose based aerogels are new and very promising materials offering a wide range of 

potential applications from bio-medical and cosmetics (delivery systems, scaffolds) to 

materials for adsorption and/or separation and electro-chemistry when pyrolysed.  

Two main ways of making cellulose aerogels are known. The first is based on cellulose 

dissolution in a direct solvent resulting in cellulose II aerogels. Solvents used are 8% NaOH-

water,1,2 ionic liquids,3–7 N-methyl-morpholine N-oxide (NMMO) monohydrate,8,9 

LiCl/dimethylacetamide10, calcium thiocyanate tetrahydrate11 and salt hydrate melts from zinc 

chloride.12 To prevent pores’ collapse during drying either lyophilisation4,10,11 or drying with 

supercritical (sc) CO2 
1–3,5,6,8,9,12 is used. The former usually leads to so-called cryogels with 

large pores due to ice crystals growth, resulting in very low densities, 0.05 – 0.1 g.cm-3, but 

not very high specific surface area, 10-100 m2.g-1.7,11 Supercritical drying with CO2 much 

better preserves the structure of the network formed before drying (cellulose solvent is usually 

washed out by water or ethanol) leading to densities around 0.1 – 0.2 g.cm-3 and specific 

surface areas ranging from 200 to 500 m2.g-1.1,3,5,6,8,9 The reason is that in sc conditions 

capillary pressure, which develops during drying and is responsible for pores’ collapse, is 

theoretically absent due to zero surface tension of the evaporating fluid. The overall 

characteristics of cellulose II aerogels are similar to those of other bio-aerogels from starch,13 

pectin,14,15 alginate,16,17 etc. It has to be noted that one of the advantages of cellulose, as 

compared to many other polysaccharides, is that it is temperature, pH and ion non-sensitive.  
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The second way of making cellulose aerogels is to use cellulose nanofibers, which can be 

either bacterial cellulose,18 or micro- or nano-fibrillated cellulose, the latter prepared via 

mechanical disintegration of the native fibers,19,20 often accompanied by the enzymatic and/or 

chemical treatment. In these cases the starting material is a continuous “non-woven” network 

of cellulose I nanofibers filled with water. Drying via lyophilisation results in cellulose I 

cryogels with density of 0.02 – 0.03 g.cm-3 and specific surface area 50 – 100 m2.g-1.19,21 

When identical precursors are dried via sc route, the obtained cellulose I aerogels have density 

as low as 0.01 g.cm-3 and surface area of 500-600 m2.g-1.20 It should be noted that in addition 

to high porosity and high specific surface area, cellulose I and cellulose II aerogels offer 

numerous options of various functionalisations, making these materials versatile and targeted 

to different applications. 

Until now, most of cellulose aerogels are produced in the form of monoliths which is 

simply due to easy preparation on laboratory scale. However, for many practical applications 

(food, cosmetics, medical, sorption and separation) the shape of beads with size varying from 

few microns to few millimeters, depending on the application, is preferable. Also, each 

processing step (solvent exchange, drying) is much faster with small beads as compared to 

monoliths which are usually of few cubic centimeters volume. Making cellulose beads is 

known since long time for immobilization, purification, separation and filtration purposes, 

however, in most of the cases they are used either in the “wet state” (never dried, usually in 

water) or, if dried, they are dried at ambient conditions which results in a non-porous material. 

There are two general approaches for making cellulose II beads: i) dissolving a cellulose 

derivative (viscose, cellulose esters, or ethers), and then regenerating cellulose in a 

coagulation bath,22–24 or ii) from cellulose solutions dissolved in direct solvents.25–32 The 

techniques to make beads from cellulose solutions are either by using classical droplet-

making machines like atomizers,24,25 by dropping solution with a syringe,2,26,27,30,32 by under-
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water pelletisation,31 or using emulsion method.22,28,29 A recent review summarises various 

ways of production of cellulose beads.33 

Very few is reported on the whole “chain” of making cellulose aerogel beads, from 

cellulose dissolution to bead shaping and to resulting aerogel properties. The majority of 

publications use simple “syringe-dropping” method to obtain beads. For example, using 

7%NaOH-12%urea-water solvent, cellulose beads were made via dropping and their size, 

shape and surface area were modified by coagulation bath conditions.27 Their volume in the 

wet state was 8 – 20 mm3 and specific surface area after sc drying was 330 – 470 m2.g-1. The 

same solvent was used to make beads via emulsion method; in wet state their diameter varied 

from few microns to 1 mm and when freeze-dried, specific surface area was around 16 m2.g-

1.28 ZnO was added to this solvent, and aerogel beads were prepared using dropping 

technique; aerogel density varied from 0.08 to 0.25 g.cm-3 and it was reported that specific 

surface area increased from 340 m2.g-1 without ZnO to 410 m2.g-1 with this additive.30 Similar 

solvent, 8%NaOH-water, was also used to prepare cellulose aerogel beads via dropping 

method.2 The shape varied from very flat plates to spheres; various inorganic powders were 

encapsulated into cellulose beads and organic-inorganic aerogel particles were prepared. 

Literature reports functionalised cellulose I porous cellulose beads, but the ways to prepare 

them are usually not detailed.  

Even less is known on using ionic liquids for making cellulose aerogels in the form of 

beads. Ionic liquids are powerful cellulose solvents, with negligible vapour pressure, allowing 

cellulose derivatisation in homogeneous conditions34 and spinning fibers from dissolved 

lignocellulose.35 Ionic liquids have a strong advantage against NaOH-water based solvents: 

the latter do not allow the dissolution of high molecular weight cellulose and cellulose-NaOH-

water solutions are irreversibly gelling with time and temperature increase.36 Despite several 

advantages of ionic liquids as compared to other cellulose solvents, their recovery is not well 
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developed yet and is a recurrent topic in cellulose processing domain. Several methods were 

reported: from simple evaporation of cellulose non-solvent (water), to more complex solvent 

extraction37 or phase separation.38,39 Some ionic liquids were also proven to be distillable40,41 

and [DBNH][CO2Et] is one of them. Its recyclability was demonstrated by Parviainen et al.42 

As far as cellulose aerogel beads are concerned, they were prepared by “syringe-dropping” of 

cellulose-1-allyl-3-methylimidozoiumchloride solution into water; particles of diameter from 

0.4 to 2.2 mm were obtained and, surprisingly, specific surface area decreased from 500 to 

100 m2g-1, respectively.32 

The goal of this work is to demonstrate the feasibility of making cellulose II aerogel 

beads from cellulose-ionic liquid solutions, this being done using processing method which 

can be easily up-scaled. First, the rheological properties of cellulose-ionic liquid are 

investigated in details to validate the selection of ionic liquid and processing conditions. The 

ionic liquid selected is 1,5-Diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]) 

known to dissolve cellulose42 and being liquid at room temperature. Classical polymer physics 

principles are used to interpret the results obtained. Cellulose aerogel beads were then 

prepared using the JetCutter technology and characterised by aerogel standards. 

 

2. Materials and methods 

2.1. Materials 

Microcrystalline cellulose (MC) Avicel PH-101 with a degree of polymerisation (DP) of 

265 (determined according to ISO 5351 and Marx-Figini (1978) constant via dissolution in 

cupriethylenediamine) was purchased from Sigma-Aldrich. 1,5-Diazabicyclo[4.3.0]non-5-ene 

(DBN) was purchased from Fluorochem. Propionic acid (EtCO2H) (purity > 99%) was from 

Fisher Scientific. 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) was purchased from 
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BASF. Absolute ethanol (purity > 99%) and isopropanol (purity > 99.5%) were purchased 

from Fisher Chemicals. Water was distilled. All chemicals were used as received. 

 

2.2. Methods 

2.2.1. Ionic liquid and cellulose solutions preparation 

The ionic liquid, 1,5-Diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]), was 

prepared before each experiment to prevent any influence of aging. EtCO2H and DBN were 

mixed in a 1:1 molar ratio according to procedure described in ref. 42: EtCO2H was slowly 

added to DBN under nitrogen atmosphere and 400 rpm magnetic stirring, in an ice bath, as far 

as the reaction is exothermal. Temperature was controlled throughout the reaction so that it 

did not exceed 30 °C. Stirring was maintained at least 30 min after all EtCO2H was added to 

insure a complete reaction. The ionic liquid obtained was transparent and slightly yellowish. 

[DBNH][CO2Et] was characterised with 1H NMR in DMSO-d6 using Varian 300 MHz Unity 

spectrometer (Department of Chemistry, University of Helsinki); full and expanded spectra 

are shown in Figure S1 of the Supporting Information together with assigned peaks. The 1H 

NMR data are consistent with those reported previously by Parviainen et al.42,43 

Prior to use, MC was dried overnight under vacuum at 50 °C. It was then dissolved at 

various concentrations in [DBNH][CO2Et] at 40 °C and 400 rpm stirring with a Heidolph 

RZR 50 overhead mixer for 24 h. Dried MC was also dissolved in [Emim][OAc] at 75 °C and 

400 rpm stirring for 24 h. 

All solutions were kept at room temperature, under nitrogen atmosphere, to prevent 

moisture and oxygen uptake. In the following, the concentrations will be given in weight 

percent (%) unless otherwise mentioned. 

2.2.2. Rheological measurements 
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All rheological measurements were performed within 3 days after solution preparation on a 

Bohlin Gemini rheometer equipped with cone-plate geometry (4 ° - 40 mm) and a Peltier 

temperature control system. For steady state, shear rate was varied from 0.01 s-1 to 300 s-1 and 

temperature from 10 °C to 60 °C. For dynamic mode, frequency sweeps were performed 

between 0.01 Hz and 10 Hz at 5 Pa which corresponds to the linear viscoelastic regime, with 

temperature also varying from 10 °C to 60 °C. To prevent moisture and oxygen uptake, a thin 

layer of low-viscosity silicon oil (η20°C = 9.5 mPa.s) was disposed on the edge of the 

measuring cell. 

2.2.3. Cellulose aerogel beads 

Cellulose aerogel beads were prepared via the dissolution-solvent exchange/coagulation-sc 

CO2 drying route. Cellulose concentration in [DBNH][CO2Et] was 2% and 3%. We used a 

JetCutter Type S from GeniaLab®, Germany, for the shaping. Pictures of the JetCutter and its 

tools are shown in Figure S2 of the Supporting Information. The principle of the JetCutter 

consists of cutting a jet of solution with high speed rotating wires. The jet cut into “cylinders” 

form spheres due to surface tension and are collected in a bath (here, three cellulose non-

solvents were used: water, ethanol and isopropanol). Solvent in cellulose beads was washed 

out with non-solvent by several exchanges with the fresh one leading to non-solvent induced 

phase separation (or coagulation) of cellulose. The goal was to stabilise the shape of cellulose 

beads. If the non-solvent of the coagulation bath was not ethanol, it was then exchanged to 

ethanol and washed several times until the electrical conductivity of the ethanol bath was 

below 8.1 µS.cm-1. Ethanol was selected because of its good miscibility with CO2. Cellulose-

ethanol beads were then dried in a custom made 12 L autoclave from Eurotechnika, Germany. 

Process conditions of the sc CO2 were 115 bar and 60 °C. Dynamic washing with sc CO2 was 

performed at flow rates around 15 kg/h for two hours before the extractor was depressurized 

at rates not lower than 1.5 bar/min and not higher than 3 bar/min.  
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2.2.4. Aerogels characterisation 

The density ρbulk of aerogels was measured with a Micromeritics Geopyc 1360 powder 

densitometer, with DryFlo powder. The chamber was 19.1 mm diameter, and the force 

applied was 25 N. The error was less than 10%. 

In order to build size distribution of cellulose aerogel beads, their images were taken with 

an Epson Perfection V550 Photo Color Scanner in transmission mode, in 8-bits greyscales 

with a 6400 dpi resolution (4 µm.pixel-1). The images obtained were then analysed with the 

ImageJ software: the segmentation of the image was adjusted manually with a fixed grey level 

threshold to differentiate each bead from the background. Using “Analyse particles” tool of 

ImageJ, the beads were labelled, and their surface area measured. The beads were considered 

spherical in the first approximation and their diameter was calculated from the area. For each 

formulation at least 100 beads were analysed. 

The morphology of aerogels was studied with a Supra40 Zeiss SEM FEG (Field Emission 

Gun). The observations were done with a diaphragm of 20 µm diameter and the acceleration 

voltage was set between 1 kV and 3 kV. Prior to the observations, a 7 nm layer of platinum 

was applied on the surface of the samples with a Q150T Quarum metallizer to prevent the 

accumulation of electrostatic charges. 

The specific surface area (SBET) was measured with an ASAP 2020 from Micromeritics 

using nitrogen adsorption and BET method. The samples were degassed under high vacuum 

at 70 °C for 10 h prior to measurements; the error was within ± 20 m2/g. 

 

3. Results and discussion 

The first part of this section is devoted to the rheological study of cellulose-

[DBNH][CO2Et] solutions, and the second to the preparation of cellulose aerogel beads made 

with JetCutter technology and their characterisation.  
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The understanding of the viscoelastic properties of cellulose solutions is dictated, on one 

hand, by the use of JetCutter which has a certain processing window in terms of solution 

viscosity, and, on the other hand, by the need in using cellulose solutions of concentration 

which is at least 3 times higher than the overlap concentration, C*. The latter criterion is 

somehow evident as far as a self-standing cellulose network should be formed, and it was 

confirmed when making monolithic cellulose aerogels from cellulose-[Emim][OAc]6,7 and 

cellulose-8%NaOH-water solutions.44  

Cellulose-[Emim][OAc] solutions of viscosities around and above 5-10 Pa.s turned out to 

be difficult to process with JetCutter. This was the case of 5% cellulose-[Emim][OAc] which 

is a typical low concentration for making aerogels when using microcrystalline cellulose.7 

There are several ways to overcome the problem of “too high” viscosity. One is simply to 

decrease cellulose concentration. However, when microcrystalline cellulose is dissolved in 

[Emim][OAc] at 2-3%, the network formed upon coagulation in non-solvent is very weak, 

and the beads are either not intact or highly deformed. The reason is that these concentrations 

are too close to cellulose C* which in [Emim][OAc] is around 1% at room temperature45 (the 

same cellulose was used in the present work and in ref. 45). A compromise between not too 

high solution viscosity and not too low cellulose concentration (not too close to C*) is thus 

needed. To decrease the overlap concentration can be possible by using cellulose of higher 

molecular weight but viscosity increase will be more pronounced than the decrease in C*. The 

second way to decrease viscosity is to increase temperature but the JetCutter Type S is not 

adapted to this option. The third way is to use so-called co-solvents, for example, 

dimethylsulfoxide.46,47 However, this approach has several drawbacks such as complications 

during solvent recovery and presence of undesirable traces. The “ideal” solvent should be 

with a) lower viscosity than [Emim][OAc] and, b) if possible, better thermodynamic quality 

as compared to [Emim][OAc]. The former would decrease solution viscosity, and the latter 
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would decrease C* allowing having stable cellulose network at lower polymer concentrations. 

Below we shall demonstrate that this is the case of [DBNH][CO2Et]. Based on the results 

obtained with the rheological study, the preparation and properties of cellulose aerogel beads 

are then described. 

 

3.1. Cellulose-[DBNH][CO2Et] rheological properties 

3.1.1. Solvent and solution aging 

First of all, we examined the influence of temperature and time on solvent and solution 

viscosity as far as visual observations showed the darkening of solutions in time. Therefore, 

the evolution of viscosity of [DBNH][CO2Et] at 20 °C was followed after shearing from 0.01 

s-1 to 300 s-1 for 7 min at 40 °C and at 60 °C. The viscosity slightly increased but was within 

the 10% experimental errors. Yet, the influence of aging on cellulose-[DBNH][CO2Et] 

solutions was considerable: the viscosity of a 5% solution at 20 °C was 27.7 Pa.s and it 

doubled to 53.2 Pa.s after 2 months of storing at ambient conditions. The aging of the pure 

ionic liquid was not so important but still noticeable: the viscosity increased from 0.146 Pa.s 

to 0.165 Pa.s after 1.5 months and to 0.210 Pa.s after 3 months of storage at room 

temperature. We suppose that the reason is hydrolysis of ionic liquid, as suggested in ref.43. 

As specified in the Materials and methods section, all rheological experiments and 

preparations of cellulose beads were thus performed on freshly made solutions. 

 

3.1.2. Flow curves 

The flow of [DBNH][CO2Et] and cellulose-[DBNH][CO2Et] solutions at different 

concentrations and temperatures was investigated in steady state and in dynamic mode. The 

examples of steady state viscosity  as a function of shear rate and of elastic (G’) and viscous 
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(G”) moduli as well as complex viscosity (*) as a function of frequency are shown in Figure 

1 and Figure 2, respectively.  

 

 

Figure 1.  

Examples of flow curves for [DBNH][CO2Et] and cellulose-[DBNH][CO2Et] solutions at 

different concentrations and temperatures: 8% cellulose at 10 °C (1) and 60 °C (2), 4% 

cellulose at 10 °C (3), 30 °C (4) and 60 °C (5), neat [DBNH][CO2Et] at 10 °C (6) and 60 °C 

(7). 
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Figure 2.  

Examples of G’ (circles), G” (squares) and * (triangles) as a function of frequency. Filled 

points are measurements of 8% cellulose-[DBNH][CO2Et] at 20 °C, open points are at 60 °C. 

Lines are given to guide the eye. 

 

Figure 1 shows that the solvent and solutions have a Newtonian plateau for at least one or 

two decades of shear rates. Higher concentration and lower temperature lead to higher 

viscosity and a beginning of shear thinning. These results correlate with the behaviour of a 

classical polymer solution. The value of viscosity at the Newtonian plateau, the zero shear 

rate viscosity, will be used for the following analysis and referred as ηN. It should be noted 

that the viscosity of the neat solvent [DBNH][CO2Et] at 20 °C is 0.145 Pa.s (not shown) and 

of [Emim][OAc] at the same temperature is 0.161 Pa.s.45 Lower solvent viscosity is more 

favourable for processing with JetCutter. Figure 2 also shows typical behaviour of an un-

entangled viscoelastic polymer solution, with G” < G’ over three decades of frequencies, 

from 0.01 to 10 Hz.  

Because cellulose-[DBNH][CO2Et] solutions show a classical polymer solution behaviour, 

we checked if Cox-Merz rule (which postulates the equality of steady state and dynamic 
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viscosities) is obeyed.48 An example at 20 °C is presented in Figure 3 for three cellulose 

concentrations. It shows a very good match of  and *; Cox-Merz rule can consequently be 

applied to cellulose-[DBNH][CO2Et] solutions. 

 

 

Figure 3.  

Example of steady state viscosity (open points) and complex viscosity (filled points) curves of 

cellulose-[DBNH][CO2Et] solutions at 20 and 60 °C and different concentrations, illustrating 

the Cox-Merz rule. 

 

3.1.3. Activation energy and master curves 

Arrhenius approach was used to correlate zero shear rate viscosity N and temperature T 

and calculate the activation energy Ea of viscous flow:  

 𝜂𝑁 ~ 𝑒𝑥𝑝 (
𝐸𝑎

𝑅𝑇
) (1) 

where R is the ideal gas constant and temperature is expressed in K. The dependences of N of 

the solvent and cellulose solutions on inverse temperature are shown in Figure 4. They all 

show linear trends (R2 > 0.99) allowing calculation of Ea at each cellulose concentration. It 
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was reported in previous works345,49 that ln(N) vs 1/T for [Emim][OAc] and cellulose-

[Emim][OAc] solutions showed a concave shape, this being “dictated” by the ionic liquid. 

Even if a very weak trend can also be guessed for [DBNH][CO2Et] and low concentrated 

cellulose-[DBNH][CO2Et] solutions (Figure 4), the deviation from the linear dependence is 

within the experimental errors in the temperature interval studied.  

 

 

Figure 4.  

Arrhenius plots of [DBNH][CO2Et] (1) and cellulose-[DBNH][CO2Et] solutions of 1% (2), 

4% (3) and 8% (4). Lines are linear approximations. 

 

The activation energies calculated using eq. 1 and data in Figure 4 are plotted as a function 

of cellulose concentration in Figure 5 and are shown together with the values for cellulose-

[Emim][OAc] system taken from ref. 45. The power law approximations, given by eq. (2) 

which describes the activation energy as a function of polymer concentration, are also shown 

in Figure 5 with p = 8.22 and k = 0.60 for cellulose-[DBNH][CO2Et] solutions and p = 3.21 

and k = 0.83 for cellulose-[Emim][OAc] solutions.  
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 𝐸𝑎 = 𝐸𝑎(0) + 𝑝𝐶𝑘 (2) 

 

 

Figure 5.  

Activation energy as a function of cellulose concentration for cellulose-[DBNH][CO2Et] 

solutions (filled points) and cellulose-[Emim][OAc] solutions (open points). Solid lines 

correspond to approximations calculated with eq.(2). 

 

While the activation energy of the neat solvents are almost the same, Ea of cellulose-

[DBNH][CO2Et] solutions is higher than that of cellulose-[Emim][OAc] solutions at all 

concentrations. This shows that the viscosity of cellulose-[DBNH][CO2Et] solutions is more 

temperature sensitive and slightly more energy is needed to flow these solutions as compared 

to cellulose-[Emim][OAc].   

Time-temperature superposition principle was applied to build master curves by shifting 

the experimental data of G’, G” and * by the corresponding aT shift factor. The latter was 

calculated from the equation (3) with Tref as the reference temperature, here 20 °C.  
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 𝑎𝑇 = 𝑒𝑥𝑝 (
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) (3) 

The examples of master plots for 8% and 5% cellulose-[DBNH][CO2Et] solutions, all data 

reduced to the reference temperature of 20 °C, are shown in Figure 6. G’’ is higher than G’ 

for both concentrations for five decades of frequency; these solutions behave as a classical 

unentangled polymer solution. For a monodispersed flexible polymer at low frequencies 

Maxwell model predicts power law exponents in G’ ~ x and G’’ ~ y as x = 2 and y = 1.For 

8% solutions xexp = 1.85 and yexp = 0.94, and for 5% solutions xexp = 1.63 and yexp = 0.99. The 

values obtained show the applicability of Maxwell model in the terminal zone; a deviation for 

5% solution may be due to the fact that terminal zone cannot be reached because of too low 

G’ values.  

 

 

Figure 6. 

Master curves for G', G'' and complex viscosity of 5% and 8% cellulose-[DBNH][CO2Et] 

solutions at temperature ranging from 10 °C to 60 °C, with 20 °C as reference temperature. 

 

3.1.4. Concentration dependences, intrinsic viscosity and overlap concentration 



Page 18 on 33 

 

Figure 7 shows the influence of cellulose concentration on the Newtonian viscosity of 

solutions at different temperatures. Two different regions can be distinguished: the dilute 

region, with linear viscosity-concentration dependence, and the semi-dilute region that obeys 

the power law N  ~ Cn. The power law coefficient n decreases with increasing temperature 

from 3.78 at 10 °C to 2.93 at 50 °C. Similar values and tendencies were already reported for 

cellulose in different ionic liquids and in other solvents.45,49-51 

 

Figure 7.  

Newtonian viscosity as a function of cellulose concentration at different temperatures. Dashed 

lines correspond to the linear dependence in dilute region and solids lines correspond to the 

power-law approximation above the overlap concentration, n is power law coefficient. 

 

The intrinsic viscosity [] is an important parameter that describes the volume of 

macromolecule depending on temperature and thermodynamic quality of the solvent. 

Cellulose intrinsic viscosity in [DBNH][CO2Et] was calculated using the Wolf approach.52,53 

This method was preferred over the classical Huggins approach for two main reasons: firstly, 

measurements in a capillary Ubbelohde viscometer were not possible because of the too high 

viscosity of our solutions and because of the solvent sensitivity to moisture and oxygen. 
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Secondly, when using the zero shear rate viscosity values calculated above, the Huggins plots 

where scattered and did not allow an adequate determination of the intrinsic viscosity. In Wolf 

approach,52 according to phenomenological considerations, the calculation of the limiting 

slope of the logarithm of the relative viscosity (ηrel) versus concentration is identical to the 

intrinsic viscosity, where ηrel = ηsol/ηsolv with ηsol and ηsolv being solution and solvent 

viscosities, respectively. This approach was developed for polyelectrolyte solutions but it was 

also successfully used for uncharged polymer solutions as shown by Eckelt et al. for cellulose 

dissolved in NMMO monohydrate.53 This approach was also used to determine amylopectin 

intrinsic viscosity54 and cellulose acetate intrinsic viscosity55, both in [Emim][OAc]. Cellulose 

concentrations were recalculated in mL.g-1, with mean value of [DBNH][CO2Et] density 

taken for all solution concentrations as 1.1 g.cm-3. It was shown that [DBNH][CO2Et] density-

temperature dependence is very weak56 and may not be taken into account within 

experimental errors.  

Figure 8 demonstrates the intrinsic viscosity of cellulose in [DBNH][CO2Et] and in 

[Emim][OAc] as a function of temperature, the latter taken from Gericke et al. 2009.45 Both 

intrinsic viscosities decrease with temperature increase. This shows that cellulose 

macromolecules are sensitive to temperature variations, and that thermodynamic quality of 

both solvents is decreasing with the increase of temperature. The intrinsic viscosity of 

cellulose in [DBNH][CO2Et] is more than two times higher than that in [Emim][OAc], 

indicating that in this temperature range [DBNH][CO2Et] is thermodynamically much better 

solvent of cellulose. For example, [] at 20 °C is 237 mL.g-1 in [DBNH][CO2Et] against 101 

mL.g-1 in [Emim][OAc]. 
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Figure 8.  

Intrinsic viscosities of cellulose in [DBNH][CO2Et] (filled points) and in [Emim][OAc] 

(openpoints, data taken from ref.45) as a function of temperature. Lines are given to guide the 

eye. 

 

As mentioned above, cellulose overlap concentration is an important parameter which 

reflects the end of dilute regime; it can be roughly estimated as C* = 1/[η]. According to 

results presented in Figure 8, cellulose overlap concentration in [DBNH][CO2Et] is much 

lower than that in [Emim][OAc] in the temperature interval studied. For example, at 20 °C in 

[DBNH][CO2Et] C* = 4.2.10-3 g.mL-1 (0.38%) and in [Emim][OAc] C* = 9.9.10-3 g.mL-1 

(0.9%). This is an important result to take into account for processing because it means that 

cellulose network can be formed at lower cellulose concentrations when dissolved in 

[DBNH][CO2Et]. It means that in order to make intact beads with JetCutter, cellulose 

concentration in [DBNH][CO2Et] should be at least 1 wt%. The results on the beads obtained 

with JetCutting technology are presented in the next section. 

 

3.2. Cellulose aerogel beads 
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3.2.1. Visual observations and size distribution 

The images of cellulose aerogel beads made from 2 and 3% cellulose-[DBNH][CO2Et] 

coagulated in water, ethanol and isopropanol are shown in Figure 9. Their size distribution 

together with mean arithmetic values of diameter (𝐷̅) and standard deviation (σ) are shown in 

Figure 10. Cellulose concentration plays the main role in the size and shape of the beads: 

mean diameter from 2% cellulose-[DBNH][CO2Et] solution, whatever the coagulation bath, 

varies from 0.5 to 0.7 mm (Figure 10 a, b, c), and from 3% solution it is around 1.8 mm 

(Figure 10 d). The reason is that viscosity of 3% solution is more than two times higher than 

that of 2% solution at 20 °C: 1.8 Pa.s vs 4.9 Pa.s, respectively (Figure 7). These 

concentrations are in semi-dilute region with viscosity proportional to polymer concentration 

in power 3.6 at room temperature (Figure 7).  

 

Figure 9. 

Cellulose aerogel beads from 2% (a, b, c) and 3% (d) cellulose-[DBNH][CO2Et] solutions 

coagulated in water (a), isopropanol (b) and ethanol (c, d). 
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Figure 10. 

Size distribution, mean diameter (𝐷̅) and standard deviation (σ) for aerogel beads as shown in 

Figure 9: cellulose aerogel beads from 2% (a, b, c) and 3% (d) cellulose-[DBNH][CO2Et] 

solutions coagulated in water (a), isopropanol (b) and ethanol (c, d). 

 

3.2.2. Bulk density, specific surface area and morphology 

The main characteristics of aerogels such as bulk density, porosity, pore volume and 

specific surface area are shown in Table 1 for beads made from 2 and 3% cellulose-

[DBNH][CO2Et] solutions and coagulated in water, isopropanol and ethanol. Bulk densities 

are very low, 0.04 – 0.05 g.cm-3 for samples from 2% solutions, and 0.07 gcm-3 for samples 

from 3% solutions, but are still higher than what could be expected for the case of no volume 

change during all processing steps. The reason is shrinkage during solvent exchange which 

leads to non-solvent induced phase separation and also during drying (large difference 

between the solubility parameters of cellulose and CO2). For the low cellulose concentrations 

used, shrinkage is around 60 – 70 vol% corresponding to previously reported results on 
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aerogel monoliths from cellulose-[Emim][OAc] solutions.7 It seems that the type of 

coagulation bath does not influence much the density within the interval of conditions studied.  

 

Table 1. Bulk density, porosity, specific surface area and specific pore volume of cellulose 

aerogel beads made from 2 and 3% solutions and coagulated in water, isopropanol and 

ethanol 

Cellulose 

concentration,

% 

Coagulation 

bath 

Bulk 

density, 

g.cm-3 

Porosity,

% 

Specific surface 

area, m2.g-1 

Specific pore 

volume, cm3.g-1 

2 water 0.04 97.3 238 24.3 

2 isopropanol 0.04 97.3 302 24.3 

2 ethanol 0.05 96.7 295 19.3 

3 ethanol 0.07 95.3 257 13.6 

 

Porosity was calculated using the values of bulk density, bulk, and cellulose skeletal 

density, which is the same as for neat cellulose, sk = 1.5 g.cm-3
.
30,57 

 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦, % = 1 − 
𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘
 × 100% (4) 

As expected from low values of bulk density, porosity is very high, from 95 to 97% (Table 1). 

Specific surface area, SBET, is within 240 – 300 m2.g-1 for all aerogel beads, which reflects 

certain mesoporosity. Overall, density and specific surface area of cellulose aerogel beads are 

very similar to those obtained for aerogel monoliths from ionic liquids, NMMO monohydrate 

and NaOH-water based solvents.1,3,5,6,8,9 JetCutting technology preserves the main 

characteristics of cellulose aerogels. 
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The experimental results presented in Table 1 allowed a rough estimation of the theoretical 

specific pore volume Vpores: 

 𝑉𝑝𝑜𝑟𝑒𝑠 =  
1

𝜌𝑏𝑢𝑙𝑘
−  

1

𝜌𝑠𝑘
 (5) 

The results are shown in Table 1. Pore volume is high and comparable with that of other bio-

aerogels.14 It should be noted that pore volume and pore size distribution of bio-aerogels with 

“mixed” meso- and macro-porosity cannot be measured with nitrogen adsorption and BJH 

approach: the experimental data take into account only 10-20% of the real volume. This was 

demonstrated for several bio-aerogels.14, 57-59 Mercury porosimetry also does not allow 

measuring pore size distribution as far as sample are compressed and mercury does not 

penetrate the pores; the result recorded is thus an artefact.13, 57 

The internal morphology of aerogel beads is presented in Figure 11. All samples are with 

small and large macropores and some mesoporosity as reflected by specific surface area.  

 

Figure 11. Morphology of aerogel beads from cellulose-[DBNH][CO2Et] solutions of 2% (a, 

b, c) and 3% (d) coagulated in water (a), isopropanol (b) and ethanol (c, d). 

 

4. Conclusions 

This work is an extended investigation of the rheological properties of cellulose-

[DBNH][CO2Et] solutions in the view of using these results for making cellulose aerogel 
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beads with JetCutting technology and drying with supercritical CO2. The flow and 

viscoelastic properties of cellulose-[DBNH][CO2Et] solutions were studied as a function of 

polymer concentration and solution temperature. In the range of conditions used all solutions 

show Newtonian plateau with a beginning of shear thinning regime for higher cellulose 

concentrations and lower temperatures. Viscoelastic properties of cellulose-[DBNH][CO2Et] 

solutions can be described by classical approaches used in polymer physics. Cellulose 

intrinsic viscosity in [DBNH][CO2Et] turned out to be more than two times higher than that in 

previously studied [Emim][OAc] solutions for the same cellulose, and also decreases with 

temperature increase. Thermodynamic quality of [DBNH][CO2Et] is thus higher at the same 

temperature leading to more swollen polymer coils and lower overlap concentration. The 

latter allowed fitting into the processing window of JetCutter in terms of not too high 

viscosity but high enough cellulose concentration to make intact beads. 

Aerogel beads were prepared from 2 and 3% of cellulose-[DBNH][CO2Et] solutions by 

replacing ionic liquid by water, ethanol or isopropanol followed by drying with supercritical 

CO2. Cellulose concentration was the major factor controlling beads’ size which varied from 

0.5 – 0.7 mm when made from 2% solutions to 1.7 mm from 3% solution. The density of 

beads was 0.04 – 0.07 g.cm-3 and specific surface area 240 – 340 m2.g-1. We demonstrated 

that by a careful selection of solution properties it is possible to obtain with JetCutting 

technology intact cellulose aerogel beads with properties similar to those known for 

monolithic cellulose aerogels made using other solvents. The results can be extended for 

making other bio-aerogels in the form of beads. This opens numerous opportunities for using 

bio-aerogels, and in particular cellulose aerogel beads, as carriers for controlled release 

applications in cosmetics, food and pharma.  
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Figure S1. 
1H NMR in DMSO-d6 full (a) and expanded (b) spectra of [DBNH][CO2Et] with main 

peak assignments in ppm (a) and with all peak assignments (b) 
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1H NMR (600 MHz, DMSO-d6, 27 °C): δ 0.90 (t, J = 7.6 Hz, 3H), 1.83 (m, 2H), 1.89 (q, J 

= 7.6 Hz, 2H), 1.97 (m, 2H), 2.72 (t, J = 7.9 Hz, 2H), 3.24 (t, J = 5.7 Hz, 2H), 3.31 (t, J = 5.8 

Hz,2H), 3.49 (t, J = 7.1 Hz, 2H), 12.66 (br s, 1H). 

Figure S2. 

Pictures of the JetCutter (right) and one of the cutting tool used (bottom left) 

 

 

 


