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Least Impulse Response Estimator for Stress Test Exercises

Abstract

We introduce new semi-parametric models for the analysis of rates and
proportions, such as proportions of default, (expected) loss-given-default and
credit conversion factor encountered in credit risk analysis. These models are
especially convenient for stress test exercises. We show that minimizing the
estimated effect of a stress leads to consistent estimates. The new models
with their associated estimation method are compared with the other ap-
proaches currently proposed in the literature such as the beta, and logistic
regressions.

Keywords : Basel Regulation, Stress Test, Loss-Given-Default, Impulse
Response, Pseudo-Maximum Likelihood, LIR Estimation, Beta Regression,
Moebius Transformation.
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1 Introduction

The aim of this note is to explain how recent results on transformation groups
[Gourieroux, Monfort, Zakoian (2018)] can be used in the framework of stress
test exercises for homogeneous pools of credit lines. For such a homogeneous
pool, the total expected loss is conventionally decomposed along the following
formula [see e.g. BCBS (2001), EBA (2016)] :

Expected Loss = EAD× CCF× PD× LGD, (1.1)

where EAD denotes the exposure-at-default, that is the total level of the
credit line, CCF is the credit conversion factor, that is the proportion of the
credit line really used at the default time, PD is the probability of default
and LGD the (expected) loss given default defined as 1 minus the (expected)
recovery rate. Formula (1.1) involves variables that are value constrained.
The EAD is positive, whereas the three other variables are constrained to
lie between 0 and 1. When performing a stress exercise the EAD is usually
crystallized, i.e. kept fixed, but the three other characteristics depend on how
the borrowers react to the environment and are thus sensitive to local and/or
extreme shocks. In this paper we introduce semi-parametric transformation
models for variables in [0, 1], such as CCF, PD, or LGD. We propose a
consistent estimation method minimizing the sensitivity of the risk variables
with respect to shocks, which we call the Least Impulse Response (LIR)
approach. Moreover, we show that this method leads also to simple and
consistent estimate of the effect of the stresses on the risk variables.

The semi-parametric transformation model with values in [0, 1] is de-
scribed in Section 2. We provide different examples of transformation models
and explain how to introduce a notion of “intercept” parameter. The LIR
estimation approach is introduced in Section 3. We discuss its interpretation
as a pseudo maximum likelihood approach, and show that this approach pro-
vides consistent approximations of the effect of local as well as global stresses
on the error term. We also compare the LIR approach with the approaches
currently proposed in the credit risk literature such as the beta regression
model, or the transformed Gaussian regression. In Section 4 the approach is
extended to the joint treatment of PD and LGD. In particular we introduce
models based on Moebius transformations. Section 5 concludes. Proofs of
asymptotic results are gathered in Appendices.
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2 The Transformation Model

We consider a semi-parametric transformation model for variables valued in
[0, 1]. The model can be written as :

ut = c[a(xt, β), yt], t = 1, . . . , T, (2.1)

where:

• the observed endogenous variable yt and the unobserved error term
ut are valued in [0, 1], xt are observed explanatory variables that can
include exogenous as well as lagged endogenous variables;

• u→ c(a, u) is a one-to-one function mapping [0, 1] to itself, parametrized
by a ∈ A ⊂ RJ ;

• x→ a(x, β) is an index function (or score) from X to A, parametrized
by β ∈ B ⊂ RK .

Due to the invertibility of function ca(u) ≡ c(a, u), model (2.1) can be
equivalently written in the standard form as :

yt = c−1a(xt,β)(ut), (2.2)

where the endogenous variable is expressed in terms of the explanatory vari-
ables and errors. In other words, model (2.2) is an input-output model with
input (ut, xt) and output yt. However we will see below that representation
(2.1) is often more convenient than (2.2) for estimation purpose.

Next, we assume that :

Assumption 1. The errors ut, t = 1, . . . , T are independent, identically dis-
tributed (i.i.d.). Their distribution is absolutely continuous with respect to the
Lebesgue measure on [0.1], with probability density function (p.d.f.) denoted
by f .

Assumption 2. The model (2.1) is well specified with true parameter value
β0 and true error distribution with p.d.f. f0.
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Remark 1 : Assumption 1 implies a continuous distribution on [0, 1] for
the endogenous variable y. This assumption has to be discussed in details
for the LGD variable. Up to recent years, the supervisors have not suffi-
ciently distinguished the loss-given-default observed ex-post, that is, at the
end of the recovery process, from the expected loss-given-default measured
ex-ante for a credit (corporate) not yet entered in default. The first notion
is now called realized LGD1 [see e.g. EBA (2016)], whereas the second no-
tion is called ELGD for expected LGD in the recent academic literature.
The distinction between the two notions is important. Indeed, if the obser-
vations concern the realized individual losses, the observed distributions of
individual realized LGD’s have significant point masses at 0 and 1, as well as
a continuous component on (0, 1). Therefore the assumption of continuous
distribution on (0, 1) is not satisfied. However, if the observed data concerns
homogeneous segments of individual risks, what is observed is the ELGD,
which is strictly between 0 and 1. Therefore Assumption 1 is satisfied when
the observations concern average LGDs with corporate segments defined for
instance by crossing the industrial sector, the country of domiciliation and
the corporate rating2. This corresponds to the demand of the supervisor
[BCBS (2001), paragraph 336]: ”A bank must estimate an LGD for each of
its internal grades... Each estimate of LGD must be grounded in historical
experience and empirical evidence.”

Remark 2 : Assumption 1 is also satisfied for market values of the recov-
ery rates, obtained for instance by comparing the market value of the debt
just before default and its value one-month after default. This methodology
is used by Moody’s for firms with debt traded on an organized bond market.
These market valued recovery rates are more sensitive to cyclical effects than
the averages computed directly from the recovery processes.

2.1 Transformation Groups

Let us further assume that the set of transformations : C = {c(a, .), a ∈ A}
is a group for the composition of functions, so that equivalently the group
structure (C, o) can be transferred on set A:

1or historical LGD [Gupton, Stern (2002)].
2These averages are either dollar weighted, or simple event weighted in practice.

4



Assumption 3. We have :

c[a, c(b, y)] = c(a ∗ b, y),

where (A, ∗) is a group and ∗ denotes the group operation.

Remind that a group structure combines two elements a, b ∈ A into a
third element a ∗ b ∈ A and satisfies the axioms of associativity, identity and
invertibility. We denote below by e the identity element such that:
a ∗ e = e ∗ a = a,∀a ∈ A, and by a−1 the inverse of element a, such that
a ∗ a−1 = a−1 ∗ a = e. Under Assumption 3, model (2.2) can be also written
as :

yt = c[a−1(xt, β), ut]. (2.3)

Let us provide examples of transformation groups on [0,1]. For each
example we explicit the transformation, the group (A, ∗), the identity element
and the form of the inverse.

Example 1 : Power transformation (single score)

We have : c(a, y) = ya, where a ∈ A = R+∗. The group operation is :
a ∗ b = ab, with identity element e = 1 and the inverse : a−1 = 1/a.

Example 2 : Homographic transformation (single score)

We have : c(a, y) =
ay

1 + (a− 1)y
, where a ∈ A = R+∗. The group trans-

formation is : a ∗ b = ab, with identity element e = 1 and the inverse :
a−1 = 1/a.

Figure 1 plots examples of power and homographic transformations for
different values of parameters.
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Figure 1: Plot of power transformations (left panel) and homographic trans-
formations (right panel). In both cases, we plot the curves for two values of
the parameter a = 2 and a = 0.5.

Example 3 : Exp-log power transformation (two scores)

We have : c(a, y) = exp[−a1(− log y)a2 ], where a = (a1, a2)
′ ∈ A =

(R+∗)2. The group operation is : a ∗ b = (a1b
a2
1 , a2b2)

′. The identity element

is e = (1, 1)′ and the inverse is : a−1 = (a
−1/a2
1 , 1/a2)

′. Figure 2 plots examples
of Exp-log power transformations for various values of the parameters.
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Figure 2: Examples of Exp-log power transformations. In the left (resp.
right) panel, the three transformations share the same a1 = 0.5 (resp. a2 =
2), but have different a2. Thus the three curves pass through the same points
(0, 0), (1, 1), and (e−1, e−a1).

Other groups can be derived by introducing piecewise transformations.

Example 4 : Piecewise transformation (multiscore)

The above elementary transformations can also be “combined” to increase
the flexibility of the transformation. Let us for instance partition the interval
[0, 1] by deciles k/10, k = 1, . . . , 10. Then we consider 10 basic groups of
transformations ck(ak, y), k = 1, . . . , 10, on [0, 1], as well as ten monotonous
bijections3 Fk, each mapping [0, 1] to [k−1

10
, k
10

[. Then we construct the set of
transformations :

c(a, y) =
10∑
k=1

1(
k − 1

10
≤ y ≤ k

10
)Fk ◦ ck(ak, F−1k (y)). (2.4)

It is easily checked that c(a, ·) is one-to-one from [0, 1] to itself. It defines the
product group A = A1× · · · ×A10 with multi-index : a = (a′1, . . . , a

′
10)
′, and

the group operation, the identity and the inverse are all defined component-
wise. This example shows how to define “splines” based on simple transfor-
mation groups. As a special case, one can set the transformations ck to be

3For instance, we can choose the affine transformation: Fk(y) = k−1+y
10 ,∀y ∈ [0, 1].

7



identical up to bijections:

ck(ak, y) = Fk ◦ c1(ak, F−1k (y)), ∀k = 1, ..., 10, ak ∈ A1.

In other words A1 = A2 = · · · = A10 and the product group becomes
A = (A1)

10.

Example 5 : Exogenous switching regime

One shortcoming of the above spline group is that it maps an interval
[k−1
10
, k
10

[ to itself. In other words, it does not allow the probability P[k−1
10
≤

Yt ≤ k
10
|a] to depend on a. Let us now construct a two-layer “hierarchical

group”. For expository purpose, let us first divide [0, 1] into two subintervals
[0, 1

2
] and [1

2
, 1] only4.

First, remark that any y ∈ [0, 1] can be alternatively represented by the
couple [

J(y) = E[2y] = 12y>1,
φ(y) = 2(y − 1

2
J(y))

]
∈ {0, 1} × [0, 1], (2.5)

where E[2y] is the integer part of 2y, that is the quotient of the Euclidean
division of y by 1

2
, whereas φ(y) is twice the remainder in the division. As

this division is unique, function y 7→ (J(y), φ(y)) is one-to-one from [0, 1] to
{0, 1} × [0, 1] and its inverse function is:

y =
φ(y) + J(y)

2
. (2.6)

In the following we will use alternately these two representations of a pro-
portion value.

Let us now consider the group of permutations S2 on {0, 1}. It is com-
posed of two elements that are the identity function Id, and the permutation
p mapping 0 to 1. The group operation is the standard composition ◦ of
functions. These permutations can be equivalently represented by the func-
tions:

y 7→ by + (1− b)(1− y) := b(y).

If b = 1, we get the identity; if b = 0, we get permutation p. Moreover, the
composition b′ ◦ b can be represented by:

b′ ◦ b = b′b+ (1− b′)(1− b), (2.7)

4The extension to a model with 10 subintervals, say, is straightforward and omitted.
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where b′, b on the RHS should be regarded as elements of {0, 1}. Thus when
there is no ambiguity we can write Id = 1, p = 0, that is, {0, 1} is isomorphic
to S2.

We also assume a “baseline” group of transformations c(a, ·) on [0, 1],
where a belongs to a certain group (A, ∗). Then we construct a transforma-
tion c̃ parameterized by S2 × A2 as follows: for any b ∈ S2, a0, a1 ∈ A, we
have, for any y equivalently reparameterized as (J(y), φ(y))′:

c̃(

 ba0
a1

 , [J(y)
φ(y)

]
) =

[
b(J(y))

c(ab(J(y)), φ(y))

]
, (2.8)

or equivalently, by applying (2.6), (2.8), in terms of y, the transformation
defined on [0, 1] can be written as:

˜̃c(

 ba0
a1

 , y) = b
{
12y<1

1

2
c(a0, 2y) + 12y>1

[1
2

+
1

2
c(a1, 2y − 1)

]}
+ (1− b)

{
12y<1

[1
2

+
1

2
c(a1, 2y)

]
+ 12y>1

1

2
c(a0, 2y − 1)]

}
. (2.9)

In other words, the integer part J(y) is transformed into another element
of b(J(y)) of {0, 1}, whereas the remainder φ(y) is transformed into a new
“remainder”, by applying the transformation c(ab(J(y))). In Appendix 1 we

prove that the family of transformations ˜̃c, indexed by θ =

 ba0
a1

, defines a

group for the operation: b′a′0
a′1

 ∗̃
 ba0
a1

 =

 bb′ + (1− b)(1− b)′
a′0 ∗ [b′a0 + (1− b′)a1]
a′1 ∗ [b′a1 + (1− b′)a0]

 =

b′ ◦ bab′(0)
ab′(1)

 . (2.10)

Finally, in all the examples above, the econometric model is deduced by
substituting a parametrized index function a(xt, β) to parameter a indexing
the set of transformations.
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As an illustration, we plot the histogram of yt, in a transformation model
where Ut follows a beta distribution B(3.5, 2.5). We consider three transfor-
mations: the identity, a spline (Example 4), as well as a hierarchical trans-
formation (Example 5).
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Figure 3: Histogram of simulated Yt, when Ut follows a B(3.5, 2.5) distri-
bution. Upper panel: the transformation c is identity; middle panel: the
transformation is a spline with 9 knots; lower panel: the transformation is
a two-layer hierarchical transformation. In particular, in the latter case, the
simulated histogram has three modes, two near the boundaries, one near 0.4.

2.2 Model with intercept

It is usual in linear models to consider a regression with intercept, that is to
separate the intercept λ from the sensitivity parameters θ corresponding to
the nonconstant explanatory variables:

yt = x′tθ + λ+ ut = λ ∗ x′tθ + ut, say, (2.11)

where the group operation ∗ = + is the addition. This notion of intercept
can be extended to any transformation group model by considering a speci-
fication :
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ut = c[λ ∗ a(xt, θ), yt], t = 1, . . . , T, (2.12)

where the intercept λ ∈ A has the same dimension as the index, is not
constrained, and θ belongs to some appropriate parameter space Θ. From
now on we assume that:

Assumption 4. i) The data generating process (DGP) is a model with in-
tercept, the true value of (λ, θ) being (λ0, θ0).

ii) The parameter (λ, θ) is identifiable from λ ∗ a(x, θ), that is,

λ ∗ a(x, θ) = λ0 ∗ a(x, θ0), ∀x ∈ X ,

implies λ = λ0, θ = θ0, if λ ∈ A, θ ∈ Θ.

Note that due to the group structure, the true model with intercept can
also be written as a model without intercept :

vt = c[a(xt, θ0), yt], t = 1, . . . , T, (2.13)

where vt = c(λ−10 , ut) is another i.i.d. error term with values in [0, 1]. This
transformation will be shown to be more useful for stress testing, whereas
the representation (2.12) is more convenient for estimation purpose.

3 Least Impulse Response Estimator

Let us now introduce a smoothness condition on function c(a, .), necessary
to define the effect on y of a small shock on error u.

Assumption 5. The function u → c(a, u) is continuous and differentiable
except at a finite number of points.

For a model with intercept, the local impact on yt of a small shock on ut
is measured by :

IRt =
∂

∂ut
yt =

∂

∂ut
c[(λ0 ∗ a(xt, θ0))

−1, ut)] (3.1)

=1/
∂c

∂u
[λ0 ∗ a(xt; θ0), yt], (3.2)
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where we have used the derivative formula of an inverse function to pass from
equation (3.1) to (3.2).

Any transformation model is uniquely characterized by the form of its Im-
pulse Response Function (IRF), since the function c(a, .) satisfies the bound-
ary conditions c(a, 0) = 0, c(a, 1) = 1. Let us explicit the form of impulse
response functions.

Example 1 : Power transformation (cont.)

We have :
∂c

∂u
(a, y) = aya−1, and log

∂c

∂u
(a, y) = log a+ (a− 1) log y.

Example 2 : Homographic transformation (cont.)

We have :
∂c

∂u
(a, y) =

a

[1 + (a− 1)y]2
and log

∂c

∂u
(a, y) = log a− 2 log(1 +

(a− 1)y).

Example 3 : Exp-log power transformation (cont.)

We have :
∂c

∂u
(a, y) =

a1a2
y

(− log y)a2−1c(a, y), and

log
∂c

∂u
(a, y) = log(a1a2)− log y + (a2 − 1) log(− log y)− a1(− log y)a2 .

Thus, we get different patterns of the IRF, and the possibility to interpret
the components of a as IRF or log IRF shape parameters. Figure 4 (resp. 5)
plots the IRF of the transformations plotted in Figures 1 and 2 (resp. 3).
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Figure 4: The corresponding IRF of the power transformations (left panel)
and homographic transformations (right panel) considered in Figures 1 and
2.
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Figure 5: The corresponding IRF of the Exp-log power transformations con-
sidered in Figure 3.

3.1 The LIR estimator

We can estimate the parameter (λ, θ) by a pseudo maximum likelihood
(PML) method, in which we assume a (misspecified) distribution for the
error ut. In this paper we suggest the uniform distribution, which has the
advantage of leading to the interpretable Least Impulse Response estimator
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(LIR). More precisely, under this distributional assumption, the conditional
density of yt|xt is,

∂ut
∂yt

= c′(a(xt, β), yt),

by (2.2) and the Jacobian formula. Thus the pseudo log-likelihood function
is :

LT (λ, θ) =
T∑
t=1

log c′[λ ∗ a(xt, θ), yt]. (3.3)

This objective function can also be written as :

LT (λ, θ) = −
T∑
t=1

log IRt(λ, θ). (3.4)

Thus the PML estimator minimizes the historical geometric average of
the impulse responses. This motivates the terminology of LIR estimator.

3.2 Consistency

To analyze the consistency of the LIR estimator, we need regularity con-
ditions (RC) to ensure the existence of a limiting criterion : L̃∞(λ, θ) =
limT→∞ LT (λ, θ)/T . These RC are standard and not explicitly written here
[see e.g. Basawa et al. (1976), White (1994), Gourieroux, Monfort, Zakoian
(2018)]. Then we also need additional assumptions ensuring a simple form
of L̃∞ and that it admits a unique maximum.

Assumption 6. i) The process of explanatory variables (xt) is strongly sta-
tionary.

ii) The variables ut and xt are independent.
iii) The function :

l̃∞(λ) = E0[log
∂c

∂u
(λ, u)] =

∫ 1

0

log
∂c

∂u
(λ, u)f0(u)du,

has a unique maximum on A, attained at λ = ẽ0, say, where f0 is the true
p.d.f. of U .

Then we get the following consistency result :
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Proposition 1. Under Assumptions 1-6, the LIR estimator λ̂T , θ̂T is such
that :

lim
T→∞

λ̂T = ẽ0 ∗ λ0, and lim
T→∞

θ̂T = θ0.

Proof. See Appendix 2.

In other words, consistent estimators are obtained by minimizing the
consequences of local stress on error u, i.e. the sensitivity of the reserves
with respect to (local) shocks on u. This surprising result is due to the
independence assumption5 between ut and xt, that allows to treat separately
the local stress on x, measured via θ, and the local stress on u.

This result is the analogue of what is usually noted for Ordinary Least
Squares (OLS) in a linear regression model yt = x′tθ + ut, say. When an
estimator of θ is selected, the quality of the estimated model is usually mea-
sured by the sum of square residuals (SSR) : Σtû

2
t = Σt(yt−x′tθ̂T )2. The OLS

approach selects an estimate minimizing the SSR to give the impression of
a good accuracy of the estimated model. Nevertheless, this a priori ”unfair”
strategy provides a consistent estimator of the regression coefficient.

The LIR estimator of the intercept is in general not consistent. Since ẽ0 is
independent of the true value of the intercept, we know that the theoretical
asymptotic bias is equal to (ẽ0 ∗ λ0)−1 ∗ λ0. In fact the intercept estimator
captures all the necessary adjustments needed to balance the misspecifica-
tion of the error distribution. In particular, if the initial econometric model
contains no intercept parameters, they have to be artificially introduced to
ensure consistency.

Example 4 (cont.) : spline group.
As a special case, consider the spline transformation as in Example 4:

c(a, y) =
10∑
k=1

c∗k(ak, y)1l k−1
10

<y≤ k
10
,

with c∗k(ak, y) =
k − 1

10
+

1

10
c1(ak, 10y − (k − 1)). Then we introduce the

5Only the independence between variables xt and ut is required, not that between
processes (xt) and (ut). This is a weak exogeneity assumption.
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covariates, and make the following econometric specification:

ak(xt) = a(xt, βk) ∗ λ0,k, ∀k = 1, ..., 10.

In other words, the different score functions on different subintervals [k−1
10
, k
10

[
belong to the same parametric family. Then, by the above proposition, we
can consistently estimate β1, ..., β10. This suggests that it is also possible to
construct statistical tests of the equality of these coefficients.

3.3 Nonlocal stress

The transformation model is also convenient to perform nonlocal stress test
on error u. This is rendered difficult by the fact that ut = c(λ−10 ∗a(xt, θT )−1, yt)
depends on the intercept λ0, for which we do not have a consistent estimator.
The solution is to use equation (2.7), which rewrites the initial model with
intercept and error u into an equivalent model without intercept and with
transformed error:

vt = c(λ−10 , ut) = c[a(xt, θT )−1, yt].

This suggests to approximate vt by its empirical counterpart:

v̂t,T = c[a(xt, θ̂T )−1, yt], t = 1, . . . , T. (3.5)

Proposition 2. Under Assumptions 1-6, the empirical c.d.f. of the v̂t,T , t =
1, . . . , T , converges pointwise to the true c.d.f. G0 of v.

From now on we assume, for expository purpose, that the transformation
c(a, ·) is increasing6. Then the c.d.f. G0 of v is equal to:

G0(v) = P (vt < v) = P0[c(λ
−1
0 , ut) < v]

= P0(ut < c(λ0, v)) = F0[c(λ0, v)], v ∈ [0, 1],

where F0 denotes the true c.d.f. of ut. Thus although λ0 and the distribu-
tion F0 of (ut) are not identified, the composite function G0(·) = F0[c(λ0, ·)]

6This assumption is satisfied by all the examples given in Section 2, except Example
5. The treatment of non-monotonous transformation follows the same principle and is
omitted.
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is identified. This is sufficient for a large variety of exercises, such as the
simulation of yt given xt, as well as nonlocal stress analysis.

Remark 3 : The difficulty of identifying separately λ0 and F0 is not due
to the LIR estimation approach, but is intrinsic to the transformation model.
Indeed the two transformation models :

yt = c[λ−10 ∗ a−1(xt, θ0), ut], ut ∼ F0,

and yt = c[e ∗ a−1(x, θ0), vt], vt ∼ G0,

lead to the same conditional distribution of yt given xt. Therefore we can-
not disentangle the triples (λ0, θ0, F0) and (e, θ0, G0). This is the reflection
problem mentioned by Manski (1993) for linear models.

Let us now explain how to derive the effect of a nonlocal stress on u. These
stresses are usually defined by comparing the values of y corresponding to two
quantiles of the distribution of u for given x, such as a quantile at p1 = 95%,
say, and the median quantile at p2 = 50%. However since v is obtained from
u by an increasing transformation, the two values of y to compare are also
associated with the p1 and p2 quantiles of v. More precisely, these two values
of y are:

ysj = c[a−1(x, θ0), G
−1
0 (pj)], j = 1, 2.

These values can be consistently approximated by replacingG−10 (p1), G
−1
0 (p2)

and θ0 with their empirical counterparts Ĝ−1T (p1), Ĝ
−1
T (p2) and θ̂T .

Remark 4 : Another consistent estimation method of θ is based on the
covariance restrictions :

Cov(α(xt), γ{c[a(xt, θ), yt]}) = 0,

valid for any pairs of (square integrable) functions α, γ. This set of covari-
ance restrictions, where the α(xt) plays the role of instrumental variables, is
equivalent to the independence between xt and ut when θ = θ0. We explain
in Appendix 3 that the LIR approach asymptotically selects an appropriate
subset of such covariance restrictions7.

7see Gourieroux, Jasiak (2017), Section 4 and Appendix C, for the analysis of the class
of generalized covariance estimators.
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3.4 Comparison with the credit risk literature

As seen in Section 2.1, the LIR estimation approach can be applied to a class
of semi-parametric econometric models with a number of underlying scores
equal to the dimension of parameter a. As a consequence this modelling
is much more flexible than the models currently considered in either the
theoretical, or applied credit risk literature developed for the analysis of
ELGD [see e.g. Qi, Zhao (2011), Yashkir, Yashkir (2013), Li et al. (2016),
for the comparison of parametric modeling approaches for ELGD].

3.4.1 Beta Regression

The benchmark distribution for continuous variables with value in (0,1) is the
beta family [see e.g. Ferrari, Cribari-Neto (2008), Huang, Oosterlee (2011),
Hartman-Wendels et al. (2014) for the its application to ELGD data8]. This
is a two parameter family with density :

f(y;α, β) =
yα−1(1− y)β−1

B(α, β)
,

where the shape parameters α, β are positive and the beta function B(α, β)
is defined by :

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, with Γ(α) =

∫ ∞
0

exp(−y)yα−1dy, ∀α > 0.

This family allows for densities with bell shape, U-shape, J-shape, or
inverted J-shape. Figure 6 plots examples of beta densities for different
values of the parameters α, β.

8So also Gupten, Stern (2002) for the LossCalc procedure developed by Moody’s KMV.
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Figure 6: Density of a beta distribution.

The associated econometric model is deduced by letting parameters α, β
depend on explanatory variables, such as : α = exp(x′θ1), β = exp(x′θ2), say.
This parametric model is usually estimated by either a moment estimation
method9, or by maximum likelihood. Compared to the new approach devel-
oped in the present paper, the beta modelling has the following drawbacks :

i) It is less flexible than a semi-parametric model, and the estimation
approach can lead to inconsistent estimator if the true underlying conditional
distribution of yt given xt is not beta.

ii) The derivation of the estimates can be computationally demanding
since it requires the numerical computation of the gamma function and of its
derivative (the digamma function).

iii) Finally, in order to derive the effect on a shock on the “error”, it is
necessary to rewrite the model as a transformation model. This is usually
done by defining ut = F (yt|xt), where F is the conditional c.d.f. of yt given
xt. Then the transformation model is :

9Usually the calibration is based on the conditional moments of order 1 and 2, using
the relation between the shape parameters and the mean µ and variance σ2 of the beta

distribution : µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
.
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yt = F−1(ut|xt) = F̃−1(ut|α(xt), β(xt)), (3.6)

where F̃−1(.|α, β) is the quantile function of the beta distribution with pa-
rameters α, β. However this quantile function has no closed-form expression,
which makes it numerically difficult to analyze the effect of shocks on u, even
by simulation.

3.4.2 Transformed Gaussian regression

An alternative modelling also leads to a semi-parametric model. The variable
with value in (0, 1) is first transformed into a variable with domain (−∞,∞).
Then a linear regression model is applied [see e.g. Atkinson (1985), p60]. A
typical example is the logit regression :

log
yt

1− yt
= x′tθ + εt, (3.7)

where parameter θ is estimated by OLS. This approach involves only one in-
dex function (score) and is not flexible enough for the analysis of the ELGD. It
can be extended by considering a regression model including conditional het-
eroskedasticity, leading to an analysis with two index functions (two scores) :

logityt = log
yt

1− yt
= a1(xt, θ) + a2(xt, θ)εt, (3.8)

and is usually estimated by Gaussian PML, that is, by applying a maximum
likelihood approach based on the misspecified Gaussian assumption of vt.

Now we remark that the inverse function of the logit function is the
logistic function: x 7→ 1

1+exp(−x) mapping R to ]0, 1[. Then we define the

transformed error ut by ut = 1
1+exp(−εt) so that equation (3.8) becomes:

logityt = a1 + a2logitut.

It is easily seen that the above equation defines a group of transformations
on [0, 1] :

yt = c(a, ut) =
1

1 + exp
(
− a1 − a2 log

ut
1− ut

) , (3.9)

with group operation: (b1, b2) ∗ (a1, a2) = (b1 + b2a1, a2b2), for all (b1, b2),
(a1, a2) belonging to R2.
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Thus the LIR approach developed in the present paper extends the regres-
sion approach on a transformed y. However, our estimation approach differs.
Instead of applying a PML approach in which ut has the distribution10 of

1

1 + exp(−ε)
, where ε ∈ N (0, 1), we assume a uniform pseudo-distribution.11

A common drawback of the beta regression and the transformed Gaussian
regression is that the number of scores (two) is insufficient to capture the
multimodalities of the (E)LGD distribution. Different extensions of the beta
regression model have been introduced to solve this issue, but are rather
ad-hoc as they require a preliminary treatment of the data to replace some
modes by point masses. Typically, the observed ELGDs close to 0 (resp. to
1) are assigned to 0 (resp. 1), in order to create artificial point masses at 0
(resp. 1). Then the model is defined in two steps : first the modelling of the
position of the ELGD, that is 0, 1, or value strictly between 0 and 1. Second
a beta regression, when the observations are strictly between 0 and 1. Such
an approach proposed in Ospina, Ferrari (2010), (2012) leads to the inflated
beta regression.12

4 Joint Analysis of PD and LGD

The transformation model is easily extended to the joint analysis of two vari-
ables on [0, 1], such as PD and ELGD. The transformation groups are first
defined for endogenous variables and errors with values in R2; then both of
them are transformed into variables in (0, 1) by applying either a probit, or
a logit function13 componentwise. Examples of basic bidimensional trans-
formation groups include affine functions, rotations and Moebius transform,
some of which admit up to 6 scores. Moreover, further flexibility can be
accommodated for by considering bivariate piecewise transformations, in a
similar way as their univariate counterparts introduced in Examples 4 and 5.
Such an enlarged number of scores is desirable to account for the dependence
between PD and ELGD variables.

10This distribution is called logit normal distribution.
11Or equivalently replace the logit regression model by a probit regression model.
12It has also been proposed to apply Tobit type models with two underlying latent

variables to such preliminarily treated data [see e.g. Sigrist, Stahel (2011)].
13Or any other given quantile function.
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Example 5 : Bivariate affine model (6 scores)
For any y ∈ R2, we define: c(a,A, y) = a+ Ay, where a ∈ R2, A belongs

to ∈ GL(2), i.e., the set of (2, 2) invertible matrices. The group operation
is :

(a,A) ∗ (b, B) = (a+ Ab,AB).

The identity element is : e = (0, Id) and the inverse is : (a,A)−1 = (−A−1a,A−1).

After a logit transformation this model becomes :

c̃(a,B, y) =


ψ

(
a1 + A1

[
ψ−1(y1)
ψ−1(y2)

])

ψ

(
a2 + A2

[
ψ−1(y1)
ψ−1(y2)

])
 ,

where a1, a2 (resp. y1, y2;A1, A2) are the components of a (resp. components
of y; rows of A) and ψ denotes the c.d.f. of the logistic distribution. This is
the extension of the model discussed in 3.4.2.

Example 6 : Moebius transformation14

A bidimensional real vector

(
y1
y2

)
[resp.

(
u1
u2

)
] can be equivalently

represented by a complex number y = y1 + iy2 (resp. u = u1 + iu2). The
Moebius transformations define a transformation group on C ∪ {∞}, that
is on the set of complex numbers augmented by a point at infinity. For
our application this additional infinite element has no real impact, since it
has zero mass both for the errors and endogenous variables. The Moebius
transform is :

c(a, b, c; y) =
ay + b

cy + 1
, (4.1)

where a, b, c are complex numbers, and with the following standard conven-
tions apply :

c(a, b, c;∞) = a/c, (4.2)

c(a, b, c;−1/c) = ∞. (4.3)

14See e.g. Arnold, Rogness (2008).
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This is a model with 6 scores corresponding to the real and imaginary
parts of a, b, c. The Moebius transformations form a group for the compo-
sition of functions, that can be transferred into a group on [C ∪ {∞}]3 ∼
(R2 ∪ {∞})3. The associated operation is :

(a, b, c) ∗ (ã, b̃, c̃) =

(
aã+ bc̃

cb̃+ 1
,
ab̃+ b

cb̃+ 1
,
cã+ c̃

cb̃+ 1

)
. (4.4)

The identity element is : e = (1, 0, 0) and the inverse element is :

(a, b, c)−1 = (1/a,−b/a,−c/a).

The complex Moebius transformation (4.1) can be rewritten to highlight
the transformation of real arguments (y1, y2) into (u1, u2). Simple, but te-
dious, computations lead to the formulas :

u1 =
(a1y1 − a2y2 + b1)(c1y1 − c2y2 + 1) + (a2y1 + a1y2 + b2)(c2y1 + c1y2)

(c1y1 − c2y2 + 1)2 + (c2y1 + c1y2)2
,

u2 =
(a2y1 + a1y2 + b2)(c1y1 − c2y2 + 1)− (a1y1 − a2y2 + b1)(c2y1 + c1y2)

(c1y1 − c2y2 + 1)2 + (c2y1 + c1y2)2
.

Thus the transformation from (y1, y2) to (u1, u2), and its inverse are ra-
tional functions with quadratic numerator and denominator.

Other models can be derived by considering subgroups of the group of
affine models, or of the group of Moebius transformations.

To illustrate the flexibility of this family of transformations, we simu-
late i.i.d. samples of (Y1, Y2), using three different Moebius transformations.
Figure 7 plots the joint isocontours of these three samples along with the
marginal densities, obtained using a kernel estimator. We observe several
modes in each marginal distribution whereas the joint distribution admits
only one mode.
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Figure 7: Joint isocontours (first column) and marginal histograms (second
and third columns) for simulated couples (Y1t, Y2t), when the distribution of
(U1t, U2t) is independent uniform distribution. Figures of the same model are
plotted in the same row.

We can observe that these samples are such that Y1t and Y2t are not
independent. In particular, the Cartesian product of a pair of modes of the
two marginal distributions is generically not a mode of the joint distribution
(see for instance the upper panel).

Example 7 : A subgroup of Moebius transformations (4 scores)

We define a transformation15 on C ∪ {∞} by :

15It is easily checked the set (Imy ≥ 0) ∪ {∞} is invariant by these transformations.
Therefore they also define a group on (Imy ≥ 0)∪{∞}, or equivalently on R×R+∪{∞}.
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c(a, b; y) =
ay − b
b̄y + ā

,

where ā (resp. b̄) denotes the complex conjugate of a (resp. b). The group
operation is : (a, b) ∗ (a∗, b∗) = (aa∗ − bb̄∗,−ab∗ − ā∗b). The identity element
is : e = (1, 0) and the inverse is :

(a, b)−1 = (−ā, b).
Example 8 : Rotation on the square [0, 1]2

The rotation on R2 can be represented by orthogonal matrices :

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. They can be used to define rotations on the

square by considering the transformation :

C(θ; y) = R(θ)y
max(|y1|; |y2|)

max(|y1 cos θ − y2 sin θ|, |y1 sin θ + y2 cos θ|)
.

This is a one-parameter group of transformations on [0, 1]2, that can be
combined with other transformations to increase the number of underlying
scores.

After the transformations, the introduction of the explanatory variables
and the intercept, we get a model analogue to (2.5), except that ut, yt are
now with values in [0, 1]2 :

ut = c[λ ∗ a(xt; θ), yt], t = 1, . . . , T. (4.5)

The pseudo log-likelihood function with pseudo uniform distribution on
[0, 1]2 for the errors is:

LT (λ, θ) =
T∑
t=1

log

∣∣∣∣det
∂c

∂u
[λ ∗ a(xt; θ), yt]

∣∣∣∣
= −

T∑
t=1

log IRt(λ, θ), (4.6)

where now IRt is a bivariate measure of the effects on both components of
y of local shocks on both components of u. Formula (4.6) extends formula
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(3.4). From Gourieroux, Monfort, Zakoian (2018), the consistency property
of these PML estimators remains valid in this extended case.

5 Concluding Remarks

The standard models, based on beta or logistic regressions, are not able
to capture some features of the distribution of PD and ELGD, especially
their (multiple) modes and how they depend on covariates. In this paper
we have introduced a new class of semi-parametric models, which is rather
flexible to analyze the (joint) behaviour of variables with values in (0,1).
We have also introduced consistent semi-parametric estimators, the Least
Impulse Response (LIR) estimators, with interpretations in terms of local
and/or global stresses.
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Appendix 1

The group operation in Example 5

First, function ˜̃c is clearly one-to-one on [0, 1]. Let us now check that we

have a group of transformations. For θ =

 ba0
a1

 and θ′ =

 b′a′0
a′1

, we have:

˜̃c(θ′, ˜̃c(θ, y)) =
b′

2
12˜̃c(θ,y)>1 +

1− b′

2
12˜̃c(θ,y)<1

+
b′

2
c(a′0, 2˜̃c(θ, y))12˜̃c(θ,y)<1 +

b′

2
c(a′1, 2˜̃c(θ, y)− 1)12˜̃c(θ,y)>1

+
1− b′

2
c(a′1, 2˜̃c(θ, y))12˜̃c(θ,y)<1 +

1− b′

2
c(a′0, 2˜̃c(θ, y)− 1)12˜̃c(θ,y)>1.

Combining with equation (2.9), we get:

˜̃c(θ′, ˜̃c(θ, y))

=
1

2
[bb′ + (1− b)(1− b)′]12y<1c(a

′
0 ∗ [b′a0 + (1− b′)a1], 2y)

+
1

2
[bb′ + (1− b)(1− b)′]12y>1

{
c(a′1 ∗ [b′a1 + (1− b′)a0], 2y − 1) + 1

}
+

1

2
[b′(1− b) + b(1− b)′]12y<1

{
c(a′1 ∗ [b′a1 + (1− b′)a0], 2y) + 1

}
+

1

2
[b′(1− b) + b(1− b)′]12y>1c(a

′
0 ∗ [b′a0 + (1− b′)a1], 2y − 1), 2y)

Then we remark that bb′+(1− b)(1− b)′ and b′(1− b)+ b(1− b)′ are equal
to b′ ◦b and 1−b′ ◦b, respectively, and b′a0 +(1−b′)a1, b′a1 +(1−b′)a0 can be
equivalently written as ab′(0), ab′(1), respectively. Thus the group operation
on S2 ×A2 is: b′a′0

a′1

 ∗̃
 ba0
a1

 =

 bb′ + (1− b)(1− b)′
a′0 ∗ [b′a0 + (1− b′)a1]
a′1 ∗ [b′a1 + (1− b′)a0]

 =

b′ ◦ bab′(0)
ab′(1)

 . (4.7)

Appendix 2

Proof of Proposition 1
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Let us follow the proof in Gourieroux, Monfort, Zakoian (2017). Under
the assumptions of Proposition 1, the limiting objective function is :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[λ ∗ a(x, θ), y]

= ExE0 log
∂c

∂u
[λ ∗ a(x, θ), c[a−1(x, θ0) ∗ λ−10 , u]],

where Ex denotes the expectation with respect to the stationary distribution
of xt and E0 with respect to the true p.d.f. f0 for the error.

By the group structure, we get :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[λ ∗ a(x, θ) ∗ a−1(x, θ0) ∗ λ−10 , u]

= Exl̃∞[λ ∗ a(x, θ) ∗ a−1(x, θ0) ∗ λ−10 , u],

which is smaller than maxλ l̃∞(λ) = l̃∞(λ̃0). Moreover this upper bound is
reached for :

θ∗0 = θ0, λ
∗
0 = ẽ0 ∗ λ0.

The consistency result follows by using the identification assumption A.4
ii).
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Appendix 3

An Interpretation of Asymptotic First-Order Conditions

To get this interpretation, we first rewrite the limiting objective function
L̃∞(λ, θ) with a change of index function : A(x, θ) = a(x, θ) ∗ a−1(x, θ0), and
of error term : v = c(λ−10 , u). Then we have :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[λ ∗ A(x, θ), v],

where E0 denotes the expectation with respect to the true distribution of v.
Note that, for θ = θ0, we get A(x, θ0) = e, independent of x. The group
operation can be equivalently written as a function :

a ∗ b ≡ h(a, b),

and later on we denote
∂h

∂a
(resp.

∂h

∂b
) the partial derivative of h with respect

to the first (resp. second) component of function h.

Let us now differentiate L̃∞(λ, θ) = ExE0 log
∂c

∂u
{h[λ,A(x, θ)], v} with

respect to parameters λ, θ. We get :


ExE0

(
∂

∂a′
log

∂c

∂u
[h(λ,A(x, θ)), v]

∂h

∂a′
[λ,A(x, θ)]

)
= 0,

ExE0

(
∂

∂a′
log

∂c

∂u
[h(λ,A(x, θ)), v]

∂h

∂b′
[λ,A(x, θ)]

∂A

∂θ′
(x, θ)

)
= 0.

When θ = θ0, these First-Order Conditions (FOC) become :
ExE0

(
∂

∂a′
log

∂c

∂u
(λ, v)

∂h

∂a′
(λ, e)

)
= 0,

ExE0

(
∂

∂a′
log

∂c

∂u
(λ, v)

∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

)
= 0,

since : h(λ,A(x, θ0)) = h(λ, e) = λ ∗ e = λ.
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Moreover, since :
∂h

∂a′
(λ, e) =

∂

∂λ′
(λ ∗ e) =

∂λ

∂λ′
= Id, we get :

E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
= 0,

E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
Ex

[
∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

]
= 0,

or : E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
= 0,

since the second subset of conditions is automatically satisfied.

In fact the consistency result is a consequence of the covariance restric-
tion :

Covx,0

(
∂

∂a
log

∂c

∂u
(λ, v), vec

[
∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

])
= 0,

that is satisfied due to the independence between x and v.

This interpretation in terms of covariance restrictions is asymptotic. In
finite sample the first-order conditions admit also interpretations in terms of
empirical autocovariance restrictions for commutative (Abelian) groups.
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