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Yang Lu ∗
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Abstract

We propose a flexible regression model that is suitable for mixed count-continuous panel

data. The model is based on a compound Poisson representation of the continuous variable,

with bivariate random effect following a polynomial expansion based joint density. Besides

the distributional flexibility it offers, the model allows for closed form forecast updating

formulas. This property is especially important for Insurance applications, in which the

future individual insurance premium should be regularly updated according to one’s own

past claim history. An application to vehicle insurance claims is provided.

Key words: mixed data, polynomial expansion, random effect, sequential forecast-

ing/pricing.

1 Introduction

This paper introduces a flexible regression model for mixed count-continuous panel data, with

flexible correlated bivariate random effects (or unobserved heterogeneity). Such a model is useful

for a wide range of applications, such as:

• number/cost of visits to physicians in health economics [see e.g. Duan et al. (1983)],

• number/amount of shopping in marketing [see e.g. Paull (1978)],

• number/cost of trips in tourism forecasting [see e.g. Englin and Shonkwiler (1995)].

Our paper will be focused on an area which necessitates sequential forecasting, that is the analysis

of longitudinal insurance claims. Indeed, in many other applications, only cross-sectional data are

used and the scientific interest is often limited to explaining the count and continuous variables by

observable individual characteristics (or covariates). In Insurance, regulations require the yearly
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insurance premium to be updated regularly, in order to take into account each policyholder’s

own past history.1 In this context, the bivariate count-continuous panel data arises since data

are typically aggregated annually and are available in terms of annual claim count and the

corresponding total claim cost. While the traditional pricing method has focused on the counts

only [see e.g. Dionne and Vanasse (1989)], there are several benefits to consider both total cost

and count, as well as their interdependence. First, it increases the forecast precision of the

total cost, which is the ultimate variable of interest for an insurance company. Second, when

only the count variable is taken into account, the pricing system penalizes unfairly customers

with small previous claims compared to those who file large claims. This induces an efficiency

loss for the insurance market [see Einav et al. (2010)], and gives individuals the incentive to

(strategically) not hide minor accidents, if the expected reimbursement is less than the future

premium increase2.

Therefore, of vital importance is a model that i) takes into account both observable covariates,

as well as random effects; ii) captures, in a flexible way, the dependence between the count and

continuous (size) variable; iii) allows for tractable Bayesian forecasting formulas. Our paper

proposes a model unifying these properties.

More precisely, we introduce a bivariate regression model with correlated random effects.

They induce not only contemporaneous dependence between the two components, but also serial

correlation, which serves as the basis for the forecasting and pricing of future claims. Our

joint distribution of the heterogeneities is semi-parametric, on the contrary to the standard

gamma heterogeneity assumption. This leads to flexible (marginal and joint) distributions for

the observable bivariate count-continuous variable.

The proposed joint density function of the random effects takes the form of polynomial expan-

sion with respect to a reference density and can approximate any distribution function arbitrarily

well. It has a similar spirit as the model of Gurmu et al. (1999); Gurmu and Elder (2012)] for

cross-sectional count data. Our contribution to this latter literature is twofold. First, we propose

a simple, and formal justification of this method. This also leads us to a comparison with another

stream of literature, which employs a different polynomial expansion method to approximate the

conditional transition density of the asset price dynamics. In particular, it is shown that our

approach requires a much weaker assumption, and ensures positivity of the density function.

Second, we propose an equivalent parameterization of the polynomial expansion-based density

function. This allows us to derive significantly simpler expressions for the likelihood function

and, more importantly, the forecasting formulas. This should further increase the appeal of this

semi-parametric class of models in empirical studies.

1Such pricing method is called bonus-malus.
2This is called hunger for bonus phenomenon.
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The rest of the paper is organized as follows. Section 2 presents the model. Section 3 provides

an empirical illustration using a database of vehicle insurance claims. Section 4 concludes. Proofs

are gathered in Appendix.

2 The model

2.1 The general setting

For each individual i, we denote by Ni,t, t = 1, ..., T a sequence of count variables and Yi,t taking

values in [0,∞[, as well as a set of covariates Xi. For expository purpose we assume the latter

to be time-invariant and the extension to the time-varying case is straightforward. In insurance

applications, the count variable corresponds to the number of claims during period t, and the con-

tinuous variable corresponds to the total cost of these Ni,t claims, respectively. As a convention,

Yi,t is 0 if Ni,t equals zero. We assume that conditional on (static) unobserved heterogeneities

Ui,1, Ui,2 and observable covariates Xi, the count variable Ni,t is Poisson distributed with pa-

rameter λiU1,i, and Yi,t is Gamma distributed, with shape parameter δNi,t, and rate parameter

βiUi,2, where:

λi = exp(d′1Xi), βi = exp(d′2Xi). (1)

From now on, for expository purpose, we will assume that (Xi, (Ni,t)t, (Yi,t)t) are i.i.d. across

individuals and will thus omit the index i.

Thus we have: E[Yt|U1, U2, Nt] = δNt
βU2

, which is proportional to Nt. Moreover, variable Yt

has the following (conditional) compound representation:

Yt =
Nt∑
j=1

Zj,t, (2)

where Zj,t, j = 1, ..., Nt are the (unobservable) costs of individual claims reported during period

t. Conditionally on U1, U2, these individual claim cost follow the gamma distribution3 with shape

parameter δ and rate parameter βU2.

In this model, for a given individual, the values of U1, U2 are unknown, but do not change

of time. This induces serial correlation between (Nt, Yt) at different dates t, and allows the

insurance company to better predict the future insurance claim cost according to past ones.

Thus the dependence between Nt and Yt is the combination of two effects:

1. conditionally on random effects U1, U2, the responses variables Nt and Yt are dependent

3In particular, if U2 follows gamma marginal distribution, then the distribution of each individual cost is called
generalized beta of the second kind (GB2) [see e.g. McDonald (1984); Cummins et al. (1990); Gouriéroux (1999);
Frangos and Vrontos (2001)].
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due to the representation (2);

2. random effects U1 and U2 are dependent.

Moreover, the dependence between U1 and 1/U2 can be either positive or negative. In the first

case, individuals with a higher claim frequency tend to have more severe claims. This can be

explained by the fact that both the count and total cost reflect, to some extent, the skill of the

driver. Alternatively, this association can also be negative. One potential explanation is the

so-called “hunger for bonus” phenomenon. Indeed, some policyholders strategically choose not to

report claims whose cost is smaller than the cumulated future premium increase [see e.g. Lemaire

(1995)]. This would lead to a higher (resp. lower) claim frequency, but a lower (resp. higher)

cost per claim for honest individuals (resp. arbitrageurs who do not report small claims). The

evidence of such negative dependence has recently been found by Garrido et al. (2016).

As a comparison, the existing literature on mixed discrete-continuous regression usually con-

siders only either of these two types of dependence. For instance, Fitzmaurice and Laird (1995);

Yang et al. (2007); de Leon and Wu (2011) specify the joint density between a discrete and a

continuous variable via the marginal distribution of the discrete variable and the conditional

distribution of the continuous variable given the discrete one. This corresponds to the first

type of dependence mentioned above. Due to the lack of random effects, these models are not

suitable when extended to a panel context, as serial correlation cannot be introduced between

observations of different periods.

On the other hand, Catalano and Ryan (1992); Sammel et al. (1997); Gueorguieva and Agresti

(2001) introduce dependence via random effects only. However, these papers either concern

binary discrete variable and not count variable, or involve rather non tractable, simulation-based

algorithm for estimation and forecasting [see e.g. Sammel et al. (1997); Dunson (2000)].

Let us now propose a specification for the joint density of (U1, U2), before studying its impli-

cations for the estimation and forecasting.

2.2 The model for the random effects

We assume that the joint density function of (U1, U2) is:

g(u1, u2) = 1
M
e−c1u1−c2u2uα1−1

1 uα2−1
2

[ J∑
j=0

J∑
k=0

bj,ku
j
1u
k
2

]2
, (3)

where:

• coefficients (bj,k) are real numbers, and b0,0 = 1 for identification purpose.
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• the normalization constant is equal to:

M =
J∑

j1,k1,j2,k2=0
bj1,k1bj2,k2

Γ(j1 + j2 + α1)Γ(k1 + k2 + α2)
cj1+j2+α1
1 ck1+k2+α2

2

=
2J∑
j=0

2J∑
k=0

Γ(j + α1)Γ(k + α2)
cj+α1
1 ck+α2

2
Πj,k

= W1(0)′ΠW2(0), (4)

where matrix (Πj,k)0≤j,k≤2J is defined by:

Πj,k =
∑

j1+j2=j
0≤j1,j2≤J

∑
k1+k2=k

0≤k1,k2≤J

bj1,k1bj2,k2 , (5)

and vector functions W1 = (W1,j)0≤j≤2J , W2 = (W2,k)0≤k≤2J are given by:

W1,j(s1) = Γ(j + α1)
(c1 + s1)j+α1

, W2,k(s2) = Γ(k + α2)
(c2 + s2)k+α2

, ∀0 ≤ j, k ≤ 2J, s1, s2 ≥ 0.

(6)

Thus g(u1, u2) is a linear combination4 of gamma product densities:

fJ(u1, u2) = 1
M

2J∑
j=0

2J∑
k=0

e−c1u1uα1+j−1
1 e−c2u2uα2+k−1

2 Πj,k = e−c1u1uα1−1
1 e−c2u2uα2−1

2
X(u1)′ΠX(u2)
W1(0)′ΠW2(0) ,

where vector functions X(u) := (1, u, u2, ..., u2J)′ for each u.

The resulting model is semi-parametric in the sense that the distribution of the unobserved

heterogeneity is flexible and can approximate any distributions, whereas the regressors λ and β

involve a finite dimensional parameter d. Similar polynomial expansions have been previously

proposed by Gallant and Nychka (1987); Gurmu et al. (1999); Bierens (2008). Its background is

the orthonormal projection of
√
g0 in an appropriate L2 space, using a polynomial basis, whereas

the square ensures the positivity of the density [see e.g. Gallant and Nychka (1987)]. However,

unlike the conventional approach which explicitly introduces these orthogonal polynomials, in

this paper we use, without loss of generality, the canonical polynomials. This is due to the fact

that both the orthogonal polynomials and the canonical polynomials are basis of the set of all

polynomials, but the latter is much easier to deal with when used to the square (since the product

of two canonical polynomials is still a canonical polynomials). This choice has the advantage of

greatly simplify the computation of the likelihood function in the full model.

From the representation of combination of gamma densities, we derive the marginal distribu-

4But with possibly negative weights, since the entries of matrix B need not to be necessarily nonnegative.
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tions of U1 and U2:

g1(u1) = e−c1u1uα1−1
1

X(u1)′ΠW2(0)
W1(0)′ΠW2(0) , (7)

g2(u2) = e−c2u2uα2−1
2

W1(0)′ΠX(u2)
W1(0)′ΠW2(0) , (8)

which are also linear combinations of gamma densities. Thus we have the following property:

Proposition 1. The two components U1 and U2 are independent if and only if all the coefficients

bjk are separable, that is, if for all j and k, we have: bjk = bj,0b0,k.

In other words, our model can accommodate for the special case where the two random effects

are independent.

Proof. See Appendix.

Similarly, the joint Laplace transform has also a closed form expression:

L(s1, s2) =
∫∫ ∞

0
e−u1s1−u2s2g(u1, u2)du1du2 = W1(s1)′ΠW2(s2)

W1(0)′ΠW2(0) , ∀s1, s2 ≥ 0.

The density of (Nt, Yt). Conditional on U1, U2, the joint distribution of (Nt, Yt) has two

components:

• The first is the point mass at (0, 0), with probability:

P[Nt = Yt = 0 | U1, U2] = e−λU1 .

• One continuous component with respect to the measure µ1⊗ µ2, where µ1 is the Lebesgue

measure on positive integers, and µ2 is the Lebesgue measure on positive real numbers.

This component has a density:

f(n, y | U1, U2) = λnUn1 e
−λU1

n!
βδnU δn2 yδn−1e−βU2y

Γ(δn) , ∀n ≥ 1, y > 0. (9)

By integrating out the distribution of (U1, U2), we get the unconditional distribution of (N1, Y1).

The elementary probability of the degenerate component is:

P[Nt = Yt = 0] = E[e−λU1 ] = 1
M

2J∑
j=0

2J∑
k=0

Γ(j + α1)Γ(k + α2)
(c1 + λt)j+α1ck+α2

2
Πj,k = V ′1(0, λ)ΠV2(0, 0)

W1(0)′ΠW2(0) , (10)
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where vector functions V1, V2 are defined by:

V1,j(n, s1) = Γ(j + α1 + n)
(c1 + s1)j+α1+n , V2,k(n, s2) = Γ(k + α2 + δn)

(c2 + s2)k+α2+δn , ∀n, s1, s2, j, k.

Similarly, the density of the continuous component is:

f(n, y) = λnβδnyδn−1

n!Γ(δn) E[e−λU1−βU2yUn1 U
δn
2 ]

= λnβδnyδn−1

n!Γ(δn)
1
M

2J∑
j=0

2J∑
k=0

Γ(j + α1 + n)
(c1 + λ1)j+α1+n

Γ(k + α2 + δn)
(c2 + β1y)k+α2+δnΠj,k,

= λnβδnyδn−1

n!Γ(δn)
V1(n, λ)′ΠV2(n, βy)
W1(0)′ΠW2(0) ∀y > 0, n ∈ N {0}. (11)

Accounting for the heavy-tail of the loss distribution. One of the desirable properties

of loss distributions in Insurance is their heavy-tail. Let us first prove that our model allows for

heavy-tailed loss distribution:

Proposition 2. The distribution of the total cost Yt has a heavy tail. In particular, it has a

finite mean if and only if:

α2 > 1. (12)

Proof. See Appendix.

From now on we assume this condition to be satisfied, since otherwise the risk is not insurable.

2.3 Estimation and forecasting algorithm

The log-likelihood function. Let us assume that for each individual i, we observe (Ni,t)1≤t≤T ,

(Yi,t)1≤t≤T and covariates Xi. These pairs (Ni,t, Yi,t) are independent conditional on (U1, U2).

Then the log-likelihood function of the model is:

`(θ) =
I∑
i=1

logP
[
Ni,t = ni,1, Yi,t = yi,t, t = 1...T | Xi

]
∝

I∑
i=1

[
logE

[
e−Λ1iTU1UNiT1 UδNiT2 e−Λ2iTU2

]
+

∑
t,Ni,t 6=0

δNi,t log yi,tβi,t − log Γ(δNi,t)
]

∝
I∑
i=1

[
log V1(N iT ,Λ1iT )′ΠV2(N iT ,Λ2iT )

W1(0)′ΠW2(0) +
∑

t,Ni,t 6=0
log

λ
Ni,t
i,t βδNi,tyδNi,t

Γ(δNi,t)

]
,
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where N iT is the sum of counts, Λ1T :=
∑T
t=1 λ = Tλ is the cumulative intensity, and Λ2T :=∑T

t=1 βyt is the normalized cumulative cost, and the set of parameters is equal to

θ = (α1, α2, (bj,k)j,k, δ, c1, c2, d1, d2).

Forecasting formulas. Conditional on past claim history (Nt), (Yt), t = 1, ..., T , the distribu-

tion of (U1, U2) is:

fT (u1, u2|(Nt), (Yt), t = 1, ..., T ) ∝ f(u1, u2)
T∏
t=1

uNt1 e−λu1

T∏
t=1

uδNt2 e−βu2yt

Thus the expected total cost at time T + 1, given claim count and cost history is:

E[YT+1 | (Nt, Yt), t = 1, ..., T ] = δ

βt
λtE[U1/U2 | (Nt, Yt), t = 1, ..., T ]

= δλ

β

E[UNT+1
1 UδNT−2

2 e−Λ1TU1−Λ2TU2 ]
E[UNT1 UδNT−1

2 e−Λ1TU1−Λ2TU2 ]

= δλ

β

∑2J
j,k=0 Πj,k

Γ(j+α1+NT+1)
(c1+Λ1T )j+α1+NT+1

Γ(k+α2+δNT−1)
(c2+Λ2T )k+α2+δNT−1∑2J

j,k=0
Γ(j+α1+N1T )

(c1+Λ1T )j+α1+N1T

Γ(k+α2+δNT )
(c2+Λ2T )k+α2+δNT

Πj,k

(13)

= δλ

β

V1(NT + 1,Λ1T )′ΠV2(NT − 1/δ,Λ2T )
V1(NT ,Λ1T )′ΠV2(NT ,Λ2T )

.

We can also rewrite this expectation as a weighted average, indeed from (13) we have:

E[YT+1 | (Nt, Yt), t = 1, ..., T ] = δλ

β

2J∑
j,k=0

(j + α1 +NT )(c2 + Λ2T )
(c1 + Λ1T )(k + α2 + δNT − 1)

ωj,k (14)

with:

ωj,k =
Πj,k

Γ(j+α1+NT )
(c1+Λ1T )j+α1+NT

Γ(k+α2+δNT )
(c2+Λ2T )k+α2+δNT∑2J

j′,k′=0
Γ(j′+α1+NT )

(c1+Λ1T )j′+α1+NT

Γ(k′+α2+δNT )
(c2+Λ2T )k′+α2+δNT

Πj′,k′

.

In terms of insurance pricing, the term (j+α1+NT )(c2+Λ2T )
(c1+Λ1T )(k+α2+δNT−1)

in (14) is the product of two

terms:

• The first one j+α1+NT
c1+Λ1T

is the posterior expectation of U1 conditionally on previous counts

only, if U1 was gamma distributed;

• The numerator of the second term c2+Λ2T
k+α2+δNT−1

is, up to an additive constant, linear

combination of previous claim costs whereas the denominator is, up to an additive constant,

the cumulative claim counts. Thus this second term measures, to some extent, the average

cost per claim during the first T periods.
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Note also that due to the dependence between U1 and U2, the posterior expected cost is

generically not the product of expected future claim count and expected future average cost per

claim5, that is:

E[NT+1 | (Nt, Yt), t = 1, ..., T ]E[YT+1/NT+1 | (Nt, Yt), t = 1, ..., T ] 6= E[YT+1 | (Nt, Yt), t = 1, ..., T ].

3 Numerical application

In this section we fit our model to an insurance database, and analyze the potential bias in terms

of pricing, when an independence assumption between U1 and U2 is imposed.

3.1 The data

Our data concerns an Australian vehicle insurance portfolio. It contains only one period of

observation, hence in the following, the time index t will be omitted. It has initially been

analysed by De Jong and Heller (2008) using generalized linear models and is available free of

charge at the following website:

www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_

Studies/research/books/GLMsforInsuranceData/data_sets

The database consists of 65324 (vehicle damage) policies, of which 4423 (6.8 percent) had at

least one claim. For each policyholder, we observe the total claim amount (continuous valued,

in 10000 $) and the total claim count (integer valued), as well as the following covariates6:

• type of the vehicle (categorical, with 6 different values7)

• vehicle’s age (categorical, with 4 different values)

• gender (male or female)

• driver’s area of residence (categorical, with 6 different values)

• driver’s age (categorical, with 4 different values)

The following table summarizes the distribution of the count variable.

5Except when U1, U2 are independent. In this case, coefficients bj,k = bjbk are separable and as a consequence
coefficients Πj,k, ωj,k are also separable.

6Although the value of the vehicle is also available, it has not been taken into account. This is in line with the
existing literature [see e.g. Pinquet et al. (2001); Czado et al. (2012); De Jong and Heller (2008)] and is motivated
by several reasons: i), the value of the vehicle is partially correlated with other covariates, in particular the type of
the vehicle; ii) for some policies, the recorded vehicle value is recorded as zero, which suggests a lack of credibility
of this variable. One simple alternative would be to divide the amount of the claim by the value of the vehicle to
get the “normalized claim cost”. However this alternative has not been chosen due to certain policies with a zero
vehicle value.

7There are initially 13 different types of vehicles. Seven of which (bus, convertible, motorized caravan, minibus,
coupe, panel van, and roadster) account for, in total, only 2200 policies, or 3.5 % of the sample. These policies
are dropped for illustration purpose and we are left with five major types of vehicles (utility cars, sedan, trucks,
station wagons, hardtop, as well as hatchbacks).
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Number of claims Number of policies with the given number of claims
0 60901
1 4149
2 255
3 17
4 2

Table 1: Number of policies according to the number of claims

The average number of claims per individual is approximately 0.073, whereas the variance of

the number of claims is equal to 0.077. Thus the count variable is slightly over-dispersed.

Figure 1 plots the histogram of Y |N > 0, that is the distribution of total claim cost, for those

who reported claims. We can remark that this distribution has both a heavy left tail, corre-

sponding to a large proportion of minor-sized claims, as well as a heavy right tail, corresponding

to extreme value claims.

Claim amount

F
re

qu
en

cy

0 10000 20000 30000 40000 50000

0
50

0
10

00
15

00

Figure 1: Histogram of total claims.

In average, the expectation of total cost of claims, given that there is at least one claim, is

approximately 2000 dollars. In order to better illustrate the heavy right tail of the claim cost,

let us provide the values of some quantiles of the distribution of the observed claim cost, among

policyholders who actually reported claims.

Percentage 90% 95 % 97% 98 % 99% 100%
Quantile 0.49 0.80 1.06 1.28 1.70 5.59

Table 2: Some quantiles of the cost variable, in 10000 dollars.

We can see, for instance, that the 99% quantile of the cost variable is approximately two (resp.
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four) times larger than the 95 % (resp. 90 %) quantile, whereas the biggest claim is another

three times larger. The heavy tail of the distribution of cost implies that standard models based

on gamma-distributed claim costs [see e.g. Czado et al. (2012)] may not be appropriate for this

data.

The following table summarizes the available covariates. All covariates are discrete and

transformed into binary variables8. For identification issue, the constant is not included as a

covariate, and the means E[U1], E[U2] are not constrained to be, say, 1.

Variable Description
X1 1 if the policyholder is male
X2 1 if the area of residence is “A”
X3 1 if the area of residence is “B”
X4 1 if the area of residence is “C”
X5 1 if the area of residence is “D”
X6 1 if the area of residence is “E”
X7 1 if the driver’s age is “1” (youngest)
X8 1 if the driver’s age is “2”
X9 1 if the driver’s age is “3”
X10 1 if the driver’s age is “4”
X11 1 if the driver’s age is “5”
X12 1 if the vehicle’s age is “1” (newest)
X13 1 if the vehicle’s age is “2”
X14 1 if the vehicle’s age is “3”
X15 1 if the vehicle is a hatchback
X16 1 if the vehicle is a sedan
X17 1 if the vehicle is a hardtop
X18 1 if the vehicle is a truck
X19 1 if the vehicle is a station wagon

Table 3: Summary of the binary variables included in the regressors.

Thus in the log-likelihood function, both d1 and d2 are of dimension 19. In other words,

constants are not included as regression parameter. This is because our specification of the

unobserved heterogeneities does not restrict the expectations E[U1],E[U2] to be constant.

3.2 Estimation

In this subsection we estimate the model for three different values of J :

• Model M0, with J = 0, that is f(u1, u2) ∝ e−c1u1−c2u2uα1−1
1 uα2−1

2 , which corresponds the

density of independent gamma variables;

8For instance, if one categorical variable can take 4 different values, then it is transformed into three linearly
independent binary variables.
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• Model M1, with J = 1, that is

f(u1, u2) = 1
M
e−c1u1−c2u2uα1−1

1 uα2−1
2 (1 + b01u1 + b10u2 + b11u1u2)2,

• Model M2, with J = 2, that is:

f(u1, u2) = 1
M
e−c1u1−c2u2uα1−1

1 uα2−1
2 (1+b01u1+b02u

2+b10u2+b11u1u2+b12u1u
2
2+b20u

2
1+b21u

2
1u2+b22u

2
1u

2
2)2.

• In order to compare with the unconstrained Model M2, and quantify the induced potential

actuarial pricing error9, we also estimate Model M2bis, that is the constrained version of

M2, under the independence condition bj,k = bj,0b0,k [see Proposition 1]. More precisely

we have:

f(u1, u2) = 1
M
e−c1u1−c2u2uα1−1

1 uα2−1
2 (1 + b01u1 + b20u

2
1)2(1 + b10u2 + b02u

2
2)2.

Due to the large number of parameters, the numerical optimization of the log-likelihood

function is highly complicated. Thus it is essential to find an initial value for the optimization

that is close to the real value of the parameter. Such an initial value can be found via two

seemingly unrelated10 non-linear least square estimation, also called pseudo maximum likelihood

[see e.g. Gourieroux et al. (1984)]. Indeed, we can remark that:

E[Ni | Xi] = exp(d′1Xi)E[U1] (15)

E[Yi | Xi] = E
[
E[Yi | Xi, Ni] | Xi

]
= exp

[
(d′1 − d′2)Xi

]
E[U1/U2]. (16)

Thus d1 and d1 − d2, as well as E[U1],E[U1/U2] can be estimated by minimizing:

I∑
i=1

(Ni − exp(d′1Xi)E[U1])2,

and
I∑
i=1

[
Yi − exp

(
(d′1 − d′2)Xi

)
E[U1/U2]

]2
.

Once the initial values of the regression parameters are obtained, we estimate the different

models by maximum likelihood. The following table reports first the estimates of the regression

coefficients.

9The current actuarial literature usually assumes independence between U1 and U2, see e.g. Tzougas et al.
(2014).

10That is to say, by neglecting the dependence between N and Y . See e.g. Zellner (1962) for a discussion.
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Regression coefficient Regression coefficient
Variable for the count variable for the cost variable

M0 M1 M2 M2bis M0 M1 M2 M2bis
X1 -0.0201 -0.0235 -0.0226 -0.0217 0.166 0.178 0.152 0.176
X2 -0.158 -0.146 -0.142 -0.153 0.436 0.468 0.421 0.456
X3 -0.114 -0.132 -0.125 -0.0120 0.426 0.453 0.409 0.431
X4 -0.131 -0.146 -0.126 -0.128 0.340 0.369 0.324 0.352
X5 -0.287 -0.264 -0.259 -0.271 0.416 0.436 0.462 0.427
X6 -0.185 -0.169 -0.199 -0.175 0.260 0.245 0.236 0.254
X7 0.418 0.403 0.426 0.423 -0.361 -0.335 -0.374 -0.365
X8 0.254 0.229 0.260 0.249 -0.120 -0.135 -0.114 -0.126
X9 0.228 0.196 0.264 0.221 -0.052 -0.046 -0.038 -0.044
X10 0.198 0.185 0.201 0.193 -0.031 -0.029 -0.036 -0.033
X11 0.0156 0.0192 0.0144 0.0164 0.107 0.095 0.114 0.112
X12 0.0872 0.0893 0.0869 0.086 0.107 0.113 0.093 0.112
X13 0.225 0.218 0.197 0.230 0.0896 0.0878 0.0852 0.905
X14 0.0838 0.0866 0.0842 0.0893 0.606 0.572 0.632 0.664
X15 0.146 0.154 0.142 0.153 0.106 0.098 0.120 0.114
X16 0.172 0.169 0.182 0.184 0.254 0.268 0.224 0.263
X17 0.358 0.326 0.335 0.349 -0.026 -0.018 -0.014 -0.029
X18 0.214 0.228 0.241 0.223 -0.127 -0.132 -0.142 -0.128
X19 0.243 0.226 0.238 0.239 0.122 0.136 0.114 0.126

Table 4: Estimates of the regression coefficients.

As expected, we can check that the estimators of the regression coefficients are quite similar

across different models. Somehow surprisingly, the sign of the regression coefficients before the

same covariate might be different for the count and the cost variable. In other words, the

covariates might have opposite effects on the two response variables; this confirms also that it is

important to accommodate for flexible dependence between the random effects U1, U2.

The following table reports the estimates of the remaining parameters, that are δ, as well as

parameters characterizing the joint distribution of the unobserved heterogeneities.
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M0 M1 M2 M2bis
α1 3.19 3.36 2.90 3.09
c1 49.4 50.1 52.7 49.7
α1 2.64 2.28 2.25 2.52
c2 0.26 0.12 0.356 0.24
δ 1.68 1.91 1.76 1.76
b01 — 1.98 -0.557 1.44
b10 — -0.24 -1.89 -0.12
b11 — 0.06 -1.59 = b01b10 = −0.17
b02 — — 0.335 0.87
b20 — — -1.95 1.13
b12 — — 0.221 = b10b02 = −0.10
b21 — — -0.839 = b20b01 = 1.63
b22 — — -0.112 = b20b02 = 1.63

Table 5: Estimates of the remaining parameters for the three models. The symbol “—” indicates
that a parameter is not involved in a particular model.

Finally, let us provide a comparison of the four models in terms of information criteria.

M0 M1 M2 M2bis
log-likelihood -11209 -11154 -11087 -11198

BIC 22462 22385 22306 22430

Table 6: Information criteria of the four models.

We can observe that Model 2 is the best model in terms of BIC, although the difference

between M2 and M1 is rather small. On the other hand, we can see that the benchmark model

M0, as well as the constrained model M2bis have a BIC that is much larger than their more

flexible competitors. To further illustrate this, let us analyze the heterogeneity distribution for

the estimated model M2. The following figures plot the p.d.f. of the marginal distributions of

U1 and that of U2.
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Figure 2: Marginal p.d.f of U1 obtained from Model M2.
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Figure 3: Marginal p.d.f of U2 obtained from Model M2.

We can see that Model M2 indicates a significant difference of the marginal distributions of

both U1 and U2 from the gamma distribution assumption. Let us now plot the iso-densities of

the joint distribution of (U1, U2).
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Figure 4: Iso-densities of the joint distribution of (U1, U2) obtained from Model 2. The lighter a
region is, the larger the joint p.d.f. is in that region.

We can observe that the joint p.d.f. of (U1, U2) have two distinct local maxima. This is to

be compared with the joint p.d.f. in Model M0, in which U1, U2 are independent gamma (in this

case, there is only one global maximum). This implies that the joint p.d.f. of (U1, U1/U2) has

also two modes, one mode corresponds to individuals with both larger values of U1 and 1/U2, or

in other words, the riskier group; the other one corresponds to individuals with smaller values

of U1 and 1/U2, that are the safer group. This positive association between U1 and 1/U2 is also

reflected by the correlation coefficient between these two terms, which is equal to 0.33.
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3.3 Impact of wrong dependence assumptions on actuarial pricing

Let us now study the impact on the actuarial premium of the incorrect assumption of inde-

pendence between U1 and U2. Given the claim counts N1, N2, ..., NT , as well as total costs

Y1, Y2, ..., YT , we compute next year’s actuarial fair premium, that is the conditional expected fu-

ture cost YT+1 of the claim, under Model M2, as well as the nested model11 M2b, which assumes

independence between U1 and U2.

For illustration purpose, we consider a policyholder for which the values of the covariates are

all equal to 0, that is, X1 = X2 = .... = X17 = 0. In this case, we have λt = βt = 1 for all t, and

Λ1T = T is equal to the number of periods, whereas Λ2T = Y T is equal to the cumulative claim

cost. As a consequence, in this special case, the premium is a function of cumulative counts

NT = N1 + · · ·+NT , and cumulative costs Y T = Y1 + · · ·+ YT , and T only. The following table

provides some examples of the values of the premium for different values of NT , Y T , and T .

Model M2b Model 2

NT = 0, Y T = 0, T = 0 147 $ 147 $
NT = 0, Y T = 0, T = 1 144 $ 142 $
NT = 0, Y T = 0, T = 3 139 $ 134 $

NT = 1, Y T = 300 $, T = 1 159 $ 163 $
NT = 1, Y T = 300 $, T = 3 153 $ 154 $
NT = 1, Y T = 2000 $, T = 1 263 $ 419 $
NT = 1, Y T = 2000 $, T = 3 253 $ 396 $
NT = 1, Y T = 5000 $, T = 1 454 $ 904 $
NT = 1, Y T = 5000 $, T = 3 436 $ 853 $

Table 7: Examples of posterior premium at period T + 1, given claim counts and costs of the
first T periods.

We observe that the two models provide the same a priori premium (first row of the previous

table), that is when no previous claim history is available. This is expected, since the a priori

premium is equal to E[U1/U2], which can be estimated consistently by the same quasi likelihood

method. Once past claim history begins to accumulate, the premium given by the two models

start to differ quite significantly. From the second and third row, we can see that Model 2

provides more premium reduction than Model 2, when 0 past claim has been reported during

the past observation period. This is expected, since in Model 2, the unobserved heterogeneities

U1 and 1/U2 are positively correlated. Thus the absence of claims indicates that the individual

has, in average, a smaller value of U1, and, as a consequence, a smaller value of 1/U2. From the

11The choice of the alternative model M2bis is motivated by the fact that M2bis is flexible when it comes to
modeling the marginal distributions of U1 and U2. Thus Models M2 and M2bis differ only in their ability of
capturing the dependence. One could also compare, say, Models M2 and M0, but in this case the pricing errors
would be more difficult to analyze, since both the marginal distributions and the dependence structure contribute
differ between the two models.
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fourth and fifth row, when one accident of value 300 $ is reported (which is significantly smaller

than the average claim cost, for those who report claims), Model 2 charges a higher premium

increase than Model M2bis. This can be explained by the following. The presence of a claim

indicates that the individual has a larger value of U1, but the small size of the claim indicates

a smaller value of 1/U2. In Model M2bis, where dependence is not taken into account, these

two effects are well compensated. This is less the case in Model 2, where due to the positive

dependence between U1 and 1/U2, the two effects are only partially compensated, hence the

higher premium in Model 2. For the same reason, in the sixth and seventh row, where a claim of

average value (2000 $) is reported, or in the eighth and ninth row, where a claim of large value

(5000 $) is reported, Model M2 charges a higher premium than Model M2bis. Moreover, the

larger the claim size, the more important the difference between the premium given by the two

models. To summarize, compared to Model M2, Model M2bis overcharges low-risk customers,

but undercharges high-risk ones. This constitutes a huge disadvantage on a competitive market.

Indeed, an insurer using Model M2bis, say A, is likely to lose low-risk customers (who prefer

its competitor, say B, operating under Model M2 and hence provide lower premium for these

customers). On the other hand, Insurer A is more likely to take in high-risk customers (who

leave insurer B to seek lower premium), who are undercharged by insurer A compared to their

real risk. As a consequence, insurer A will face solvency issues in the long-run, since the premium

income is likely to be insufficient to cover the realized claims. Therefore, Model M2bis provides

not only a less satisfactory fit12, but also significant pricing bias.

4 Conclusion

We have proposed a general, flexible random effect panel data model for bivariate count-continuous

variables, that is especially adapted for insurance forecast and pricing. The model allows for con-

venient, matrix-based expressions for the likelihood function, as well as the forecast formulas.

Finally, we have demonstrated the benefit such a model offers for the forecasting of future insur-

ance claims, compared to existing parametric specifications.

12In terms of BIC, for instance.
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Appendix 1: proofs

Proof of Proposition 1. We have independence if and only if g(x, y) = g1(x)g2(y), which is

equivalent to:

1
M

( J∑
j=0

J∑
k=0

bj,ku
j
1u
k
2

)2
= g(u1, u2)
e−c1u1−c2u2uα1−1

1 uα2−1
2

= g1(u1)g2(u2)
e−c1u1−c2u2uα1−1

1 uα2−1
2

= P1(u1)P2(u2),

where P1 = E1(u1)′ΠW2(0)
W1(0)′ΠW2(0) , P2 = W1(0)′ΠE(u2)

W1(0)′ΠW2(0) are polynomials. By taking u2 = 0, we have,

P1(u1) = 1
MP2(0) (

∑J
j=0 bj,0u

j
1)2; by taking u1 = 0, we have P2(u2) = 1

MP1(0) (
∑J
k=0 b0,ku

k
2)2; by

taking u1, u2 = 0, we have P1(0)P2(0) = 1
M b00 = 1

M . Thus we have finally:

( J∑
j=0

J∑
k=0

bj,ku
j
1u
k
2

)2
=
( J∑
k=0

b0,ku
k
2

)2( J∑
j=0

bj,0u
j
1

)2
,

which yields bjk = bj,0b0,k for integers j, k between 0 and J .

Proof of Proposition 2. The marginal density of y has two components, one mass at zero,

and one continuous component on R>0. The density of this component is:

f(y) =
∞∑
n=1

f(n, y).

By equation (11), the dominant term of this function is proportional to y−1−α2 , when y goes to

infinity. Thus E[Yt] exists if and only if α2 > 1.

Appendix 2: A simulation study

In order to get a sense of the finite sample behavior of the estimation method as well as its

impact on pricing, in this section we propose a Monte-Carlo simulation exercise. For a fixed

vector of parameters θ, we simulate 50 databases13, which one consisting of 10000 i.i.d. samples of

(N1, Y1, X1). Then we conduct maximum likelihood estimation on these 100 simulated databases.

13This relatively small number of replications is explained by the fact that simulating each database, as well as
computing the maximum likelihood estimator, is quite computationally intensive.
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The simulated data and summary statistics of the estimates

The Data Generating Process (DGP) we propose is the following: in the joint density formula of

(U1, U2), we take:

α1 = α2 = 2, c1 = c2 = 1, J = 1, b00 = 1, b01 = b10 = 0, b11 = 0.5,

where b00 is set to one by convention. Note also that for illustration purpose, we have assigned

nonnegative values to all the parameters bj,k. The advantage of this set of parameters is that

the resulting joint density is a mixture distribution and is therefore easy to simulate.14

Then we set the two regressors in (1) as:

λ = exp(β1X1), β = exp(β2X2),

where β1 = 0.5, β2 = 0.6, and X1, X2 are i.i.d. N (0, 1) distributed. Finally, parameter δ is set

to 1. The following table reports the theoretical mean and variances of the two variables N,Y .

Variable Mean Variance Variance/Mean
N 7.6 30.6 4.04
Y 3.2 29.3 9.2

Table 8: Summary statistics of the couple (N,Y ).

We can see that for this DGP, the count variable is quite heavily overdispersed. As pointed

out by a referee, this situation is commonly encountered in practice for low count data.

The following table reports the sample mean and standard deviation of the estimates, obtained

respectively from the 50 simulated databases.

Variable Theoretical value Empirical Mean Standard Deviation
β1 0.500 0.501 0.12
β2 0.600 0.598 0.11
α1 2.00 2.02 0.13
α2 2.00 2.10 0.14
c1 1 1.06 0.07
c2 1 0.97 0.08
b01 0 0.01 0.06
b10 0 0.01 0.05
b11 0.5 0.052 0.2
δ 1 0.97 0.2

Table 9: Table of the estimates along with their standard deviation.

14Nevertheless, even when some of the coefficients are negative, it is still possible to use a acceptance-rejection
algorithm to simulate samples of (U1, U2). See Gallant and Tauchen (1993) for details.
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All of the parameter estimates are significant, except those of b01 and b10. This is expected

since their true values are exactly zero.

Impact on pricing

Next, let us examine how the sampling error might affect the forecasting performance. To

this end, for each of the 50 simulated databases, we use the estimated model to compute the

conditional expectation E[Y2|Y1, N1, X] using (13). We then compute the sample mean and

variance of E[Y2|Y1, N1, X]. The following figure plots the histogram of these estimated forecasts,

for X1 = X2 = 0, N = 1 and Y = 1.6.
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Figure 5: Histogram of the estimated forecasts.

Of these 50 samples of E[Y2|Y1, N1, X], the largest error is around 0.3, which is about 10 %

of its theoretical value.

It is useful to compare this simulation exercise with the real data application of Section 3.

There are several differences between the previous simulation and the insurance data. Firstly,

the insurance data contains more than 60000 observations, that is more than 6 times larger than

the simulated datasets, which should contribute to lower the sampling error of the maximum

likelihood estimator. Secondly, as is often the case in practice, the real data we analyzed contains

much more covariates than the simulation experiment.15 One can reasonably argue that this

spells a larger number of parameters and thus can adversely affect the precision of the maximum

likelihood estimator. Nevertheless, we argue that in practice this impact can be mitigated by the

15In our simulation experiment, we have deliberately chosen only two covariates, in order not to mix the error
induced by adding too many regression coefficients, as well as those induced by the novel specification of the
random effects (U1, U2). Such a choice is rather standard in this literature and has been previously made in
Gurmu et al. (1999); Gurmu and Elder (2012) for the analysis of count data.
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fact that these regression parameters can be quite easily estimated separately by nonlinear least

square [see equations (15) and (16)]. Also, Lasso-like methods can also be used to diminish the

number of regression parameters, although it is clearly out of the scope of the present paper.

References

Bierens, H. J. (2008). Semi-Nonparametric Interval-Censored Mixed Proportional Hazard Mod-

els: Identification and Consistency Results. Econometric Theory, 24(03):749–794.

Catalano, P. J. and Ryan, L. M. (1992). Bivariate latent variable models for clustered discrete

and continuous outcomes. Journal of the American Statistical Association, 87(419):651–658.

Cummins, J. D., Dionne, G., McDonald, J. B., and Pritchett, B. M. (1990). Applications of the

gb2 family of distributions in modeling insurance loss processes. Insurance: Mathematics and

Economics, 9(4):257–272.

Czado, C., Kastenmeier, R., Brechmann, E. C., and Min, A. (2012). A mixed copula model for

insurance claims and claim sizes. Scandinavian Actuarial Journal, 2012(4):278–305.

De Jong, P. and Heller, G. Z. (2008). Generalized linear models for insurance data. Cambridge

University Press.

de Leon, A. R. and Wu, B. (2011). Copula-based regression models for a bivariate mixed discrete

and continuous outcome. Statistics in Medicine, 30(2):175–185.

Dionne, G. and Vanasse, C. (1989). A generalization of automobile insurance rating models: the

negative binomial distribution with a regression component. Astin Bulletin, 19(2):199–212.

Duan, N., Manning, W. G., Morris, C. N., and Newhouse, J. P. (1983). A comparison of

alternative models for the demand for medical care. Journal of Business & Economic Statistics,

1(2):115–126.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 62(2):355–366.

Einav, L., Finkelstein, A., and Schrimpf, P. (2010). Optimal mandates and the welfare cost of

asymmetric information: Evidence from the uk annuity market. Econometrica, 78(3):1031–

1092.

Englin, J. and Shonkwiler, J. S. (1995). Estimating social welfare using count data models: an

application to long-run recreation demand under conditions of endogenous stratification and

truncation. Review of Economics and Statistics, pages 104–112.

21



Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete and con-

tinuous outcome with clustering. Journal of the American statistical Association, 90(431):845–

852.

Frangos, N. E. and Vrontos, S. D. (2001). Design of optimal bonus-malus systems with a frequency

and a severity component on an individual basis in automobile insurance. Astin Bulletin,

31(01):1–22.

Gallant, A. R. and Nychka, D. W. (1987). Semi-Nonparametric Maximum Likelihood Estimation.

Econometrica, 55(2):363–390.

Gallant, A. R. and Tauchen, G. (1993). A nonparametric approach to nonlinear time series

analysis: estimation and simulation. In New directions in time series analysis, pages 71–92.

Springer.

Garrido, J., Genest, C., and Schulz, J. (2016). Generalized linear models for dependent frequency

and severity of insurance claims. Insurance: Mathematics and Economics, 70:205–215.

Gouriéroux, C. (1999). The econometrics of risk classification in insurance. Geneva Papers on

Risk and Insurance Theory, 24(2):119–137.

Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo maximum likelihood methods:

Applications to poisson models. Econometrica, 52(3):701–720.

Gueorguieva, R. V. and Agresti, A. (2001). A correlated probit model for joint modeling of

clustered binary and continuous responses. Journal of the American Statistical Association,

96(455):1102–1112.

Gurmu, S. and Elder, J. (2012). Flexible bivariate count data regression models. Journal of

Business & Economic Statistics, 30(2):265–274.

Gurmu, S., Rilstone, P., and Stern, S. (1999). Semiparametric estimation of count regression

models. Journal of Econometrics, 88(1):123–150.

Lemaire, J. (1995). Bonus-malus systems in automobile insurance. Insurance: Mathematics and

Economics, 3(16):277.

McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econo-

metrica, 52(3):647–663.

Paull, A. E. (1978). A generalized compound poisson model for consumer purchase panel data

analysis. Journal of the American Statistical Association, 73(73):706–713.

22
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