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Introduction

The generalized inverse Gaussian (hereafter GIG) distribution with parameters p ∈ R, a > 0, b > 0 has density x a-1 (1 + x) -a-b e -cx , x > 0 where ψ is the confluent hypergeometric function of the second kind.

For details on GIG and Kummer distributions see for example [START_REF] Jøgensen | Statistical properties of the generalized inverse gaussian distribution[END_REF][START_REF] Koudou | Characterizations of gig laws: a survey[END_REF][START_REF] Koudou | Independence properties of the matsumoto-yor type[END_REF][START_REF] Piliszek | Change of measure technique in characterizations of the gamma and kummer distributions[END_REF].

In this paper, these two distributions are considered in the context of Stein's method introduced by Stein in [START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF]. A first instance of the method was found in [START_REF] Stein | A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[END_REF], where Stein showed that a random variable X has a standard normal distribution if and only if, for all real-valued absolutely continuous function f such that E |f (Z)| < ∞, with Z a random variable following the standard normal distribution,

E [f (X) -Xf (X)] = 0. The corresponding Stein equation is f (x) -xf (x) = h(x) -Eh(Z) (1) 
where h is a bounded function. The corresponding Stein operator is f → (T f ) (x) = f (x) -xf (x). If f h solves equation [START_REF] Chatterjee | Exponential approximation by stein's method and spectral graph theory[END_REF], then for any random variable X, we have

|E [f h (X) -Xf h (X)]| = |Eh(X) -Eh(Z)| .
Thus, we can bound |Eh(X) -Eh(Z)| given h, by finding a solution f h of the Stein equation ( 1) and bounding the left-hand side of the previous equation. For more details on Stein's method, see [START_REF] Chen | Normal approximation by stein's method, Probability and its Applications[END_REF][START_REF] Ross | Fundamentals of stein's method[END_REF]. Solving the Stein equation for other distributions than the standard normal distribution, and bounding the solution and its derivatives has become a challenge often addressed in the literature (see for example [START_REF] Chen | Poisson approximation for dependent trials[END_REF] for the Poisson distribution, [START_REF] Luk | Stein's method for the gamma distribution and related statistical applications[END_REF] for the gamma distribution, [START_REF] Chatterjee | Exponential approximation by stein's method and spectral graph theory[END_REF] for the exponential distribution). A bound of the solution of Stein equation and its first and second derivatives for GIG and Kummer distributions is derived in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] by using the density Stein approach [START_REF] Chen | Normal approximation by stein's method, Probability and its Applications[END_REF][START_REF] Ley | Stein's density approach and information inequalities[END_REF][START_REF] Schoutens | Orthogonal polynomials in stein's method[END_REF].

The purpose of this paper is to complete the results of [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] by providing upper bound of the third derivative of these two solutions. We also express a bound of the k-th derivative for k ≥ 4 of these solutions by doing a stepwise calculation. Sections 2 and 3 present the main results obtained for GIG and Kummer distributions respectively. Section 4 contains the proofs.

2 About the bounds of the derivatives of the solution of the Stein equation for the generalized inverse Gaussian distribution

Let s(x) = x 2 and τ p,a,b (x) = b 2 + (p + 1)x - a 2 x 2 . (2) 
Then, as observed in [START_REF] Gaunt | A stein characterisation of the generalized hyperbolic distribution[END_REF], the GIG density g p,a,b satisfies

(s(x)g p,a,b (x)) = τ p,a,b (x)g p,a,b (x). (3) 
This enables us to apply Theorem 2.1 in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] to retrieve the following Stein characterization of the GIG distribution (Proposition 3.1. in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF]) given in [START_REF] Koudou | Characterizations of gig laws: a survey[END_REF][START_REF] Gaunt | A stein characterisation of the generalized hyperbolic distribution[END_REF]: g p,a,b (x)f (x) = 0, and such that the following expectation exists, we have:

Proposition 2.
E X 2 f (X) + b 2 + (p + 1)X - a 2 X 2 f (X) = 0.
The corresponding Stein equation is

x 2 f (x) + b 2 + (p + 1)x - a 2 x 2 f (x) = h(x) -Eh(W ) ( 4 
)
where h is a bounded function and W a random variable following the GIG distribution with parameters p, a, b. Theorem 3.2 in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] shows that the bounded solution of Stein's equation ( 4) is given by

f h (x) = 1 s(x)g p,a,b (x) x 0 g p,a,b (t) [h(t) -Eh(W )] dt = -1 s(x)g p,a,b (x) +∞ x g p,a,b (t) [h(t) -Eh(W )] dt. (5) 
Previous work in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] provided explicit bounds of f h , f h and f h . We complete this result by providing an upper bound of the third derivative f

(3) h of f h and propose a bound of k-th derivative for k ≥ 4 by doing a stepwise calculation. The following proposition established in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] will be useful to prove the results obtained.

Proposition 2.2 Consider a density function g > 0 on (0, ∞) satisfying the equation (s(x)g(x)) = τ (x)g(x), where s and τ are polynomial functions such that s > 0 on (0, ∞). Assume that lim x→0 s(x)g(x) = lim x→∞ s(x)g(x) = 0.

Assume also that τ (0) > 0 and, for some β > 0, τ is increasing on (0, β], decreasing on [β, ∞) and has a unique zero α on [β, ∞). Let h be a bounded continuous function. Then

||f h || ≤ N 0 ||h(.) -Eh(W )|| , (6) 
where

N 0 = max 1 τ (0) ; 1 s(β)g(β) and f = sup x>0 |f (x)| .
In the remainder of this section, we define

α k = p + 2k + 1 + (p + 2k + 1) 2 + ab a , τ k (x) = b 2 + (p + 2k + 1)x - a 2 x 2 , ∀k ≥ 1; h k (x) = h (k) (x) -k(p + k -ax)f (k-1) (x) + 3 + (k -3)(k + 2) 2 af (k-2) (x) ∀k ≥ 3
and we denote by g k := g p+2k,a,b the density of the GIG(p + 2k, a, b) distribution. We have

(s(x)g k (x)) = τ k (x)g k (x) and lim x→0 s(x)g k (x) = lim x→∞ s(x)g k (x) = 0 ∀k ≥ 1. ( 7 
)
We have the following results.

Theorem 2.1 Let h : (0, ∞) → R be a bounded function, three times differentiable such that h , h and h (3) are bounded. Then the third derivative f

(3) h of the solution f h of Stein equation (4) is such that f (3) h ≤ M 3 =    max(G 3 1 , G 3 2 ) if p ≤ -7 max(G 3 3 , G 3 4 , G 3 2 ) if p > -7 (8) 
where

G 3 1 = h (3) + 3 max |p + 3|, (4 + (p + 7) 2 + ab) M + 3aM 1 α 2 3 g 3 (α 3 ) α3 0 g 3 (t)dt, G 3 2 = 5a + a (p + 7) 2 + ab α 2 3 p + 7 + (p + 7) 2 + ab ||h || + 6a + a (p + 7) 2 + ab 6p + 42 + 6 (p + 7) 2 + ab h(.) -Eh(W ) + 2 α 2 3 ( h + aM h(.) -Eh(W ) ) , G 3 3 = 2 b h (3) + 3 max (4, |p + 3|) M + 3aM , G 3 4 = h (3) + 3 max |p + 3|, (4 + (p + 7) 2 + ab) M + 3aM a 2 (p + 7) 2 g 3 p + 7 a ,
W is a random variable following GIG distribution with parameters p, a, b, the constants M , M and M are given in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] and are such that

f h ≤ M , f h ≤ M and f h ≤ M .
The proof of Theorem 2.1 will be given in Section 4.

Theorem 2.2 Let h : (0, ∞) → R be a bounded function, k times differentiable such that h (k) is bounded for all k ≥ 1. The k-th derivative f (k) h of the solution f h of Stein equation (4) is such that f (k) h ≤ M k =    max(G k 1 , G k 2 ) if p ≤ -2k -1 max(G k 3 , G k 4 , G k 2 ) if p > -2k -1 (9) 
where

G k 1 = H × 1 α 2 k g k (α k ) α k 0 g k (t)dt, G k 2 = 2 α 2 k h k-1 , h k-1 ≤ h (k-1) + a(k -1) k + 2 + (p + 2k + 1) 2 + ab 4p + 8k + 4 + 4 (p + 2k + 1) 2 + ab h k-2 + a 3 + (k -4)(k + 1) 2 M k-3 , G k 3 = 2 b h (k) + k max (k + 1, |p + k|) M k-1 + a 3 + (k -3)(k + 2) 2 M k-2 , G k 4 = H × a 2 (p + 2k + 1) 2 g k p + 2k + 1 a , H = h (k) + k max |p + k|, k + 1 + (p + 2k + 1) 2 + ab M k-1 + a 3 + (k -3)(k + 2) 2 M k-2 ,
and

M i is such that, f (i) k ≤ M i for all i ≥ 1.
The proof of Theorem 2.2 will be given in Section 4.

3 About the bounds of the derivatives of the solution of the Stein equation for the Kummer distribution

Let s(x) = x(1 + x) and τ (x) = (1 -b)x -cx(1 + x) + a. (10) 
Then the density d a,b,c of Kummer distribution satisfies

(s(x)d a,b,c (x)) = τ (x)d a,b,c (x).
Theorem 4.1 in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] give the following Stein characterization of the Kummer distribution.

Theorem 3.1 A random variable X follows the Kummer distribution with density d a,b,c if and only if, for all differentiable function f such that the expectation exists,

E [X(1 + X)f (X) + [(1 -b)X -cX(1 + X) + a] f (X)] = 0.
The corresponding Stein equation is

x(x + 1)f (x) + [(1 -b)x -cx(1 + x) + a] f (x) = h(x) -Eh(W ) ( 11 
)
where h is a bounded function and W has K(a,b,c) distribution.

The bounded solution of equation ( 11) is

f h (x) = 1 x(1 + x)d a,b,c (x) x 0 d a,b,c (t) [h(t) -Eh(W )] dt = -1 x(1 + x)d a,b,c (x) +∞ x d a,b,c (t) [h(t) -Eh(W )] dt. (12)
In [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF], the bounds of f h , f h and f h have been proposed. We complete this result by providing a bound of the third derivative f

(3) h of f h and we propose a bound of k-th derivative for k ≥ 4 as in the case of GIG distribution. In the remainder of this section, we define

α k = 2k + 1 -b -c + (2k + 1 -b -c) 2 + 4c(a + k) 2c , ∀k ≥ 1; τ k (x) = (2k + 1 -b)x -cx(1 + x) + a + k, ∀k ≥ 1; h k (x) = h (k) (x) -k(k -b -c -2cx)f (k-1) (x) + k(k -1)cf (k-2) (x) ∀k ≥ 3
and we denote by

d k := d a+k,b-2k,c the density of the K(a + k, b -2k, c) distribution. We have (s(x)d k (x)) = τ k (x)d k (x) and lim x→0 s(x)d k (x) = lim x→∞ s(x)d k (x) = 0 ∀k ≥ 1. ( 13 
)
Using similar arguments as in the case of GIG distribution, we obtain the following results

Theorem 3.2 Let h : (0, ∞) → R be a bounded, three times differentiable function such that h , h and h (3) are bounded. Then the third derivative f

(3) h of the solution f h given by equation ( 12) is such that

f (3) h ≤ N 3 =    max(K 3 1 , K 3 2 ) if 7 -b -c ≤ 0 max(K 3 3 , K 3 4 , K 3 2 ) if 7 -b -c > 0 (14) 
where

K 3 1 = h (3) + 3 max |3 -b -c|, 4 + (7 -b -c) 2 + 4c(a + 3) K + 6cK × 1 α 2 3 d 3 (α 3 ) α3 0 d 3 (t)dt, K 3 2 = 2 α 3 (1 + α 3 ) ( h + 2cK h(.) -Eh(W ) ) + 10c + 2c (7 -b -c) 2 + 4c(a + 3) α 3 (1 + α 3 ) 7 -b + (7 -b -c) 2 + 4c(a + 3) × h + 6c + c (7 -b -c) 2 + 4(a + 3) 21 -3b + 3 (7 -b -c) 2 + 4(a + 3) h(.) -Eh(W ) , K 3 3 = 1 a + 3 h (3) + 3 max (4, |3 -b -c|) K + 6cK , K 3 4 = h (3) + 3 max |3 -b -c|, 4 + (7 -b -c) 2 + 4c(a + 3) K + 6cK × 4c 2 (7 -b -c)(7 -b + c)d 3 7 -b -c 2c , W ∼ K(a, b, c
), K, K and K are given in [START_REF] Konzou | About the stein equation for the generalized inverse gaussian and kummer distributions[END_REF] and are such that

f h ≤ K, f h ≤ K and f h ≤ K . Noticing that f (k) h
satisfies the differential equation

x(1 + x)f (k+1) (x) + [(2k + 1 -b)x -cx(1 + x) + a + k] f (k) (x) = h k (x), (15) 
we have

Theorem 3.3 Let h : (0, ∞) → R be a bounded, k times differentiable function such that h (k) is bounded for all k ≥ 1. The k-th derivative f (k) h of the solution f h of Stein equation (11) is such that f (k) h ≤ N k =    max(K k 1 , K k 2 ) if 2k + 1 -b -c ≤ 0 max(K k 2 , K k 3 , K k 4 ) if 2k + 1 -b -c > 0 (16)
where

K k 1 = T × 1 α k (1 + α k )d k (α k ) α k 0 d k (t)dt, K k 2 = 2 α k (α k + 1) h k-1 , h k-1 ≤ h (k-1) + c(k -1) k + 2 + (2k + 1 -b -c) 2 + 4c(a + k) 4k + 2 -2b + 2 (2k + 1 -b -c) 2 + 4c(a + k) h k-2 + (k -1)(k -2)cN k-3 , K k 3 = 1 a + k h (k) + k max (k + 1, |k -b -c|) N k-1 + k(k -1)cN k-2 , K k 4 = T × 4c 2 (2k + 1 -b -c)(2k + 1 -b + c)d k 2k + 1 -b -c 2c , T = h (k) + k max |k -b -c|, k + 1 + (2k + 1 -b -c) 2 + 4c(a + k) N k-1 + k(k -1)cN k-2 ,
and N j is such that, f

≤ N j for all j ≥ 1.

Proofs

Proof of Theorem 2.1

First, assume that p ≤ -7. f

h satisfies the differential equation

x 2 f (4) (x) + b 2 + (p + 7)x - a 2 x 2 f (3) (x) = h (3) (x) -3(p + 3 -ax)f (x) + 3af (x). ( 17 
) Let h 3 (x) = h (3) (x) -3(p + 3 -ax)f (x) + 3af (x). Then, by equation (17), f (3) 
h solves the differential equation For p ≤ -7, τ 3 is decreasing on (0, ∞) and its only zero is

x 2 f (4) (x) + b 2 + (p + 7)x - a 2 x 2 f (3) (x) = h 3 (x). ( 18 
) Since Eh 3 (Y ) = E Y 2 f (4) (Y ) + b 2 + (p + 7)Y -a 2 Y 2 f (3) (Y ) = 0 if Y ∼GIG(p + 6,
f (3) h (x) = 1 s(x)g 3 (x) x 0 g 3 (t)h 3 (t)dt = -1 s(x)g 3 (x)
α 3 = p+7+ √ (p+7) 2 +ab a . If x ≤ α 3 and if h 3 is bounded, then f (3) h (x) ≤ h 3 1 s(x)g 3 (x) x 0 g 3 (t)dt. Let (x) = 1 s(x)g 3 (x) x 0 g 3 (t)dt. is differentiable on (0, ∞) and (x) = -(s(x)g 3 (x)) (s(x)g 3 (x)) 2 x 0 g 3 (t)dt + 1 s(x) ≥ - (s(x)g 3 (x)) (s(x)g 3 (x)) 2 1 τ 3 (x) x 0 τ 3 (t)g 3 (t)dt + 1 s(x) 1 ≤ τ 3 (t) τ 3 (x) ∀t ≤ x = - 1 s(x) + 1 s(x) = 0 (s(x)g 3 (x)) = τ 3 (x)g 3 (x) and lim t→0 s(t)g 3 (t) = 0 .
Then for x ≤ α 3 , (x) ≤ (α 3 ).

|h 3 (x)| = h (3) (x) -3(p + 3 -ax)f h (x) + 3af h (x) ≤ h (3) + 3|p + 3 -ax| f h + 3a f h ≤ h (3) + 3 max |p + 3|, 4 + (p + 7) 2 + ab f h + 3a f h (0 < x < α 3 ) ≤ h (3) + 3 max |p + 3|, 4 + (p + 7) 2 + ab M + 3aM
Hence for p ≤ -7 and x ≤ α 3 ,

f (3) h ≤ h (3) + 3 max |p + 3|, 4 + (p + 7) 2 + ab M + 3aM 1 α 2 3 g 3 (α 3 ) α3 0 g 3 (t)dt.
For p ≤ -7 and x > α 3 , consider the following Stein equation solving by f h :

s(x)f (3) (x) + τ 2 (x)f (x) = h 2 (x) = h (x) -2(p + 2 -ax)f (x) + af (x). ( 20 
)
By equation (20), one obtains

f (3) h (x) = h 2 (x) s(x) - τ 2 (x)f h (x) s(x) f (3) h (x) ≤ h 2 s(x) + |τ 2 (x)f h (x)| s(x) .
For p ≤ -7 and x > α 3 , τ 2 is decreasing and negative. We have

f h (x) = -1 s(x)g 2 (x) +∞ x g 2 (t)h 2 (t)dt |τ 2 (x)f h (x)| = -τ 2 (x) s(x)g 2 (x) +∞ x g 2 (t)h 2 (t)dt ≤ h 2 -τ 2 (x) s(x)g 2 (x) +∞ x g 2 (t)dt (τ 2 is negative) ≤ h 2 -τ 2 (x) s(x)g 2 (x) +∞ x τ 2 (t) τ 2 (x) g 2 (t)dt τ 2 (t) τ 2 (x) ≥ 1 ∀x ≤ t = h 2 -1 s(x)g 2 (x) +∞ x (s(t)g 2 (t)) dt = h 2 lim t→0 s(t)g 2 (t) = 0 . |h 2 (x)| = |h (x) -2(p + 2 -ax)f h (x) + af h (x)| ≤ h + 2 |(p + 2 -ax)f h (x)| + a f h ; f h (x) = -1 s(x)g 1 (x) +∞ x g 1 (t)h 1 (t)dt |(p + 2 -ax)f h (x)| ≤ h 1 -(p + 2 -ax) s(x)g 1 (x) +∞ x g 1 (t)dt ≤ h 1 p + 2 -ax τ 1 (x) . Let κ(x) = p + 2 -ax b/2 + (p + 3)x -ax 2 /2 = p + 2 -ax τ 1 (x) . κ is differentiable on (α 3 , ∞) and κ (x) = - ab + 2(p + 2)(p + 3) -2a(p + 2)x + a 2 x 2 2τ 2 1 (x) = - ab + (p + 2) 2 + 2(p + 2) + (p + 2 -ax) 2 2τ 2 1 (x)
.

Thus for p ≤ -3 or p ≥ -2, κ (x) ≤ 0. For -3 < p < -2, if 1 -ab -(p + 3) 2 > 0, then the only possible positive

zero of x → ab + 2(p + 2)(p + 3) -2a(p + 2)x + a 2 x 2 is p + 2 + 1 -ab -(p + 3) 2 a
, which is smaller than α 3 . Hence for all p ∈ R, κ is decreasing on (α 3 , ∞) and κ(x) ≤ κ(α 3 ) = 5a + a (p + 7) 2 + ab 4p + 28 + 4 (p + 7) 2 + ab .

The function

h 1 (x) = h (x) -(p + 1 -ax)f h (x) is such that |h 1 (x)| ≤ h + -(p + 1 -ax) s(x)g p,a,b (x) +∞ x g p,a,b (t)(h(t) -Eh(W ))dt ≤ h + h(.) -Eh(W ) p + 1 -ax τ p,a,b (x) . v : x → p + 1 -ax τ p,a,b (x) is decreasing on (α 3 , ∞), as a consequence, for all x > α 3 v(x) ≤ v(α 3 ) = 6a + a (p + 7) 2 + ab 6p + 42 + 6 (p + 7) 2 + ab .
We obtain 

h 2 ≤ h + 5a + a (p +
( h + aM h(.) -Eh(W ) ) . Now assume that p > -7 -On 0, p+7 a , τ 3 is such that τ3(t) τ3(0) ≥ 1, ∀0 ≤ t ≤ p+7 a . Since |h 3 (x)| ≤ h (3) + 3|p + 3 -ax| f h + 3a f h ≤ h (3) + 3 max (4, |p + 3|) f h + 3a f h ≤ h (3) + 3 max (4, |p + 3|) M + 3aM , we have |f (3) h (x)| ≤ h 3 1 s(x)g 3 (x) x 0 g 3 (t)dt ≤ h 3 1 τ 3 (0)s(x)g 3 (x) x 0 τ 3 (t)g 3 (t)dt = 1 τ 3 (0) h 3 = 2 b h 3 and f (3) h ≤ 2 b h (3) + 3 max (4, |p + 3|) M 2 + 3aM 1 .
-On p+7 a , ∞ , the similar arguments as in the case p ≤ -7 and Proposition 2.2 lead to the result.

Proof of Theorem 2.2

Assume p ≤ -2k -1. The function f

(k) h
satisfies the following differential equation

x 2 f (k+1) (x) + b 2 + (p + 1 + 2k)x - a 2 x 2 f (k) (x) = h k (x) (21) 
where

h k (x) = h (k) (x) -k(p + k -ax)f (k-1) (x) + 3 + (k -3)(k + 2) 2 af (k-2) (x). ( 22 
)
Equation ( 21) shows that f 

f (k) h (x) = 1 s(x)g k (x) x 0 g k (t)h k (t)dt = -1 s(x)g k (x) +∞ x g k (t)h k (t)dt. ( 23 
)
For p ≤ -2k -1, τ k is decreasing on (0, ∞) and has unique zero α k . If x ≤ α k and if h k is bounded, we have

f (k) h (x) ≤ h k 1 α 2 k g k (α k ) α k 0 g k (t)dt.
h k is such that

|h k (x)| = h (k) (x) -k(p + k -ax)f (k-1) h (x) + 3 + (k -3)(k + 2) 2 af (k-2) h (x) ≤ h (k) + k|p + k -ax| f (k-1) h + a 3 + (k -3)(k + 2) 2 f (k-2) h ≤ h (k) + k max |p + k|, k + 1 + (p + 2k + 1) 2 + ab f (k-1) h + a 3 + (k -3)(k + 2) 2 f (k-2) h .
As consequence, for p ≤ -2k -1 and x ≤ α k ,

f (k) h ≤ H × 1 α 2 k g k (α k ) α k 0 g k (t)dt
where

H = h (k) + k max |p + k|, k + 1 + (p + 2k + 1) 2 + ab M k-1 + a 3 + (k -3)(k + 2) 2 M k-2 .
For p ≤ -2k -1 and x > α k , τ k-1 is decreasing and negative, hence

τ k-1 (t) τ k-1 (x) ≥ 1 ∀x ≤ t.
Replacing k by k -1 in equation ( 21), we have 3) .

f (k) h (x) = h k-1 (x) s(x) - τ k-1 (x)f k-1 h (x) s(x) f (k) h (x) ≤ h k-1 s(x) + τ k-1 (x)f k-1 h (x) s(x) . τ k-1 (x)f k-1 h (x) = -τ k-1 (x) s(x)g k-1 (x) +∞ x g k-1 (t)h k-1 (t)dt ≤ h k-1 -τ k-1 (x) s(x)g k-1 (x) +∞ x g k-1 (t)dt ≤ h k-1 -τ k-1 (x) s(x)g k-1 (x) +∞ x τ k-1 (t) τ k-1 (x) g k-1 (t)dt = h k-1 -1 s(x)g k-1 (x) +∞ x (s(t)g k-1 (t)) dt = h k-1 . |h k-1 (x)| ≤ h (k-1) + (k -1) (p + k -1 -ax)f (k-2) (x) + 3 + (k -4)(k + 1) 2 a f (k-
(p + k -1 -ax)f (k-2) (x) = -(p + k -1 -ax) s(x)g k-2 ∞ x g k-2 (t)h k-2 (t)dt ≤ h k-2 -(p + k -1 -ax) s(x)g k-2 ∞ x g k-2 (t)(t)dt ≤ h k-2 -(p + k -1 -ax) s(x)g k-2 τ k-2(x) ∞ x τ k-2 (t)g k-2 (t)(t)dt = h k-2 -(p + k -1 -ax) s(x)g k-2 τ k-2(x) ∞ x (s(t)g k-2 (t)(t)) dt = h k-2 p + k -1 -ax τ k-2(x) . Let ϕ(x) = p + k -1 -ax τ k-2(x) = p + k -1 -ax b 2 + (p + 2k -3)x -a 2 x 2 . ϕ is differentiable on (α k , ∞) and ϕ (x) = - ab + 2(p + k -1)(p + 2k -3) -2a(p + k -1)x + a 2 x 2 2τ 2 k-2 (x) = - ab + (p + k -1) 2 + 2(p + k -1)(k -2) + (p + k -1 -ax) 2 2τ 2 k-2 (x) 
. -On 0, p+2k+1 a , τ k is such that τ k (t) τ k (0) ≥ 1 , ∀0 ≤ t ≤ p+2k+1 a , since

For p ≤ -2k + 3 or p ≥ -k + 1, ϕ (x) ≤ 0 and ϕ(x) ≤ ϕ(α k ) for all x > α k . For -2k + 3 < p < -k + 1, if (k -2) 2 -(p + 2k -3) 2 -ab > 0, then the only possible positive zero of x → ab + 2(p + k -1)(p + 2k -3) -2a(p + k -1)x + a 2 x 2 is p + k -1 + (k -2) 2 -(p + 2k -3) 2 -ab a < α k .
|h k (x)| ≤ h (k) + k|p + k -ax| f k-1 h + a 3 + (k -3)(k + 2) 2 f k-2 h ≤ h (k) + k max (|p + k|, k + 1) f k-1 h + a 3 + (k -3)(k + 2) 2 f k-2 h ≤ h (k) + k max (|p + k|, k + 1) M k-1 + a 3 + (k -3)(k + 2) 2 M k-2 ,
we have

|f (k) h (x)| ≤ h k 1 s(x)g k (x) x 0 g k (t)dt ≤ h k 1 τ k (0)s(x)g k (x) x 0 τ k (t)g k (t)dt = 1 τ k (0) h k = 2 b h k .
As a consequence,

f (k) h ≤ 2 b h (k) + k max (|p + k|, k + 1) M k-1 + a 3 + (k -3)(k + 2) 2 M k-2 .
-On p+2k+1 a , ∞ , similar arguments as in the previous cases lead to the result.

Remark : These results can be used to estimate the rate of convergence via Stein's approach of:

• a continuous fraction with entries gammas to the generalized inverse Gaussian or Kummer distributions;

• the total resistance of an infinite tree, whose edges are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions to the reciprocal inverse Gaussian distribution (the inverse Gaussian and reciprocal inverse Gaussian distributions are respectively the GIG distribution with p = -1/2 and p = 1/2);

• the generalized inverse Gaussian distribution to the inverse gamma distribution.

-1 2 (

 2 ax+b/x) , x > 0 where K p is the modified Bessel function of the third kind. For a > 0, b ∈ R, c > 0, the Kummer distribution K(a,b,c) with parameters a, b, c has density d a,b,c (x) = 1 Γ(a)ψ(a, a -b + 1; c)

  a, b) by the Stein characterization of GIG(p + 6, a, b) distribution, equation (18) is the Stein equation for GIG(p + 6, a, b) distribution. We have

+∞ x g 3

 3 (t)h 3 (t)dt.

solves

  Stein equation for GIG(p + 2k, a, b) distribution with second member h k given by (22). Let g k be the density of the GIG(p + 2k, a, b) distribution. Then

2 M k- 3 .

 23 Hence for all x > α k and for all p ∈ R,ϕ(x) ≤ ϕ(α k ) = (k + 2)a + a (p + 2k + 1) 2 + ab 4p + 8k + 4 + 4 (p + 2k + 1) 2 + ab .As a consequence for x > α k ,h k-1 ≤ h (k-1) + a(k -1) k + 2 + (p + 2k + 1) 2 + ab 4p + 8k + 4 + 4 (p + 2k + 1) 2 + ab h k-2 + a 3 + (k -4)(k + 1)Now, assume p > -2k -1.
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