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A

Object-Oriented Techniques for Sparse Matrix Computations in Fortran 2003

SALVATORE FILIPPONE, University of Rome “Tor Vergata”
and ALFREDO BUTTARI, CNRS-IRIT Toulouse

The efficiency of a sparse linear algebra operation heavily relies on the ability of the sparse matrix storage
format to exploit the computing power of the underlying hardware. Since no format is universally better
than the others across all possible kinds of operations and computers, sparse linear algebra software packages
should provide facilities to easily implement and integrate new storage formats within a sparse linear algebra
application without the need to modify it; it should also allow to dynamically change a storage format at run-
time depending on the specific operations to be performed. Aiming at these important features, we present
an Object Oriented design model for a sparse linear algebra package which relies on Design Patterns. We
show that an implementation of our model can be efficiently achieved through some of the unique features
of the Fortran 2003 language. Experimental results show that the proposed software infrastructure improves
the modularity and ease of use of the code at no performance loss.
Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Data abstrac-
tion, information hiding; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Sparse, structured, and
very large systems (direct and iterative methods); G.4 [Mathematical Software]: Algorithm design and
analysis
General Terms: Mathematics of computing, Algorithms, Design
Additional Key Words and Phrases: Sparse Matrices, Object-Oriented Design

1. INTRODUCTION
Sparse linear algebra kernels account for a significant percentage of all scientific compu-
tations; the solution of sparse linear systems is an essential step in the solution of partial
differential equations (PDEs), and the computation of eigenvalues of sparse matrices ap-
pears in fields as varied as vibration modeling, network connectivity analysis, webpage
ranking and document-terms semantic analysis.

It is therefore not surprising that techniques for storing sparse matrices on digital com-
puters have occupied researchers for a long time, not the least because it seems essentially
impossible to settle on a single storage format suitable for all purposes.

We became involved with sparse matrices a number of years ago, focusing especially
on linear system solvers and preconditioners for use on parallel machines [Filippone and
Colajanni 2000; Buttari et al. 2007; D’Ambra et al. 2007; 2010]. From this experience
we have been encouraged to reconsider the serial kernels and data structures on which
the parallel solvers are founded, in the light of the language developments that are now
included in widely used compilers; specifically we have applied object-oriented techniques
in a more systematic fashion, exploiting the language support available in Fortran 2003 and
subsequent standard levels [Metcalf et al. 2011].

In our discussion we focus ourselves on the data structures and techniques that are needed
and useful for the purpose of implementing our libraries of parallel Krylov methods; of
course this means we are looking at a specific cross-section of methods and operations, but
the applications we cover are sufficiently important to warrant our effort. Achieving more
generality than this, e.g providing full support for the equivalent of a computer algebra
system, is outside the scope of the present work.
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2. GENERAL OVERVIEW
We start our exposition by detailing the motivations and constraints of our development
work; to begin with, we define an N ×N matrix A to be “sparse” when

The percentage of entries aij which are (identically) zero is large enough that
it is convenient to avoid storing them in computer memory

Of course the specific storage format has to take into account the elementary operations
needed to implement whatever computation is desired by the user. The above definition
is attributed to Wilkinson; apparently [Davis 2007] he gave the dual of this definition, i.e.
stating that “a matrix is dense if the percentage of zero elements is such as to make uneco-
nomic to take advantage of their presence”; note that both these definitions are dependent
on the algorithms the user wishes to employ.

In many important cases, e.g. for matrices originating from the discretization of PDEs,
the average number of non-zeros per row k is much smaller than and independent of the
matrix size N , and is determined by features of the originating problem such as the local
topology of the discretization mesh.

In the following we will use the terms “representation” and “storage format” interchange-
ably to describe the detailed layout of the matrix coefficients aij in the computer memory,
together with the mechanism(s) to identify their row and column indices.

The basic ideas of this paper revolve around the following facts:
— Sparse matrices do not have a “built in” representation in common programming lan-

guages;
— Different storage formats may be needed to match different computing architectures (e.g.

scalar, super-scalar, vector, parallel etc.)
— Different storage formats entail different speeds in certain operations, such as matrix-

vector products, and the difference may be quite large; these storage formats will usually
achieve their efficiency by trading off memory space and pre-processing time for compu-
tational speed;

— No given storage format is likely to be uniformly better than the others across all possible
kinds of operations, even when limited to a single underlying computing architecture;

— Scientific applications often need to perform different kinds of operations on sparse ma-
trices depending on their different phases;

— Scientific applications may have a long lifetime; thus, given the progress in computer
engineering, the underlying computing system and the associated optimal sparse matrix
representation may change;

— A scientific application employing sparse matrices can usually be partitioned into the
logical phases of handling the data distribution on a parallel computing environment,
building the coefficients of the linear algebra problem to be solved, defining the solution
strategy, computing the solution, post-processing the results.

From the above considerations we may extract the following set of requirements:
(1) It should be possible to dynamically choose the representation of the sparse matrix to fit

the machine being employed with no changes in the application structure or behavior,
except perhaps in the amount of memory to be paid to attain the desired execution
speed;

(2) It should be possible to add a new storage format with no more effort than to compile
the code for its object contents and for the methods operating on it, and link it in the
application;

(3) It is desirable to dynamically change the storage format of a given matrix object during
the execution of an application, so that in a sequence of operations each one can be
performed with the best possible efficiency;
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(4) The matrix representation should be opaque, except perhaps for one storage format
which will be used to exchange data to/from the application side.

The above requirements pose a set of challenges to the developer, thus it should not be too
surprising that the solution is quite complex.

A solution to at least some of these problems does not necessarily require the use of an
object-oriented language; indeed, PETSc is written in C and version 2 of PSBLAS is written
in Fortran 95 [Balay et al. 1995; Filippone and Colajanni 2000]. There is a long history of
usage of object-based design in non object-oriented languages, including notable examples
such as the X-windows system; therefore, the reader might wonder about the rationale for
our foray into the usage of an object-oriented language. On the one hand this is absolutely
correct; indeed, this idea might be taken further by saying that it is possible to implement
an object-oriented language in another, or even in assembler, which is what a compiler is
doing after all. What is actually very difficult is to satisfy simultaneously three contradictory
requirements:
— It should be easy to add variations to storage formats (data types) already existing;
— The code that the user (or the library writer) is called upon to write should be centered

around the desired mathematical operators, not the support infrastructure (as much as
possible);

— The underlying language type checks, constraints and optimization capabilities should
be preserved.

A typical strategy for handling objects in a non object-oriented language is to rely on “han-
dles” of a predefined simple type, normally integers; this is used e.g. in X-windows and in
one of the proposals for sparse BLAS [Duff et al. 2002]. However this forfeits the capability
of type-checking implicit in the language, unless the application layer reconstructs these
checks “a posteriori”, a kind of reinvention of the wheel. If efficiency and run-time checks
are preserved, as in our own Fortran 95 software, a different issue arises as to the amount
of work needed to maintain the library over time; indeed, in this case we have to somehow
reimplement the mechanism of dynamic dispatching, which means having (possibly in mul-
tiple places in the code), a list of dynamic types to choose our action from, according to
the specific object instance at hand. This makes it impossible to add a new data structure
without changing and recompiling the library itself; avoiding changes and recompilation is
desirable, not just for a user testing new things, but also for the library developers them-
selves, in that it provides a “medium” level of integration for adding things incrementally
over time, without the need to rework in depth for every change. An instance of this problem
can be seen in the guts of our previous version were the dispatch of methods according to
the contents of the various objects is implemented through flow-control mechanisms, which
of course have to be updated in multiple places.

This work offers a two-fold contribution:
(1) We present an object-oriented model that allows users to handle sparse matrix objects

independently of their internal state. Here the state has to be intended as the specific
storage format used to represent the sparse matrix data although the proposed approach
may be easily applied or extended to the case where the state is, for example, defined by
mathematical properties of a matrix. The specific techniques we developed to achieve
this objective can be interpreted in terms of Design Patterns [Gamma et al. 1995], a set
of concepts well known in the software engineering community. More specifically, the
reader will find plenty of similarities with the Builder, Prototype, Mediator and State
design patterns;

(2) We show how it is possible to implement the Design Pattern concepts through the
object-oriented features of the Fortran 2003 language that only recently have become
accessible thanks to the availability of some complying compilers. We also show how
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some original features of the Fortran 2003 standard (e.g., the source argument for data
allocation described in Section 4), not available in other object-oriented languages such
as C++, can be employed for this purpose.

This work is certainly not the first effort in sparse matrix formats [Duff et al. 1997; Filippone
and Colajanni 2000; Duff et al. 2002]; our contribution seeks to lift existing sparse matrix
techniques into a general and reusable framework that is easily extensible under the current
generation of programming languages.

3. A SPARSE MATRIX CLASS
To begin tackling our challenge, we first define the objects that will contain the actual
sparse matrix data, and whose methods will do the actual work required by the application.
Because of the later encapsulation, we will occasionally refer to the objects of this section
as the “internal representation” of a sparse matrix.

The sparse matrix objects are organized in a three-level inheritance hierarchy; this hier-
archy has been designed taking into account our final goal of building iterative solvers for
sparse linear systems. From a mathematical point of view a matrix is a representation of a
linear operator mapping a vector space into itself; to the same operator there correspond
different matrices depending on the choice of basis for the underlying vector spaces. In the
context of the algorithms we are tackling, we are not usually interested in applying general
transformations of basis, as these would destroy the sparsity patterns of the matrices, and
therefore we assume a given basis for the underlying vector space.

If we consider the uses to which we put our objects, we are mostly interested in reusing
methods as much as possible; therefore we identify attributes that are common to the
different variety of fields onto which a matrix may operate:

— At the highest level of the inheritance hierarchy, a matrix is an object having certain
features which can be represented in the same way for all possible base vector fields,
such as number of rows/columns (i.e. dimension of vector space), number of non-zeros,
possibly being triangular, with a unit diagonal, and so on;

— At a second level the derived classes are differentiated by the number field on which the
vector spaces are based; in our implementation we have finite precision real and complex
fields, and in both cases we have short and long precisions;

— At the third level of the hierarchy we finally have a “concrete” representation of a sparse
matrix, holding in some format the set of nonzero coefficients.

A diagram of the class hierarchy is depicted in Fig. 1 and will be discussed in detail in the
forthcoming sections; in this figure, according to the UML standard for Class Diagrams,
the Composition relation is represented by a full diamond and the Inheritance relation by
an empty triangle; further details on UML may be found e.g. in [Burkhardt 1997]. Before
delving into the details of the class hierarchy we briefly recall here the basic syntactic
features of the Fortran 2003 language used in the examples:

(1) The type keyword introduces the class definition; it is modified by the extends attribute
to specify inheritance;

(2) The contains keyword separates the specification of attributes from the specification
of methods;

(3) The procedure keyword introduces the specification of a binding (method, see below);
the pass attribute identifies the dummy argument corresponding to the object for which
the method was called; this is normally defined in the method interface, and in absence
of the keyword it is the first argument. It is possible also to specify nopass to avoid
passing the object variable to methods that do not need access to the object (such as
the get_fmt method which prints a descriptive name of the dynamic type, see fig. 3).
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Fig. 1. UML class diagram

(4) A “binding” is the association of a method to an object; a binding allows the separation
between the name by which the method is invoked through the object and the name of
the subroutine implementing the method itself for the current (possibly derived) class;
the name and the specific subroutine are linked by the => syntactic element (see also
Fig. 5);

(5) A binding can be generic, i.e. it can be an overloading set that is resolved by the compiler
based on the language rules; the generic keyword adds a list of specific bindings to a
generic set (see also Fig. 2).

Extensive discussions of the Fortran 2003 language features can be found in [Metcalf et al.
2011] and [Adams et al. 2009].

3.1. The psb_base_sparse_mat class
At the root of the type hierarchy there is a very basic object holding some information
common to all type variants, such as number of rows and columns, whether the matrix is
supposed to be triangular (upper or lower) and with a unit (i.e. assumed) diagonal, together
with some state variables; see Fig. 2. Note that this base class is in common among all
variants of real/complex, short/long precision; as such, it only contains information that is
inherently integer in nature.

The methods associated with this class can be grouped into three sets:
— Fully implemented methods: some methods can be fully implemented at the

psb_base_sparse_mat level. Two simple examples are:
get_nrows. Extracts the number of rows (which is a private component of the data
type, and therefore cannot be accessed directly);
set_triangle. Record the fact that we are dealing with a triangular matrix.

— Partially implemented methods: Some methods have an implementation that is split be-
tween this level and the leaf level. A good example of this is the matrix transpose method
transp: its implementation implies swapping the number of rows with the number of
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type : : psb_base_sparse_mat
integer , private : : m, n
integer , private : : state , duplicate
logical , private : : triangle , unitd , upper , sorted

contains
! methods that are fu l ly implemented at this level
procedure , pass(a) : : get_nrows ; procedure , pass(a) : : set_nrows
procedure , pass(a) : : get_ncols ; procedure , pass(a) : : set_ncols
procedure , pass(a) : : set_triangle
. . .
. . .

! methods that are partial ly implemented at this level
generic , public : : transp => base_transp_1mat , base_transp_2mat
generic , public : : transc => base_transc_1mat , base_transc_2mat
. . .
. . .

! methods whose interface can be defined at this level
procedure , pass(a) : : get_neigh
procedure , pass(a) : : allocate_mnnz ;
procedure , pass(a) : : reallocate_nz
generic , public : : al locate => allocate_mnnz
. . .
. . .

end type psb_base_sparse_mat

Fig. 2. The psb_base_sparse_mat class

columns and complementing the lower/upper setting, and these operations clearly be-
long at the base level. However the transpose cannot be fully implemented without the
knowledge of the exact storage details; therefore the derived class will implement the
coefficient swapping, while calling the base class version of transpose to fix the common
items1. This is facilitated by a unique Fortran 2003 feature: each extended type inher-
its (implicitly) a component having the parent type, and can thus invoke the parent’s
methods even if they are overridden.

— Other methods: There are a number of methods that are defined (i.e their interface is
defined) but not implemented at this level. Two easy examples are the allocate and free
methods, which clearly have to have detailed knowledge of storage components needed
to hold the matrix coefficients. A more complicated example is the csgetptn: this is a
method that returns a list of non-zero positions in a specified set of rows, i.e. a pattern
with no coefficients attached. Since it only returns integer data it can be defined at a
level common to all fields (real/complex), but it can only be implemented at the actual
storage level. All methods in this set are coded at the base level to return a meaningful
error message: if one such method has been invoked, it can only mean that one of the
extended classes is missing an overriding implementation, and this is a programming
error to be reported to the user.

Although sparse matrices will be declared as objects of type psb_t_sparse_mat (see
Section 4) in the user’s workspace, the psb_base_sparse_mat class provides a mean of
simplifying the code development as methods that are defined at this level can be reused
for all the descendant classes as well as inside the associated methods.

1Let us note explicitly that the transpose operator is intended for special cases where the actual transpose
storage is really needed; this is opposed to the normal situation of specifying a transpose argument in the
matrix-vector product, in a BLAS-like fashion, e.g. in the implementation of BiCG.
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type , extends(psb_base_sparse_mat) : : psb_t_base_sparse_mat
contains

procedure , pass(a) : : t_base_csmv
procedure , pass(a) : : t_base_csmm
generic , public : : csmm => t_base_csmm, t_base_csmv
. . .
procedure , nopass : : get_fmt
procedure , pass(a) : : t_csgetrow
procedure , pass(a) : : t_csgetblk
generic , public : : csget => t_csgetrow , t_csgetblk
. . .
procedure , pass(a) : : cp_to_coo; procedure , pass(a) : : cp_from_coo
procedure , pass(a) : : cp_to_fmt; procedure , pass(a) : : cp_from_fmt
procedure , pass(a) : : mv_to_coo; procedure , pass(a) : : mv_from_coo
procedure , pass(a) : : mv_to_fmt; procedure , pass(a) : : mv_from_fmt
procedure , pass(a) : : t_base_cp_from
generic , public : : cp_from => t_base_cp_from
procedure , pass(a) : : t_base_mv_from
generic , public : : mv_from => t_base_mv_from

end type psb_t_base_sparse_mat

. . .

subroutine t_base_csmm(alpha , a ,x , beta ,y , info , trans )
use psb_error_mod
implicit none
class (psb_t_base_sparse_mat) , intent ( in ) : : a
psb_t_data, intent ( in ) : : alpha , beta , x ( : , : )
psb_t_data, intent ( inout ) : : y ( : , : )
integer , intent (out) : : info
character , optional , intent ( in ) : : trans

ca l l psb_get_erraction(err_act)
! This i s the base version . I f we get here
! i t means the derived class i s incomplete ,
! so we throw an error .
info = 700
ca l l psb_errpush( info ,name=’t_base_csmm’ ,a_err=a%get_fmt())

i f (err_act /= psb_act_ret_) then
ca l l psb_error ()

end i f
return

end subroutine t_base_csmm

Fig. 3. The psb_t_base_sparse_mat class

3.2. The psb_t_base_sparse_mat object
From the base_sparse_mat class we derive the classes for the various combination
of real/complex data, with short/long precision; in our naming scheme the t in
psb_t_base_sparse_mat is a placeholder for the four variations of short/long precision,
real/complex data s, d, c and z, similarly to the naming scheme of LAPACK; the generic
psb_t_data type will translate accordingly to the Fortran short/long precision, real/com-
plex intrinsic data types.

Notice that at this point we have not yet defined any storage format, hence the class
object itself does not have any additional members with respect to those of the base class;
its structure is shown in Fig. 3.

No methods can be fully implemented at this level, but we can define the interface for
the computational methods requiring the knowledge of the underlying field, such as the
matrix-vector product, as shown in Fig. 3.



A:8 S. Filippone, A. Buttari

Fig. 4. The COO and CSR storage formats for sparse matrices.

type , extends(psb_t_base_sparse_mat) : : psb_t_coo_sparse_mat

integer : : nnz
integer , allocatable : : ia ( : ) , ja ( : )
psb_t_data, allocatable : : val ( : )

contains

procedure , pass(a) : : get_size => t_coo_get_size
procedure , pass(a) : : get_nzeros => t_coo_get_nzeros
procedure , pass(a) : : set_nzeros => t_coo_set_nzeros

! methods that overwrite those defined at the higher level
procedure , pass(a) : : t_base_csmm => t_coo_csmm
procedure , pass(a) : : t_base_csmv => t_coo_csmv
. . .
! methods that extend those defined at the higher level
procedure , pass(a) : : base_transp_1mat => t_coo_transp_1mat
procedure , pass(a) : : base_transc_1mat => t_coo_transc_1mat

end type psb_t_coo_sparse_mat

Fig. 5. The psb_t_coo_sparse_mat class

Again, this interface is defined, but is supposed to be overridden at the leaf level. The
overloading capabilities of Fortran 2003 allow us to define a generic interface (e.g. csmm)
which has the same “look” for all variants of data type/precision, as well as for products by
rank-1 (i.e. vectors) or rank-2 (i.e. matrices) arrays2 (see t_base_csmm and t_base_csmv).

3.3. The psb_t_yyy_sparse_mat object
We have finally arrived at the leaf of the inheritance hierarchy: we can now define a storage
format; the yyy in the title will morph into a short symbolic name for the desired storage
format in the actual class. The COOrdinates (COO) and Compressed Sparse Row (CSR) storage
formats will be used in the rest of this paper as reference examples; these two formats are
illustrated in Fig. 4. In the COO we explicitly store each coefficient with a triple of coefficient
value, row and column index, and we have a separate count of the nonzeros; with CSR we
have an array of pointers to the boundaries of the rows into two other arrays containing the
column indices and the values.

The class definition for psb_t_coo_sparse_mat3 is shown in Fig. 5.

2Here the word “rank” is used in a technical sense from the Fortran language standard, meaning number
of dimensions of an array, and does not refer to the mathematical concept of rank of a linear operator.
3Arguably the definition of a coordinate storage format could be made independently of the data type of
the coefficients; however this would entail an inversion of the inheritance hierarchy, or a multiple inheritance
chain, which is not supported in Fortran 2003.
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As an example, in the COO storage format the implementation of the matrix transpose
operator is quite simple: all that is needed is to swap the components ia and ja (and this
can be done quite simply by using the move_alloc intrinsic), usually followed by a sorting
of the entries in row-major order for efficiency reasons.

3.4. Conversion among different storage formats
To complete our work we still have to take into account one of the requirements for our
model: we have to be able to perform conversions among different storage formats. We
immediately see that providing conversion routines for all possible pairs of source/target
storage formats is unfeasible for two reasons:
(1) A direct conversion for all pairs would generate a set of routines growing quadratically

in size with the number of formats;
(2) The set of routines should be easily extensible, therefore we should not assume to know

beforehand all possible storage formats in existence.
An efficient solution to these two problems is provided by the Mediator pattern [Gamma

et al. 1995] whose implementation, in our case, consists in routing all conversions through
one reference storage format, which thus gains the privileged status of being “generally
known”; thus, the conversion among two different formats can be implemented in at most
two steps via this reference format. The routines for format conversion from a source operand
to a target operand are defined in eight variants, according to:
— Move vs. copy: the move operation will release the memory allocated for the source

operand, which thus ceases to hold data, whereas the copy operation does the obvious
thing; if at all possible, the move operation should avoid having both source and target
memory simultaneously allocated at any given time;

— To vs. from: the “from” version is invoked via the target operand, whereas the “to”
version is invoked via the source operand;

— Generic vs. reference storage format. Moves or copies can be perform to and from the
reference format or a generic, unknown one. In the second case, a two-step procedure
through the reference format will be used as described below.

The special storage format chosen for data exchange is the coordinate (COO): we store ex-
plicitly the number of non-zeros, and we have three vectors holding the nonzero coefficients,
their row and column indices. This storage format is particularly convenient for the following
operations:
— Renumbering the row/column indices;
— Adding/deleting entries.
Note that it is not necessary in this definition of the COO format for the entries to be in
any particular order; however having them sorted may be critical in speeding up certain
operations such as extracting a specific row or doing a triangular system solve.

How does the use of the COO storage solve the format conversion issue? The main problem
here is that while we are writing the code for storage format CXX we have to prepare for
conversion to storage format CYY, which will only be known at run-time. The only thing
that we know about CYY is that, being an extention of the base type, it is required to provide
methods for conversion to/from COO, just like the CXX code we are in the process of writing;
therefore, if we employ a staging buffer, we can solve the problem with the code in Fig. 6.

In this way we can convert to b’s actual type (and storage format), because its
specific details are known to its own implementation code invoked via the statement
call b%mv_from_coo(tmp,info).

It must be noted that the existence of this privileged format does not prevent the possi-
bility to implement direct transitions among formats based on the actual type of b in those
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subroutine t_mv_cxx_to_fmt(a ,b, info )
class (psb_t_cxx_sparse_mat) , intent ( inout ) : : a
class (psb_t_base_sparse_mat) , intent (out) : : b
integer , intent (out) : : info

type(psb_t_coo_sparse_mat) : : tmp

ca l l a%mv_to_coo(tmp, info )
i f ( info == 0) ca l l b%mv_from_coo(tmp, info )

end subroutine t_mv_cxx_to_fmt

Fig. 6. The code that moves a matrix a of type CXX into a generic format given by the argument b.

subroutine t_mv_coo_from_coo(a ,b, info )
implicit none
class (psb_t_coo_sparse_mat) , intent ( inout ) : : a
class (psb_t_coo_sparse_mat) , intent ( inout ) : : b
integer , intent (out) : : info

integer : : m,n, nz

. . .
ca l l a%psb_t_base_sparse_mat%mv_from(b%psb_t_base_sparse_mat)
ca l l a%set_nzeros(b%get_nzeros ())

ca l l move_alloc(b%ia , a%ia )
ca l l move_alloc(b%ja , a%ja )
ca l l move_alloc(b%val , a%val )
ca l l b%free ()
. . .

return

end subroutine t_mv_coo_from_coo

subroutine t_mv_coo_to_fmt(a ,b, info )
implicit none
class (psb_t_coo_sparse_mat) , intent ( inout ) : : a
class (psb_t_base_sparse_mat) , intent (out) : : b
integer , intent (out) : : info

. . .
ca l l b%mv_from_coo(a , info )
. . .

return

end subroutine t_mv_coo_to_fmt

Fig. 7. Format conversion methods

cases where the shortcuts provide performance gains significant enough to be worth pur-
suing. This requires separating the interface of methods from their actual implementation
into different source files. In this case we are free to USE other modules in the source file
containing the implementation without introducing cyclic dependencies between them. The
task of including direct transition methods is considerably facilitated by a unique feature of
the Fortran 2003 language: the select type statement which makes it possible to control
the execution of instructions based on the dynamic type of a polymorphic entity.
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subroutine t_cp_csr_to_coo(a ,b, info )
use psb_t_base_mat_mod
implicit none

class (psb_t_csr_sparse_mat) , intent ( in ) : : a
class (psb_t_coo_sparse_mat) , intent (out) : : b
integer , intent (out) : : info

integer , allocatable : : itemp ( : )
! locals
log ica l : : rwshr_
Integer : : nza , nr , nc , i , j , irw , idl , err_act

info = 0
nr = a%get_nrows()
nc = a%get_ncols ()
nza = a%get_nzeros ()

ca l l b%allocate (nr , nc , nza)
ca l l b%psb_t_base_sparse_mat%cp_from(a%psb_t_base_sparse_mat)
do i =1, nr

do j=a%irp ( i ) ,a%irp ( i+1)−1
b%ia ( j ) = i
b%ja ( j ) = a%ja ( j )
b%val ( j ) = a%val ( j )

end do
end do
ca l l b%set_nzeros(a%get_nzeros ())
return

end subroutine t_cp_csr_to_coo

Fig. 8. Format conversion methods

In Fig. 7 and 8 we show some of the conversion routines4. The methods in Fig. 7 are
invoked through a COO object, therefore the first one is fully implemented, while the second
one just throws the burden on the target object.

Requiring that each derived class must be able to construct a COO version of itself is
not the absolute minimum necessary to implement the Mediator pattern; to implement this
design pattern it would be sufficient to use a simple method that provides a view of a derived
class; one such method is, for example, the csget mentioned in Fig. 3 and further described
below. It must be noted that the resulting reduction in memory consumption comes at the
price of a performance loss in terms of runtime; however, as discussed above, we are leaving
the possibility for the user to implement a direct transition between any two formats, thus
achieving memory and time efficiency at the cost of development effort.

We have yet to answer a fundamental question: How does the user let a sparse matrix come
into existence? A very important design point was that storage formats should be opaque;
this means that no knowledge of the internal representation should be needed outside the
source code implementing the desired class. As a consequence it becomes necessary to
provide methods for building a sparse matrix and for inspecting its contents relying on an
exchange format. We have chosen to define the dual interfaces csput and csget assuming as
a reference a simple list: given nz the number of nonzeros involved in a call, three vectors will
hold for each i ∈ (1 . . . nz) the i-th coefficient, its row and its column indices, respectively.
For csput these coefficients are fed into the matrix, whereas with csget we are inspecting
the contents of a set of rows. Thus, csput and csget provide a COO-like virtual view of a
given, opaque sparse matrix object.

4The actual library code is slightly more complex because of error handling procedures; at this level of
discussion, they would only add clutter and have been removed from the code examples.
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The alert reader will have noticed a possible redundancy in the previous methods with
respect to the conversions to/from COO storage; this is not quite the case for the following
reasons:
— The csget and csput methods are intended to be applied to a small subset of the

rows/columns available, giving a purely “local” view;
— Some storage layouts can only be defined properly after having gathered “global” infor-

mation on the whole sparse matrix;
— Having different interfaces for “global” and “local” conversions allows tuning for different

usage conditions.
Of course there is nothing to prevent a format conversion from reusing the “local” methods
if convenient; a draft example of how to build a sparse matrix with the local methods is
shown in Fig. 10.

4. A CONTAINER CLASS FOR A SPARSE MATRIX
While the inheritance chain of the previous section achieves some of our objectives, it also
leaves some questions unanswered, among them a major one: how to let a given sparse
matrix object switch at run-time among different storage formats, some of them possibly
unknown at the time the bulk of the library code is designed and implemented.

The solution is to add a layer of indirection: encapsulate the class of the previous section
inside another class which is the one visible to the user, as already shown in Fig. 1 and
detailed in Fig. 9. The only component of the user-level object is a polymorphic variable
holding an actual sparse matrix; user-callable methods are simply implemented by calling
the corresponding methods of the inner class (usually with a one-to-one correspondence).

The reader will recognize that this is essentially the “State” design pattern [Gamma et al.
1995]: the object has a well defined external appearance and set of methods, but the actual
behavior changes according to the dynamic type of its (only) component.

The change in the internal state is accessible through the user-level cscnv method; thus
the user may request a change in the storage format to suit the needs of the application.
The method comes in two variants, according to whether it is working “in place” or whether
it also performs a copy.

5. USAGE AND RESULTS
In this section we briefly describe the features unique to this Fortran 2003 version of our
library; for general use considerations we refer the reader to the online documentation and
to the code samples included.

5.1. How to add a new storage format
One of the key objectives was to make it easy for the library work with a new storage
format, possibly developed by the end user (and thus completely unknown at the library
writing time).

Naturally, the first order of business is to actually choose and implement a storage scheme,
since there cannot be a way around the coding work required for implementing the various
methods for operations such as the matrix-vector product5; as mentioned in the introduction
one of our requirements is to make sure that this is (essentially) all there is to it. So,
we assume that the user has chosen a storage format, has taken the code for one of the
predefined formats6 (e.g. psb_t_csr_sparse_mat) as a guide and has derived an entirely
new class. How can the user plug this new class into the library framework?

5We are not discussing here the use of code generators; although quite possible, and indeed subject of related
research [Martone et al. 2010], it is outside the scope of this paper.
6Not the COO format, since it has a privileged status in the MEDIATOR pattern.
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type : : psb_t_sparse_mat

! The exact type of this component i s only determined
! at runtime .
class (psb_t_base_sparse_mat) , allocatable : : a

contains
! . . . . l i s t of methods
. . . . . . . . . . . . . .

procedure , pass(a) : : t_cscnv
procedure , pass(a) : : t_cscnv_ip
generic , public : : cscnv => t_cscnv , t_cscnv_ip

end type psb_t_sparse_mat

. . .

subroutine t_cscnv_ip(a , info , type ,mold, dupl)
implicit none
class (psb_t_sparse_mat) , intent ( inout ) : : a
integer , intent (out) : : info
integer , optional , intent ( in ) : : dupl
character ( len=∗), optional , intent ( in ) : : type
class (psb_t_base_sparse_mat) , intent ( in ) , optional : : mold

class (psb_t_base_sparse_mat) , allocatable : : altmp

. . .
i f (count( (/present (mold) , present (type) /)) > 1) then

! return an error
ca l l psb_error ()

end i f

i f ( present (mold)) then
allocate (altmp , source=mold, stat=info )

else i f ( present (type )) then
select case (psb_toupper(type ))
case ( ’CSR’ )

allocate (psb_t_csr_sparse_mat : : altmp , stat=info )
case ( ’COO’ )

allocate (psb_t_coo_sparse_mat : : altmp , stat=info )
case default

info = 136; goto 9999
end select

else
allocate (psb_t_csr_sparse_mat : : altmp , stat=info )

end i f
. . .

ca l l altmp%mv_from_fmt(a%a , info )
ca l l move_alloc(altmp , a%a)
. . .

return

end subroutine t_cscnv_ip

Fig. 9. The psb_t_sparse_mat class
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module psb_t_xxx_mat_mod
use psb_t_base_mat_mod
type , extends(psb_t_base_sparse_mat) : : psb_t_xxx_sparse_mat

. . . . components of the type
contains

. . . . l i s t of methods
end type psb_t_xxx_sparse_mat

contains
. . . . . . methods implementation

end module psb_t_xxx_mat_mod

program t_matgen
use psb_sparse_mod
use psb_t_xxx_mat_mod

type(psb_t_sparse_mat) : : a
type(psb_t_xxx_sparse_mat) : : axxx

! I n i t i a l i z e an NRxNR matrix
ca l l a%csa l l (nr , nr , info )
! F i l l in i t s contents
do i =1, nr

. . . . generate row I in IROW,ICOL,VAL
cal l a%csput(nz , irow , icol , val ,1 , nr ,1 , nr , info )

end do
! Assemble into XXX format
ca l l a%cscnv( info ,mold=axxx)

! Do something with A

end program t_matgen

Fig. 10. Using the psb_t_xxx_sparse_mat class

Let us consider again the storage format conversion method cscnv, specifically the imple-
mentation of the “in place” version shown in Fig. 9; as we can see, there are two mutually
exclusive optional arguments instructing the library code as to the desired storage format.
The first selection mode, via the character string type, is used to select among pre-built
storage variants that have already been defined at library writing time; as a minimum these
include Coordinate (COO) and Compressed Storage by Rows (CSR), possibly others will be
provided by default.

The interesting part of this example is the mold argument; the Fortran 2003 language
provides the unique feature of sourced allocation, where the dynamic type of the allocated
polymorphic object is set to be the same as the dynamic type of the source object specified
in the allocate statement; this is a case of the “Prototype” design pattern having been
included in the underlying language7. So, if the user has defined his/her own new XXX storage
format by extending the psb_t_base_sparse_mat class, it is sufficient to declare in the user
code a “mold” variable and pass it to the cscnv method, as shown in the code in Fig. 10.
Note that, although a sourced allocation copies the contents of the source variable into the
allocated one, for our purposes we are only using the dynamic type; thus the mold variable
does not need to have any data associated with it, hence the name. When available, sourced
allocation can be replaced with molded allocation, a feature of the Fortran 2008 standard
already implemented in several compilers where the value of the mold variable is not copied
into the allocated one.

Note that the various method invocations whose interfaces are specified by the
use psb_sparse_mod statement have been pre-compiled, and thus have no knowledge of

7Note that this feature is not available natively in C++
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the psb_t_xxx_sparse_mat derived type; the new type enters into the library space via the
mold argument.

One final comment is in order: we have discussed so far how to build a sparse matrix from
scratch; however it is often the case that the same pattern may be reused either in a different
sparse matrix object, or in the same matrix at a later time with different coefficients. This
is supported by the availability of both a cloning method and of a reinitialization method;
if the reinitialization method is employed on an existing matrix in place of the allocation
method a%csall, the filling loop in Fig. 10 will reuse the existing pattern while altering only
the coefficients. Further details are available in the PSBLAS user’s guide and accompanying
sample programs.

5.2. Numerical results
The computational scientist interested in using these techniques will naturally wonder at
this point how much of a performance impact will have to be paid for the flexibility acquired
with the new framework.

Of course a precise answer to this question depends on the particular application and on
the computing environment at hand, comprising both hardware and software, and care is
needed to draw reliable conclusions.

In the context of this work we are helped by the fact that our code is an evolution of
an existing one: indeed version 2 of PSBLAS is entirely implemented in Fortran 95, thus
providing a convenient reference point. Moreover, the implementation of the computational
kernels at the innermost level, such as the matrix-vector product in CSR or the sparse
triangular system solution in COO, is essentially unchanged from version 2 to version 3;
thus we are indeed as close as possible to measuring “just” the cost of the object model
implementation. For this comparison to be meaningful it ought to be performed with the
same compiler; thus we are tied to the compilers (and platforms) supporting all the features
we have used. Here we will present results based on two such environments, the NAGware
Fortran compiler version 5.2 for a 32 bit Linux installation, and to the IBM XLF version 13.1
compiler on an IBM POWER6; we should however notice that other compilers, including the
Cray compiler version 7.3 and the GNU compiler version 4.6, also support enough features
for our purposes.

Another aspect to be considered is that our library is designed for parallel computers and
employs MPI; for the purposes of this comparison, however, we switch off the MPI code,
thus leaving only empty stubs; we are effectively running in serial mode to avoid mixing
communication issues into our performance data.

To evaluate our solution we have employed one of the standard test programs contained
in our software, i.e. the pargen test program. The program embodies a stylized version of
a PDE solver going through the following phases:

— Define the computation domain;
— Discretize the differential equation, transforming it in a linear system;
— Choose a (preconditioned) iterative method;
— Apply the iterative method to solve the equation.

The program is a “stylized” version in that the choices of computational domain and dis-
cretization technique are very simple: we are just applying finite differences on a unit cube
with uniform step-size. Nonetheless, for the purpose of this analysis, the code structure is
quite representative of a real application; translating this description into computational
kernels, we have measurements for the following phases:

(1) Matrix build, comprising:
(a) Allocation of data structures;
(b) Generation of matrix coefficients;
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Table I. CSR timings (in seconds) with the NAG compiler
Version 2 (Fortran 95) Version 3 (Fortran 2003)

Size Build Prec Solve Iter Build Prec Solve Iter
8000 0.0110 0.0049 0.0197 0.0018 0.0106 0.0040 0.0180 0.0016

15625 0.0289 0.0109 0.0605 0.0047 0.0212 0.0096 0.0519 0.0040
27000 0.0419 0.0168 0.1101 0.0079 0.0317 0.0178 0.0967 0.0069
42875 0.0673 0.0269 0.1888 0.0118 0.0512 0.0296 0.1847 0.0115
64000 0.0876 0.0397 0.3147 0.0175 0.0794 0.0443 0.3842 0.0213
91125 0.1274 0.0590 0.5374 0.0256 0.1404 0.0689 0.6166 0.0294

125000 0.1753 0.1155 0.8793 0.0382 0.1558 0.0868 0.8938 0.0389
216000 0.3100 0.1547 1.7789 0.0684 0.2661 0.1467 1.7975 0.0691
343000 0.4928 0.2295 3.1669 0.1056 0.4325 0.2421 3.1617 0.1054
512000 0.7603 0.3384 5.0337 0.1480 0.6423 0.3574 5.2843 0.1554
729000 1.1148 0.4783 7.9254 0.2086 1.0530 0.5277 8.0699 0.2124

1000000 1.4296 0.6556 11.6826 0.2849 1.2382 0.6885 11.4146 0.2784

(c) Assembly of sparse matrix;
(2) Preconditioner build;
(3) System solve.

The first set of results has been obtained with the NAG compiler version 5.2, on a machine
equipped with an Intel Core2 T5600 CPU, with a 32 bit installation of Linux at the Uni-
versity of Rome “Tor Vergata”. All linear systems have been solved with the BICGSTAB
method and an ILU(0) preconditioner, with a tolerance of 10−9 for the relative (precondi-
tioned) residual; in all cases the number of iterations and the residual on exit were the same
for both versions, as is to be expected since the numerical properties of the inner kernels
were not altered. All measurements were based on elapsed times, taken as “single shots”;
as such they may suffer from a certain variability that is inherent in any such experiment.

In Table I we show the timings for the CSR storage format, specifically the times for matrix
and preconditioner build, the total solve time and time per iteration. Comparing columns 4
and 5 with columns 8 and 9 we see clearly that the difference in solution time is very small,
and thus the price paid for the OO design in the application of the computing kernels is
quite acceptable. The second and sixth columns refer to the matrix build phase; here we
have the somewhat surprising result that the new code is actually faster; in repackaging
the code, we streamlined some components, and this was beneficial. The third and seventh
columns contain the time to build the preconditioner, and here the Fortran 2003 code is
only very slightly worse. If we look at the measurement for the COO storage format shown in
Table II, we see a similar overall picture; one notable difference is that the preconditioner
build times are consistently higher than the corresponding ones for CSR. This is due to a
“dirty trick” in the code: when the input matrices are in CSR format we take a shortcut
that enables faster execution for a very common case. Similar shortcuts can be added in
various parts of the library if/when usage patterns warrant the effort. On the other hand,
the Fortran 2003 preconditioner build times for COO are better than the Fortran 95 ones.

The second set of results has been obtained with the IBM XLF compiler version 13.1, on
a POWER6 machine with the AIX Version 5.3 operating systems installed at the IDRIS
(Institut du Développement et des Ressources en Informatique Scientifique) institute; all
other parameters were identical to the previous set of test cases. Tables III and IV give the
corresponding results. Again, the difference in performance is very small, but the distribu-
tion is somewhat different, because the Fortran 2003 code tends to be slightly slower in the
matrix build, and somewhat faster in the preconditioner setup.

Our overall assessment is thus that the performance penalty for the Fortran 2003 imple-
mentation is close to non-existent, and is unlikely to be relevant in the context of a full,
complex application; thus, we are reaping the benefits in code clarity and maintainability
while keeping performance, a very nice outcome!



Object-Oriented Techniques for Sparse Matrix Computations in Fortran 2003 A:17

Table II. COO timings (in seconds) with the NAG compiler
Version 2 (Fortran 95) Version 3 (Fortran 2003)

Size Build Prec Solve Iter Build Prec Solve Iter
8000 0.0116 0.0096 0.0290 0.0026 0.0101 0.0077 0.0260 0.0024

15625 0.0217 0.0179 0.0663 0.0051 0.0193 0.0152 0.0597 0.0046
27000 0.0410 0.0330 0.1252 0.0089 0.0336 0.0269 0.1153 0.0082
42875 0.0601 0.0539 0.2555 0.0160 0.0554 0.0488 0.2217 0.0139
64000 0.0930 0.0746 0.3913 0.0217 0.0780 0.0673 0.4089 0.0227
91125 0.1455 0.1170 0.6373 0.0303 0.1183 0.0982 0.6697 0.0319

125000 0.2201 0.1553 1.0101 0.0439 0.1567 0.1322 0.9575 0.0416
216000 0.3047 0.2491 1.9369 0.0745 0.2605 0.2203 1.8973 0.0730
343000 0.4963 0.4175 3.2125 0.1071 0.4230 0.3588 3.4458 0.1149
512000 0.7383 0.5979 5.6391 0.1659 0.6466 0.5410 5.8638 0.1725
729000 1.1197 0.8573 9.2316 0.2429 0.8811 0.7773 9.9702 0.2624

1000000 1.5056 1.2200 12.9558 0.3160 1.2673 1.0596 12.9526 0.3159

Table III. CSR timings (in seconds) with the XLF compiler
Version 2 (Fortran 95) Version 3 (Fortran 2003)

Size Build Prec Solve Iter Build Prec Solve Iter
8000 0.0089 0.0072 0.0107 0.0010 0.0090 0.0055 0.0102 0.0009

15625 0.0169 0.0127 0.0244 0.0019 0.0167 0.0105 0.0237 0.0018
27000 0.0278 0.0255 0.0459 0.0033 0.0291 0.0192 0.0460 0.0033
42875 0.0454 0.0378 0.0878 0.0052 0.0456 0.0343 0.0926 0.0054
64000 0.0663 0.0572 0.1388 0.0077 0.0669 0.0448 0.1421 0.0079
91125 0.0935 0.0814 0.2382 0.0113 0.0897 0.0623 0.2438 0.0116

125000 0.1333 0.1090 0.4146 0.0180 0.1289 0.0907 0.4439 0.0193
216000 0.2322 0.1879 1.1538 0.0444 0.2253 0.1612 1.2090 0.0465
343000 0.3740 0.3137 2.2823 0.0761 0.3749 0.2572 2.1600 0.0720
512000 0.5781 0.4716 3.8668 0.1137 0.5683 0.4011 3.9524 0.1162
729000 0.8028 0.6677 6.2049 0.1633 0.8442 0.5699 6.1486 0.1618

1000000 1.1258 0.9369 9.4012 0.2293 1.1316 0.8169 9.9135 0.2418

Table IV. COO timings (in seconds) with the XLF compiler
Version 2 (Fortran 95) Version 3 (Fortran 2003)

Size Build Prec Solve Iter Build Prec Solve Iter
8000 0.0082 0.0094 0.0109 0.0010 0.0086 0.0051 0.0102 0.0009

15625 0.0152 0.0173 0.0254 0.0020 0.0159 0.0100 0.0237 0.0018
27000 0.0267 0.0305 0.0487 0.0035 0.0273 0.0177 0.0460 0.0033
42875 0.0432 0.0467 0.0932 0.0055 0.0455 0.0304 0.0917 0.0054
64000 0.0645 0.0699 0.1473 0.0082 0.0632 0.0431 0.1422 0.0079
91125 0.0888 0.1016 0.2554 0.0122 0.0912 0.0614 0.2515 0.0120

125000 0.1230 0.1380 0.4798 0.0209 0.1243 0.0879 0.4307 0.0187
216000 0.2225 0.2451 1.2660 0.0487 0.2266 0.1647 1.2082 0.0465
343000 0.3541 0.4005 2.4657 0.0822 0.3873 0.2787 2.2623 0.0754
512000 0.5674 0.6196 4.2347 0.1246 0.5803 0.4165 4.0494 0.1191
729000 0.7897 0.8769 6.8445 0.1801 0.8163 0.5651 6.2538 0.1646

1000000 1.1076 1.1967 10.4982 0.2561 1.1461 0.7751 9.8937 0.2413

6. RELATED WORK
The attempt to standardize serial sparse computations is one of the tasks in the activities
of the BLAS Technical Forum8; the interested reader is referred to [Duff et al. 1997; Duff
et al. 2002].

An immense amount of research work has been devoted to the implementation of iter-
ative solvers for sparse linear systems on distributed memory machines. One of the most
complete works is the PETSc programming environment [Balay et al. 1995] which provides
a C language implementation of an object-based design. The PETSc approach has many

8URL: http://www.netlib.org/blast
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interesting features, such as the provision for setup and support routines, and ease of im-
plementation of new iterative methods. We feel PSBLAS is somewhat complementary to
PETSc, in that it addresses more closely the needs of the Fortran user community.

The Trilinos project [Heroux et al. 2005] aims at facilitating the development and mainte-
nance of mathematical software by providing a unifying context for the usage of independent
software packages. This is achieved by means of an object oriented software infrastructure
where the Epetra class plays a fundamental role. This class provides an high level of abstrac-
tion for the definition of mathematical objects such as matrices or vectors. PSBLAS shares
with Trilinos the effort to use advanced object oriented techniques to provide the user a mean
of handling matrices regardless of their actual storage format. In particular, the Epetra row
matrix classes Epetra_RowMatrix, Epetra_BasicRowMatrix, Epetra_CrsMatrix are orga-
nized in a hierachy that has a number of similarities with our hierachy for the internal ob-
jects psb_base_sparse_matrix, psb_t_base_sparse_matrix, psb_t_csr_sparse_matrix
respectively; indeed, the Epetra user is encouraged by the documentation to take one of
the classes that extend Epetra_BasicRowMatrix, and specifically Epetra_JadMatrix (in
the documentation of version 10.6), as a guide to satisfy the requirements at hand. This
is similar to our recommendation to employ psb_t_csr_sparse_matrix as a skeleton for
implementing a new data structure tailored to the target machine architecture. There are
two main differences that we can see. The first difference is that our library provides an
external encapsulation layer enabling the implementation of the State design pattern, and
therefore allowing any given sparse matrix class to change it’s storage seamlessly, and to
plug in the external format via the mold argument. The second difference is that the Epetra
class takes into account the parallel data distribution, whereas our class hierachy is purely
devoted to the implementation of the serial kernels; the kernels are already used in parallel,
while we are currently investigating possible changes and extensions to the existing parallel
structure.

Aztec [Hutchinson et al. 1998] is another software package developed at Sandia National
Laboratories that simplifies the parallelization of sparse linear systems solution. Aztec’s
approach to domain partitioning, conversion from global to local data and keeping track
of partitioning information is essentially identical to that of PSBLAS. The most important
difference is that Aztec is designed primarily for C and Fortran 77 users, and does not
provide object-oriented Fortran 90 capabilities; object oriented capabilities have been added
by writing wrapper code in Trilinos.

Unlike the Aztec approach, object-oriented design methodologies are at the basis of the
Diffpack project [Bruaset and Langtangen 1997]. Its authors propose the use of C++ instead
of C and demonstrate that object-oriented numerical software is easy to use, flexible and
maintainable, and can be computationally efficient even in the field of sparse matrix solvers.

Recent work by Rouson et al. [Rouson et al. 2010] describes the definition of new design
patterns for multiphysics modeling and presents both a Fortran 2003 and a C++ approach
to their implementation; sophisticated interfacing of Fortran 2003 with C/C++ is explored
in [Rouson et al. 2010].

7. CONCLUSIONS
This paper presented a software framework for enabling extensible, efficient and portable
implementations of sparse matrix computations.

Future developments will undoubtedly include the extension of this framework to other
architectures; in particular, support for GPUs is the subject of related work [Barbieri et al.
2011], and multi-core support will probably require additional techniques, possibly using
automatic code generation tools.

A side effect of our development has been the involvement with the GNU compiler de-
velopment community; the GNU Fortran compiler version 4.6 has sufficient support for
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Fortran 2003 to allow building and running our code. The PSBLAS library discussed in this
paper is available from http://www.ce.uniroma2.it/psblas.
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