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Abstract: This paper shows that the term structure of conditional, or predictive distribu-

tions allows for closed form expression in a large family of (possibly higher-order, or infinite order)

thinning-based count processes such as INAR(p), INARCH(p), NBAR(p), and INGARCH(1,1).

Such predictive distributions are currently often deemed intractable by the literature and ex-

isting approximation methods are usually time consuming and induce approximation errors. In

this paper, we propose a Taylor’s expansion algorithm for these predictive distributions, which

is both exact and fast. Through extensive simulation exercises, we demonstrate its advantages

with respect to existing methods in terms of the computational gain and/or precision.
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1 Introduction

Nonnegative integer-valued count process models are widely used in domains such as marketing

[Böckenholt (1998)], economics [Blundell et al. (1999); Brännäs and Hellström (2001); Harris

and McCabe (2018)], finance [Heinen and Rengifo (2007); Bien et al. (2011); Kirchner (2017)]

and insurance [Gouriéroux and Jasiak (2004)]. The benchmark model, introduced by McKenzie

(1985), Al-Osh and Alzaid (1987) in the first-order case (called INAR(1)) postulates that:

Xt = α ◦Xt−1 + εt, ∀t, (1)

where the thinning operator is defined as follows: conditionally on Xt−1, variable α◦Xt−1 has the

distribution B(Xt−1, α), that is the binomial distribution with probability parameter α and size

parameter Xt−1. Moreover, this variable is conditionally independent from the i.i.d. sequence of

innovation (εt), which follows Poisson distribution.

Since this seminal work, extensions have flourished. Du and Li (1991) introduce higher-order

INAR(p) models satisfying:

Xt =
p∑
i=1

αi ◦Xt−i + εt, ∀t, (2)

where given all the past observations Xt−1 = {Xt−1, Xt−2, ...}, variables αi ◦Xt−i are mutually

independent with Binomial distribution B(Xt−i, αi), and are independent from εt, which is an

i.i.d. sequence, and the distribution of the latter is not necessarily Poisson. In particular, if

(εt) is Poisson (resp. negative binomial) distributed, then we say that (Xt) follows the Poisson-

INAR(p) [resp. NB-INAR(p)] process. Note that Alzaid and Al-Osh (1990) has also proposed

an alternative INAR(p) specification. This latter is less tractable and even the conditional

expectation formula is highly complicated [see Jung and Tremayne (2006) for its expression in

the special case where p = 2]. Thus this model is not considered in our paper. This choice is

consistent with the majority of recent papers [see e.g. Pedeli et al. (2015) and references therein].

Meanwhile, it has also been proposed to relax the binomial distributional assumption of

the thinning operator [see e.g. Latour (1998)]. Roughly speaking, these models trace their

origin to the applied probability literature, in which they are called Galton-Watson process with

immigration, or branching process, see e.g. Venkataraman and Nanthi (1982). They are special
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cases of model:

Xt =
p∑
i=1

Zi ∗Xt−i + εt, (3)

where integer p could be finite or infinite; the operator ∗ is defined as follows. Given Xt−1, each

Zi∗Xt−i is the sum ofXt−i i.i.d. copies of count variable Zi. In other words, equation (3) does not

include random coefficient count processes in which the different copies of Zi are dependent [see

e.g. Zheng et al. (2006)]. This distribution of Zi usually depends on some unknown parameters

and is not necessarily Bernoulli, which is the case in model (2). Moreover variables Zi ∗Xt−i are

mutually independent, and are independent from the i.i.d. innovation sequence εt. Prominent

examples of special cases of model (3) include, among others:

• Ristić et al. (2009) and Gouriéroux and Lu (2019) consider first order models (p = 1), and

assume that Z1 is negative binomial (NB) distributed. Then they make special assumptions

on the distribution of εt to ensure that process (Xt) is stationary with NB stationary

distribution.

• Rydberg and Shephard (2000); Weiß (2010) consider the INARCH(1) model in which the

conditional distribution of Xt given Xt−1 is Poisson P(αXt−1 +β), with parameters α, β >

0. This corresponds to model (3) with p = 1, and both Z1 and εt are Poisson distributed

with parameters α and β, respectively.

• Zhu and Joe (2010) also focuses on first-order models but assume that Z1 and εt follow

other non-NB and non-Binomial distributions.

• Finally, a few models can be written in the form (3) with p = ∞. For instance, Kirchner

(2016) introduces a Poisson-INARCH(∞) model (although the author terms this model

INAR(∞), in his framework all the variables Zi, as well as εt, follow Poisson distribu-

tions. Thus his model can also be called Poisson-INARCH(∞)), whereas the Poisson-

INGARCH(1,1) model of Ferland et al. (2006) can also be viewed as a special case of

Poisson-INARCH(∞) model (see section 3.3 for a more detailed analysis).

In this paper we call models of type (3) thinning-based [see Weiß (2008); Ristić et al. (2009);

Zhu and Joe (2010); Scotto et al. (2015); Kirchner (2016)]. Note that some papers in the lit-

erature also use the term “generalized thinning”. We choose to avoid this latter terminology
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since we want to emphasize the our framework does not apply to models with random coefficient

thinning. Family (3) is significantly larger than (2), but up to now the literature has only been

able to handle first-order models, with quite restrictive parametric assumptions on Zi’s and εt.

One explanation is that, up to now extensions (2) and (3) have the serious downside that the

term structure of predictive probability mass functions (p.m.f.’s) is believed to be intractable,

rendering estimation and/or forecasting cumbersome. This difficulty is especially acute when

the order p, and/or the horizon of forecasting h increases. To our knowledge, the term structure

of p.m.f.’s alows for closed form expression only in two special first-order models. These are

the initial Poisson-INAR(1) model (1), as well as the negative binomial autoregressive process

(NBAR(1)) introduced by Gouriéroux and Lu (2019). Although the literature has proposed some

approximation methods [see e.g. Pedeli et al. (2015) for likelihood-based estimation and Jung

and Tremayne (2006); McCabe et al. (2011); Bisaglia and Canale (2016) for forecasting], they

either induce significant approximation errors, or are still computationally too costly.

This paper solves the above open difficulty for model (3). We show that the term structure of

conditional p.m.f.’s in model (3) has closed form expression at any horizon, and hence significantly

improve the existing estimation and forecasting procedures. The method is general in the sense

that it does not require the distributions of Zi’s and εt to belong to the classical families such as

Bernoulli, Poisson or negative binomial. Rather, it is applicable so long as some mild assumption

(see Assumption 1) on the log p.g.f. of these variables is satisfied. Our method explores the

Compound Autoregressive (CaR) property of process (3), and the natural link between the

probability generating function (p.g.f.) and the corresponding p.m.f. of a count distribution.

This approach has the distinctive advantage that the algorithm only involves low-dimensional

matrix operations, whose computational cost is insensitive to p and remains very low even for

large p.

The paper is organized as follows. Section 2 computes the Taylor’s expansion of the one-

step-ahead conditional p.g.f. and deduces the corresponding p.m.f., which facilitates, among

others, the likelihood-based estimation. Section 3 derives the multiple-step-ahead predictive

p.m.f.’s for finite-order models, before extending the result to some infinite order models such as

Poisson-INGARCH(1,1). Section 4 compares our approach and existing methods, first in terms

of maximum likelihood estimation, then in terms of higher-horizon forecasting. In particular,

4



for the estmation we show that depending on model parameters, our model is generically either

comparable, or faster than the other, exact method of Bu et al. (2008). For the forecasting, we

show that our method is more precise and much less time consuming than competing methods

proposed by McCabe et al. (2011) and Jung and Tremayne (2006). Section 5 concludes. Technical

details and proofs are gathered in Appendices.

2 Likelihood-based estimation

Conducting maximum likelihood (ML) estimation requires the evaluation of the conditional p.m.f.

p(Xt|Xt−1). In model (3), by standard convolution we get [see e.g. Drost et al. (2009)]:

p(Xt|Xt−1) =
∑

n1+n2+···+np+np+1=Xt

P[εt = np+1]
p∏
i=1

P[Zi ∗Xt−i = ni|Xt−i]. (4)

For instance, in INAR(p) models, Zi’s are Bernoulli distributed and we have P[Zi ∗ Xt−i =

ni|Xt−i] =
(
Xt−i
ni

)
αnii (1 − αi)Xt−i−ni . Except in a few special cases such as INARCH(p) where

each Zi and εt follows Poisson distribution, the above p−dimensional summation cannot be

further simplified, and becomes increasingly cumbersome for large p. Bu et al. (2008) point

out that, this computation can be partially simplified by using the fact that the convolution of

p + 1 variables is the convolution between the first variable and that of the p remaining ones,

which can be further decomposed recursively. However for large p, the recursive method remains

computationally heavy [see also Pedeli et al. (2015) for discussions]. While there exist convenient

and consistent moment based estimators [see e.g. Al-Osh and Alzaid (1987)], they typically

suffer from significant efficiency loss [see e.g. Bu et al. (2008)]. Recently, Pedeli et al. (2015)

propose a saddle-point approximation of p(Xt|Xt−1) for ML estimation. Although this method

is faster than the brute force convolution, it still has some drawbacks. First, the approximated

p.m.f. p̃(·|Xt−1) does not sum up to one across N = {0, 1, 2, ...}. Second, the method only

applies to INAR(p) models. Third, this approximation itself lacks closed form expression and

its computation requires numerical inversion of some nonlinear functions. This leads to extra

computational complexity, as well as approximation error. For instance, Pedeli et al. (2015)

report that for certain parameter values, the relative error of the likelihood function can be as
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large as 2 to 5 percent. As a consequence, this approximate ML estimator is inconsistent and

simulation results show that in finite sample, the bias can be significantly larger than that of the

exact ML estimator (see their Table 1).

2.1 The Taylor’s expansion based algorithm

Our solution is based on the property that the one-step-ahead conditional p.g.f. of model (3)

satisfies:

E[uXt |Xt−1] = exp
[ p∑
i=1

Xt−i log(E[uZi ]) + log(E[uεt ])
]
, (5)

which is exponential affine in Xt−1. Such processes (Xt) are called (p−th order) Compound Au-

toregressive (CaR(p)) processes [see Darolles et al. (2006)] and by Proposition 7 of Darolles et al.

(2006), we can first deduce that such a process is strictly stationary if and only if:
∑p
i=1 E[Zi] < 1.

Then we remark that this conditional p.g.f. is linked to the conditional p.m.f. through:

E[uXt |Xt−1] =
∞∑
k=0

P[Xt = k|Xt−1]uk. (6)

Thus to get P[Xt = k|Xt−1] for all k = 0, 1, ..., n, where n is a fixed integer, it suffices to compute

the n−th order Taylor’s expansion at u = 0 for the corresponding conditional p.g.f. To this end

we make the following assumption:

Assumption 1. In model (3), the log p.g.f. of variables Zi, i = 1, ..., p, and εt all have tractable

Taylor’s expansions:

gi(u) := logE[uZi ] =
∞∑
k=0

ci,ku
k, ∀i = 1, ..., p, ∀u, (7)

g0(u) := logE[uεt ] =
∞∑
k=0

c0,ku
k, ∀u. (8)

By “tractable”, we require the coefficients ci,k and c0,k, where k = 0, ..., and i = 1, ..., p, to

be analytic functions of the parameters characterizing the distributions of Zi’s and of (εt). This

assumption is quite mild and is satisfied by many standard count distributions. For instance,

distributions in Examples 1-4 below have tractable p.g.f. and are infinitely differentiable at u = 0,

such that Assumption 1 automatically holds.
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Example 1 (Bernoulli and Poisson distributions). If X follows Bernoulli distribution B(1, α),

then:

logE[uX ] = log(αu+ 1− α) = log(1− α) + log(1 + α

1− αu)

= log(1− α) +
∞∑
k=1

(−1)k−1

k

( α

1− α

)k
uk.

On the other hand, if X follows Poisson distribution P(λ), then:

logE[uX ] = −λ+ λu.

Thus, in particular, Assumption 1 is satisfied by the Poisson-INAR(p) model, that is equation (2)

with Poisson distributed innovation (εt). In this case, the coefficients in the Taylor’s expansions

(7) and (8) are given by:

c0,0 = −λ, c0,1 = λ, and c0,j = 0, ∀j ≥ 2.

ci,0 = log(1− αi), and ci,k = (−1)k
( αi

1− αi

)k
, ∀k ≥ 1, i = 1, ..., p.

Example 2 (NB distribution (including geometric distribution), see Ristić et al. (2009); Gouriéroux

and Lu (2019)). If X follows NB distribution with probability parameter q ∈ (0, 1) and size pa-

rameter r [in the following we will use the notation X ∼ NB(r, q)], then:

E[uX ] = (1− q)r

(1− qu)r , ∀u ∈ [0, 1
q

), (9)

hence log
(
E[uX ]

)
= r log(1− q)− r log(1− qu) = r log(1− q) + r

∞∑
j=1

qj

j
uj .

Example 3 (Compound Poisson distributions, see Schweer and Weiß (2014)). We say that

variable X follows compound Poisson distribution if it has the representation:

X =(d)

N∑
j=1

Zj ,

where symbol =(d) denotes equality in distribution; variable N is Poisson P(λ) distributed, and
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is independent from the sequence (Zj)j , where (Zj)j is an i.i.d. sequence of count variables. It

is easily checked that the log p.g.f. of X is:

log
(
E[uX ]

)
= λ

(
E[uZ1 ]− 1

)
= λ

( ∞∑
k=0

P[Z1 = k]uk − 1
)
.

Thus log
(
E[uX ]

)
has tractable Taylor’s expansion, so long as the p.m.f. of Z1 is tractable.

Example 4 (Distributions defined through the p.g.f.). Zhu and Joe (2010) propose several first-

order, thinning-based count processes in which Z1 has simple p.g.f. but complicated p.m.f. For

instance, the non central NB distribution has the p.g.f.:

E[uX ] = (1− α) + (α− γ)u
1− αγ − (1− α)γu, ∀u ∈ [0, 1− αγ

(1− α)γ ),

where parameters α, γ lie between 0 and 1. For this distribution, the log p.g.f. is easily expanded:

log
(
E[uX ]

)
= log 1− α

1− αγ + log(1 + α− γ
1− αu)− log[1− (1− α)γ

1− αγ u]

= log 1− α
1− αγ +

∞∑
k=1

(−1)k−1

k

(α− γ
1− α

)k
uk +

∞∑
j=1

[ (1− α)γ
1− αγ

]k
uk.

Another example is the Hermite distribution, which is used by Fernández-Fontelo et al. (2017)

in INAR models as the distribution of the innovation εt. Such a distribution has a log. p.g.f.:

logE[uεt ] = a1(u− 1) + a2(u2 − 1),

where parameters a1, a2 ≥ 0.

Finally, the majority of other distributions considered in the count process literature who do

not have simple p.g.f. (or log p.g.f.) usually have simple p.m.f. For instance, Heinen and Rengifo

(2007) introduce the double Poisson distribution, Jazi et al. (2012) consider zero-inflated mixture

distributions. In Appendix 3 we show how the log p.g.f. can be easily expanded at any given

order, so long as the p.m.f. is tractable.
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Under Assumption 1, we can rewrite equation (5) into:

E[uXt |Xt−1] (10)

= exp
[
c0,0 +

p∑
i=1

Xt−ici,0

]
exp

[ n∑
j=1

(c0,j +
p∑
i=1

Xt−ici,j)uj +O(un+1)
]

(11)

= exp(A0) exp
[ n∑
j=1

Aju
j
]

+O(un+1) (12)

= exp(A0)
n∑
k=0

1
k!

[ n∑
j=1

Aju
j
]k

+O(un+1), (13)

where coefficients Aj are given by:

Aj = c0,j +
p∑
i=1

Xt−ici,j , ∀j = 0, ..., n. (14)

From equation (10) to (11), we have expanded the log p.g.f. of Zi’s and εt; from equation (12)

to (13) we have expanded the exponential function.

Thus to deduce the coefficient in front of the term un in expansion (13), it suffices to compute

recursively the n+ 1 first terms of the polynomial
[∑n

j=1 Aju
i
]k

for each k. While this can be

achieved using a symbolic calculation package such as Mathematica (see Gordy (2002) for a

similar application to credit risk), we suggest below a matrix-based algorithm that is simpler and

more suitable for statistical packages.

Proposition 1. For any coefficients γi, i = 0, ..., n, the (n + 1) first coefficients of polynomial(∑n
j=0 γju

j
)k

, where k = 0, ...n, are given by the column vector:



γ0 0 0 · · · 0

γ1 γ0 0 · · · 0

γ2 γ1 γ0 · · · 0

· · · · · · · · · · · · · · ·

γn γn−1 · · · γ1 γ0



k 

1

0

0

· · ·

0


, ∀k = 0, ..., n. (15)

The proof is obvious and omitted. In equation (13) we have γ0 = 0, thus the square matrix
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above, called the Toeplitz matrix, becomes triangular inferior. Thus we get:



P[Xt = 0|Xt−1]

P[Xt = 1|Xt−1]

· · ·

P[Xt = n− 1|Xt−1]

P[Xt = n|Xt−1]


= exp(A0)

n∑
k=0

1
k!



0 0 0 · · · 0

A1 0 0 · · · 0

A2 A1 0 · · · 0

· · · · · · · · · · · · · · ·

An An−1 · · · A1 0



k 

1

0

0

· · ·

0


. (16)

Note that although the above algorithm involves a Taylor’s expansion (of the conditional

p.g.f.), it provides the exact value of the conditional p.m.f, because of the identity (6) (see also

Example 5 for further discussions). In other words, if we were to compute, say, P[Xt = 5|Xt−1],

then an expansion of order 5 or 20 would lead to the same result.

On the contrary to formula (4), which becomes increasingly cumbersome when p increases,

the computational cost of (15) is independent of p. Indeed, it only involves square matrices and

vectors of dimension (n + 1), where n does not depend on p. The order p only impacts the

computation of the scalars A0, ..., An, whose cost is negligible. Thus this method is extremely

convenient, especially for higher-order models.

One referee rightly points out that the computational cost of our algorithm is still (inevitably)

increasing in n. Thus, if the values of the counts we deal with are very large, then this method

can also become cumbersome. This downside is nevertheless partially mitigated by the fact that

the successive powers of the Toeplitz matrix are still Toeplitz and thus can be computed very

efficiently. More precisely, we can check that:



0 0 0 · · · 0

γ1 0 0 · · · 0

γ2 γ1 0 · · · 0

· · · · · · · · · · · · · · ·

γn γn−1 · · · γ1 0



k

=



0 0 0 · · · 0

γ1,k 0 0 · · · 0

γ2,k γ1,k 0 · · · 0

· · · · · · · · · · · · · · ·

γn,k γn−1,k · · · γ1 0


(17)
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for any integer k, where the sequence (γi,k) satisfies the recursion:

γ1,k+1 = 0

γ2,k+1 = γ1,kγ1

· · · = · · ·

γn,k+1 = γn−1,kγ1 + γn−2,kγ2 + · · ·+ γ1,kγn−1.

In other words, the multiplication between Toeplitz matrices involves at most the computation

of n coefficients for a total of O( 1
2n

2) operations, where the symbol O(·) should be understood

as being equivalent to 1
2n

2 when n goes to infinity. . As a comparison, ordinary matrix multipli-

cations usually requires a cost of O(n3) operations. As a consequence, in total, computing the

conditional p.m.f. of Xt given Xt−1 involves roughly O( 1
2X

3
t ) operations since we have to raise

the Toeplitz matrix up to power Xt.

To summarize, the Taylor’s expansion approach makes the ML estimation feasible for higher-

order models without inducing bias. Alternatively, it also facilitates Bayesian inference [see

McCabe and Martin (2005); Bisaglia and Canale (2016)] of the same models, the ease of which

usually depending (among others) on the tractability of the likelihood function.

2.2 Examples

As an illustration, let us derive the conditional p.m.f. for some popular specifications of the

distributions of Zi and εt.

Example 5 (INARCH(p) model). In this example we assume that, in equation (3), variables

Z1, ..., Zp and εt follow Poisson distributions with parameters λ1, ..., λp and λ0, respectively.

This can be viewed as the higher-order extension of the (Poisson-)INARCH(1) model studied

by Rydberg and Shephard (2000); Weiß (2010). For this model, the one-step-ahead conditional

distribution is Poisson with parameter:

λt := λ0 +
p∑
i=1

Xt−iλi.
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While it is possible to directly deduce the conditional p.m.f.:

P[Xt = k|Xt−1] = e−λt
λkt
k! , (18)

to support our claim that equation (16) provides an exact expression [see the comment below

(16)], let us now check that we can recover equation (18) from (16). We first remark that for this

model, A0, A1, ..., An defined in (14) are given by: A0 = −λ0 −
∑p
i=1 Xt−iλi = −λt, A1 = λt,

and A2 = A3 = · · · = 0. Then by some simple algebra, we can rewrite the RHS of equation (16)

into:

exp(−λt)
n∑
k=0

λkt
k
M



0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 0



k 

1

0

0

· · ·

0


= exp(−λt)



1

λt

λ2
t

2!

· · ·
λnt
n!


.

Thus equation (16) provides indeed the exact expression of the conditional p.m.f.

Example 6 (Poisson-INAR(p) model). Let us now consider the benchmark Poisson-INAR(p)

model (2), under the assumption that εt is Poisson P(λ) distributed. The conditional p.g.f. is:

E[uXt |Xt−1] = exp
[ p∑
i=1

Xt−i log(αiu+ 1− αi) + λ(u− 1)
]

= exp(A0)
n∑
k=0

1
k!

[ n∑
j=1

Aju
j
]k

+O(un+1),

with A0 = −λ+
p∑
i=1

Xt−i log(1− αi), A1 = λ+
p∑
i=1

Xt−i
αi

1− αi
,

and Aj = (−1)j−1

j

p∑
i=1

Xt−i(
αi

1− αi
)j , ∀j = 2, ..., n.

Example 7 (NB-INAR(p) model). Let us now give the corresponding formulas, when the inno-

vation term in the INAR(p) model (2) follows the NB(r, q) distribution instead of the Poisson
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distribution. By (5), the conditional p.g.f. is:

E[uXt |Xt−1] = exp
[ p∑
i=1

Xt−i log(αiu+ 1− αi) + r log(1− q)− r log(1− qu)
]

= exp
[
r log(1− q) +

p∑
i=1

Xt−i log(1− αi)
] n∑
k=0

1
k!

[ n∑
j=1

Aju
j
]k

+O(un+1),

where A0 = r log(1− q) +
p∑
i=1

Xt−i log(1− αi),

Aj = rqj

j
+ (−1)j−1

j

p∑
i=1

Xt−i(
αi

1− αi
)j , ∀j = 1, ..., n.

Example 8 (NBAR(p) model). Let us finally assume that in equation (3), variables εt and

Zi, i = 1, ..., p follow NB(r0, q0) and NB(ri, qi) distributions, respectively. This model can be

viewed as a higher-order extension of the Negative Binomial Autoregressive [NBAR(1)] process

considered in Ristić et al. (2009); Gouriéroux and Lu (2019) and thus will be called NBAR(p).

Its conditional p.g.f. is:

E[uXt |Xt−1] = exp
[ p∑
i=1

Xt−iri[log(1− qi)− log(1− qiu)] + r0[log(1− q0)− log(1− q0u)]
]

= exp(A0)
n∑
k=0

1
k!

[ n∑
j=1

Aju
j
]k

+O(un+1),

with A0 = r0 log(1− q0) +
p∑
i=1

Xt−iri log(1− qi),

Aj = r0q
j
0

j
+

p∑
i=1

Xt−i
riq

j
i

j
, ∀j = 1, ..., n.

Finally, in all the above four examples, once the coefficients Aj are computed, it suffices to insert

them into (16) to get the vector of conditional p.m.f.

3 Multi-step forecasting

One of the major challenges of count process models is that even though the predictive means

E[Xt+h|Xt−1] are often straightforward to compute, they are not informative enough to charac-

terize the predictive count distributions. Moreover, McCabe et al. (2011) argue that since the

13



predictive means are non-integer, they are incompatible with the discrete sample space. A proper,

probabilistic forecast thus necessitates the multiple-step-ahead conditional p.m.f. of Xt+h given

Xt−1:

ph(Xt+h|Xt−1) =
∞∑

Xt+h−1=0

∞∑
Xt+h−2=0

· · ·
∞∑

Xt=0
p(Xt+h|Xt+h−1)p(Xt+h−1|Xt+h−2) · · · p(Xt|Xt−1).

(19)

This is a h−dimensional, infinite summation, and thus is extremely cumbersome for any h ≥ 1,

even if the previous section has provided a simpler method of computing the individual terms of

the form p(Xt|Xt−1).

So far there are two major solutions in the literature. Jung and Tremayne (2006) propose to

approximate ph(·|Xt−1) via simulations of future trajectories, but this latter is also highly com-

putationally intensive. Alternatively, Bu and McCabe (2008); McCabe et al. (2011) approximate

the probability of the process taking values larger than some integer threshold τ by 0. Then the

p-dimensional vector Yt = (Xt, Xt−1, ..., Xt−p+1) is approximated by a first-order, (τ + 1)p states

Markov chain, and the approximate ph(·|Xt−1) satisfies a recursive formula (in h) involving the

(τ + 1)p × (τ + 1)p transition matrix Π of the chain (Yt). Its drawbacks is that, when τ and/or

p are not small enough, the dimension of Π is too high for the computation to be feasible. This

necessity to consider, for some applications, a larger threshold has been highlighted by Zhu and

Joe (2009) and references therein.

3.1 The algorithm

Let us now propose a simpler algorithm using the same, Taylor’s expansion approach. As in

Section 2, we first derive the conditional p.g.f. E[uXt+h |Xt−1]. One nice property of the CaR

count processes is that such higher-order p.g.f. is still exponential affine. In other words, the

following proposition is a higher-order extension of equation (4).

Proposition 2. For any integer h ≥ 0, we have:

E[uXt+h−1 |Xt−1] = exp
[
Bh,0(u) +

p∑
i=1

Bh,i(u)Xt−i

]
, (20)
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where functional (in u) coefficients Bh,i(u), i = 0, ..., p, satisfy the recursive formula (in h):

B1,0(u) = logE[uεt ], (21)

B1,i(u) = logE[uZi ], ∀i = 1, ..., p, (22)

Bh+1,0(u) = B(h, 0)(u) + g0(eBh,1(u)), (23)

Bh+1,i(u) = 1i<pBh,i+1(u) + gi(eBh,1(u)), ∀i = 1, ..., p. (24)

Proof. See Appendix 1.

Although Bh,i(u) is typically intractable for large h, their Taylor’s expansions up to a finite

order (at u = 0), and hence that of E[uXt+h |Xt−1], can be easily obtained by recursion, and we

will see later on that this is sufficient for probabilistic forecasting purpose. Indeed, given a large

integer threshold τ and suppose that the τ−th order Taylor’s expansions of Bh,i(u) have already

been obtained for each i = 0, ..., p, then those of Bh+1,i(u) are available through:

Proposition 3. We have:

Bh+1,0(u) = Bh,0(u) + c0,0 +
τ∑
k=0

Bkh,1(u)
k!

τ∑
j=1

c0,jj
k +O(uτ+1),

Bh+1,i(u) = 1i<pBh,i+1(u) + ci,0 +
τ∑
k=0

Bkh,1(u)
k!

τ∑
j=1

ci,jj
k +O(uτ+1), i = 1, ..., p.

Proof. See Appendix 2.

Thus it suffices to apply Proposition 1 onceto get the τ−th order Taylor’s expansions of the

successive powers of Bh,1(u), to derive that of Bh+1,i(u), i = 0, ..., p. More precisely, if we write

the Taylor’s expansion of B(h, i)(u) as:

Bh,i(u) =
τ∑
k=0

bh,i,ku
k +O(uτ+1),
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then for each i = 0, ..., p, the vector of coefficients (bh,i,0, bh,i,1, · · · , bh,i,τ )′ satisfies the recursion:



bh+1,i,0

bh+1,i,1

· · ·

bh+1,i,τ


= 1i=0



bh,0,0

bh,0,1

· · ·

bh,0,τ


+ 10<i<p



bh,i+1,0

bh,i+1,1

· · ·

bh,i+1,τ


+



ci,0

0

· · ·

0


+

τ∑
k=0

1
k!

[ τ∑
j=1

ci,jj
k
]


bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


.

Finally, we can re-arrange equation (20) into:

E[uXt+h+1 |Xt] = exp
[
Ah+1,0 +

τ∑
j=1

Ah+1,ju
j +O(uτ+1)

]
= exp(Ah+1,0)

τ∑
k=0

1
k!
( τ∑
j=1

Ah+1,ju
j
)k +O(uτ+1), (25)

where each Ah+1,j , j = 0...τ is linear in Xt−1:

Ah+1,j = bh+1,0,j +
p∑
i=1

bh,i,jXt−i. (26)

Thus the Taylor’s expansion of the RHS of equation (25) can be obtained by applying Proposition

1 again and the values of P[Xt+h+1 = j|Xt−1], j = 0, ...τ, are obtained by coefficient matching:



ph+1(0|Xt−1)

ph+1(1|Xt−1)

· · ·

ph+1(τ − 1|Xt−1)

ph+1(τ |Xt−1)


=

τ∑
k=0

exp(Ah+1,0)
k!



0 0 0 · · · 0

Ah+1,1 0 0 · · · 0

Ah+1,2 Ah+1,1 0 · · · 0

· · · · · · · · · · · · · · ·

Ah+1,τ Ah+1,τ−1 · · · Ah+1,1 0



k 

1

0

0

· · ·

0


. (27)

In terms of the computational effort, the Taylor’s expansions of Bh,i(u) do not depend on the

values of Xt and thus only need to be computed once in an online forecasting framework. They

necessitate only the multiplication between matrices and vectors of dimension (τ + 1), instead

of (τ + 1)p in the Markov chain approach. Thus the method is expected to be much faster than

the Markov chain approach, especially for large p. Note also that although the computation of
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the Taylor’s expansion of Bh,i is recursive, that of the h−step−ahead conditional p.m.f. does

not necessitate a recursion. That is, if one is interested in the forecasting performance at a

specific horizon H [see e.g. Chevillon (2007)], then she can use the above formula directly once

BH,i, i = 0, ..., p are obtained, without computing the conditional p.m.f. at shorter horizons.

3.2 Examples

Let us now give the explicit forecasting formula in the four examples considered in Section 2.2.

Example 9 (INARCH(p) continued.). We first consider the INARCH(p) model introduced in

Example 5. We have:

B1,0(u) = λ0(u− 1),

B1,i(u) = λi(u− 1), ∀i = 1, ..., p,

Bh+1,0(u) = B(h, 0)(u) + λ0[eBh,1(u) − 1], (28)

Bh+1,i(u) = 1i<pBh,i+1(u) + λi(eBh,1(u) − 1), ∀i = 1, ..., p. (29)

By expanding (28) and (29) at u = 0, we get:



bh+1,0,0

bh+1,0,1

· · ·

bh+1,0,τ


= 1i=0



bh,0,0

bh,0,1

· · ·

bh,0,τ


+



−λ0

0

· · ·

0


+ λ0

τ∑
k=0

1
k!



bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


,



bh+1,i,0

bh+1,i,1

· · ·

bh+1,i,τ


= 10<i<p



bh,i+1,0

bh,i+1,1

· · ·

bh,i+1,τ


+



−λi

0

· · ·

0


+

τ∑
k=0

λi
k!



bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


.

Example 10 (Poisson-INAR(p) continued). Let us now consider the Poisson-INAR(p) model
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introduced in Example 6. First, the recursion for functions Bh,i is:

B1,0(u) = λ(u− 1),

B1,i(u) = log(αiu+ 1− αi), ∀i = 1, ..., p,

Bh+1,0(u) = Bh,0(u) + λ[eBh,1(u) − 1],

Bh+1,i(u) = 1i<pBh,i+1(u) + log(αieBh,1(u) + 1− αi), ∀i = 1, ..., p.

their Taylor’s expansions at zero are:



bh+1,0,0

bh+1,0,1

· · ·

bh+1,0,τ


= 1i=0



bh,0,0

bh,0,1

· · ·

bh,0,τ


+



−λ

0

· · ·

0


+ λ

τ∑
k=0

1
k!



bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


,



bh+1,i,0

bh+1,i,1

· · ·

bh+1,i,τ


= 10<i<p



bh,i+1,0

bh,i+1,1

· · ·

bh,i+1,τ


+



log(1− αi)

0

· · ·

0


+

τ∑
k=0

1
k!

[ τ∑
j=1

(−1)j−1αji
(1− αi)j

jk−1
]


bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


.

Example 11 (NB-INAR(p) continued). Let us now give the formula in the NB-INAR(p) model

considered in Example 7. First, the recursion for functions Bh,i is:

B1,0(u) = r0 log(1− q0)− r0 log(1− q0u),

B1,i(u) = log(αiu+ 1− αi), ∀i = 1, ..., p,

Bh+1,0(u) = Bh,0(u) + r0 log(1− q0)− r0 log(1− q0e
Bh,1(u)),

Bh+1,i(u) = 1i<pBh,i+1(u) + log(αieBh,1(u) + 1− αi), ∀i = 1, ..., p.
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Their Taylor’s expansions at zero are:



bh+1,0,0

bh+1,0,1

· · ·

bh+1,0,τ


= 1i=0



bh,0,0

bh,0,1

· · ·

bh,0,τ


+



r0 log(1− q0)

0

· · ·

0


+ r0

τ∑
k=0

1
k!

τ∑
j=1

qj0j
k−1



bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0




bh+1,i,0

bh+1,i,1

· · ·

bh+1,i,τ


= 10<i<p



bh,i+1,0

bh,i+1,1

· · ·

bh,i+1,τ


+



ri log(1− qi)

0

· · ·

0



+
τ∑
k=0

1
k!

[ τ∑
j=1

(−1)j−1αji
(1− αi)j

jk−1
]


bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


.

Example 12 (NBAR(p) continued). Finally, in the Poisson-INAR(p) model, the recursion for

functions Bh,i is:

B1,0(u) = r0 log(1− q0)− r0 log(1− q0u),

B1,i(u) = ri log(1− qi)− ri log(1− qiu), ∀i = 1, ..., p,

Bh+1,0(u) = Bh,0(u) + r0 log(1− q0)− r0 log(1− q0e
Bh,1(u)),

Bh+1,i(u) = 1i<pBh,i+1(u) + log(αieBh,1(u) + 1− αi), ∀i = 1, ..., p.,

19



whereas their Taylor’s expansion at zero are:



bh+1,0,0

bh+1,0,1

· · ·

bh+1,0,τ


= 1i=0



bh,0,0

bh,0,1

· · ·

bh,0,τ


+



r0 log(1− q0)

0

· · ·

0


+ r0

τ∑
k=0

1
k!

τ∑
j=1

qj0j
k−1



bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0




bh+1,i,0

bh+1,i,1

· · ·

bh+1,i,τ


= 10<i<p



bh,i+1,0

bh,i+1,1

· · ·

bh,i+1,τ


+



ri log(1− qi)

0

· · ·

0


+

τ∑
k=0

1
k!

[ τ∑
j=1

riq
j
i j
k−1
]


bh,i,0 0 · · · 0

bh,i,1 bh,i,0 · · · 0

· · · · · · · · · · · ·

bh,i,τ bh,i,τ−1 · · · bh,i,0



k 

1

0

· · ·

0


.

Finally, the conditional p.m.f. at horizon h is given by equation (27) with the same definition of

coefficients Ah+1,0 as in (26).

3.3 The case of some infinite order models

Although our paper is mainly interested in models with finite order p, it can be straightforwardly

extended to some infinite order, GARCH-type models. For instance, the Poisson-INGARCH(1,1)

model of Ferland et al. (2006) postulates that:

Xt|Xt−1 ∼ P(λt), where λt = ρλt−1 + λ0 + aXt−1, (30)

with a > 0, λ0 > 0 and ρ ∈ [0, 1[. This model can be viewed as an infinite extension of model

(3), since by the infinite divisibility of the Poisson distribution, we have the representation:

Xt =
∞∑
i=1

Zi ∗Xt−i + εt (31)

where Zi, i = 1, ... and εt follow Poisson distributions with parameters aρi−1 and λ0
1−ρ , respec-

tively.

The above example can be extended by replacing the Poisson distribution by some other

infinitely divisible distributions [see discussions in Gonçalves et al. (2015)]. For instance, Xu
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et al. (2012) define a NB-INGARCH(1,1) process by:

Xt|Xt−1 ∼ NB(rt, q), where rt = ρrt−1 + r0 + aXt−1, (32)

and this process still has the infinite thinning representation (31) with Zi and εt following

NB(aρi−1, q) and NB( r0
1−ρ , q) distributions, respectively. Note that this definition is different

from that given by Zhu (2011), which assumes instead that the conditional negative binomial

distribution has a fixed degree of freedom parameter r but a time-varying probability parameter

qt. In particular, Zhu’s model does not admit the thinning representation and its multi-step

ahead conditional distribution is unknown.

The advantage of models of type (30) and (32) is that the one-step-ahead conditional distri-

bution is tractable. Nevertheless, for horizon h ≥ 2, the predictive distribution is (up to now)

unknown. Let us now explain how the approach developed in our paper can be adapted to these

models.

A first, universal solution to tackle infinite order models is to approximate an infinite order

model by a finite order one, by truncating the summation in (31) at a large, deterministic order

p [see Kirchner (2016) for a formal discussion of the Poisson-INGARCH(1,1) case]. Since the

computational cost of our approach is rather insensitive to the lag p, this method would provide

an excellent approximation, especially when the number of observations is relatively small and the

infinite order model should anyway be truncated for estimation. The advantage of this method is

that it also applies to any other infinite order thinning-based models with, for instance, Bernoulli

distributed variables Zi, for which the one-step-ahead conditional p.m.f. need not necessarily be

simple [this has motivated the assumption of Poisson distribution on Zi’s in Kirchner (2016)].

However, given the popularity of INGARCH type models in the applied literature, it seems

beneficial if an exact forecasting method could be derived. This is indeed the case and is due

to the property that in both models (30) and (32), the augmented process (Xt, λt) is first-order

Markov. As a consequence, for the Poisson-INGARCH(1,1) model, say, we have the following

analogy of Proposition 2:

Proposition 4. In the Poisson-INGARCH(1,1) model defined by (30), the multi-step-ahead
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conditional p.g.f. is:

E[uXt+h−1 |Xt−1] = exp
[
Bh,1(u)λt +Bh,0(u)

]
, ∀h ≥ 1, (33)

with B1,1(u) = u− 1, B1,0(u) = 0, (34)

Bh+1,1(u) = eaBh,1(u) − 1 + ρBh,1(u), (35)

Bh+1,0(u) = Bh,1(u)λ0 +Bh,0(u), ∀h ≥ 0. (36)

Proof. See Appendix 4.

Using this lemma, we can mimic the procedure described in Section 3.1 to obtain recursively

the Taylor’s expansion of Bh,1(u) and Bh,0(u) at zero, and then expand the exponential function

to recover the exact value of the h−step−ahead conditional p.m.f. Since the conditional p.g.f.

given Xt−1 is completely characterized by λt, the resulting computational cost is comparable to

model (3) with p = 1.

Finally, Proposition 4 can also be adapted to the NB-INGARCH(1,1) model (32). Due to

space constraint this analysis is relegated to Appendix 5.

4 Comparison with existing methods using simulated data

4.1 Likelihood function

To illustrate the computational gain, we first implement the conditional likelihood function, that

is the likelihood function given the first p initial values of the process, using both our method

and the direct application of (4). We consider a Poisson-INAR(2) model, whose parameters and

initial values are fixed as:

α1 = 0.2, α2 = 0.2, λ ∈ {1, 5, 10}, X1 = X2 = 1, (37)

as well as a Poisson-INAR(5) model with parameters and initial values set as:

α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 = 0.1, α5 = 0.1, λ ∈ {1, 5, 10}, X1 = · · · = X5 = 1. (38)
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In other words, in either of the two cases where p = 2 and p = 5, we simulate three models

who differ only in terms of the value of λ. This will allow us to investigate how our algorithm

performs when the average value of the observations becomes larger. For each of the simulated

processes, the sample size is set to T = 500. For illustration purpose, Figure 1 reports the

empirical marginal p.m.f.’s of the two INAR(2) processes. As we can see, when λ = 1, the whole

process takes small values (at most 6), whereas when λ = 10, we can observe a large proportion

of “large” counts.
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Figure 1: Empirical marginal p.m.f. of the simulated INAR(2) process with λ = 1 (left panel)
and λ = 10 process (right panel).

Then we compute the likelihood function using our method to compare its speed with respect

to the brute force convolution. For the latter approach we have adopted the recursive algorithm

suggested by Bu et al. (2008), Thm 1. Both algorithms are implemented in R using the same

laptop (intel i5, 3.0 GHz, 8GB RAM) and the program is available from the author upon request.

Table 1 compares their respective CPU time. Note that we do not compare the likelihood values,

since both methods provide the same, exact likelihood.
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Value of p p = 2 p = 5
Value of λ λ = 1 λ = 5 λ = 10 λ = 1 λ = 5 λ = 10

Simulated empirical mean 1.59 7.9 16.5 2.28 12.3 19.6
Simulated empirical variance 1.72 7.8 17.9 2.44 14.0 25.6

CPU of our method 0.006 s 0.015 s 0.033 s 0.007 s 0.02 s 0.05 s
CPU of convolution method 0.008 s 0.016 s 0.031 s 0.02 s 0.06s 0.11 s

Table 1: CPU time of the two methods for different values of p and λ. The time unit is second.

When order p is small (i.e. p = 2), both methods are roughly equivalent and sufficiently fast.

When p increases to 5, however, our method becomes more competitive. Indeed, its CPU time

remains nearly unchanged, whereas the CPU of the direct method is increasing in n. As for

the impact of λ (and hence the impact of the expectation of the process) on the CPU time, we

can see that for both methods, when λ increases, the computation time increases. Nevertheless

the speed of increase is (slightly) faster for our method than for the convolution method. An

intuitive explanation of these comparison results is as follows. In Section 2, we have shown

that computing the conditional p.m.f. `(Xt|Xt−1) involves a complexity of O( 1
2X

3
t ) using our

method, or, roughly speaking, O( 1
2λ

3). On the other hand, Bu et al. (2008)’s method involves

the convolution of α1 ◦ Xt−1, ..., αp ◦ Xt−p, and εt, by a p−step recursion. Each step involves

the convolution of two integer-valued variables for O(X2
t ) operations. Hence Bu et al. (2008)’s

method has a complexity of O(pX2
t ), or roughly O(pλ2). Thus when λ is fixed and p goes

to infinity, our method becomes dominant; whereas when p is fixed but λ goes to infinity, the

method of Bu et al. (2008) is more suitable. Note, however, that since count time series models

are specifically designed for low counts, the case where λ is very large is somehow scarce and in

that case, we might just as well approximate the count time series by a continuously valued time

series and use standard continuous time series models.

4.2 Multi-step forecasting

We now illustrate how our method fares against the Markov chain approach of McCabe et al.

(2011) and the Monte-Carlo approach [Jung and Tremayne (2006); Bisaglia and Canale (2016) in

terms of both the computational time and precision, when it comes to higher-horizon forecasting.

To this end we use the simulated processes (37). Given observations up to time T , we will compute
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the conditional distribution of XT+1, ..., and XT+h given XT .

Clearly, the quality of approximation of the Markov chain approach depends on the choice of

the threshold τ . In the following we consider three such values: τ ∈ {6, 10, 20}. As a comparison,

by looking at the empirical p.m.f.’s of Figure 1, we can see that the probability that either of the

two processes takes values larger than 6 is quite low.

Similarly, by the law of large numbers, the larger the number of replications N in the Monte-

Carlo approach, the smaller the difference between the exact predictive distributions and their

Monte-Carlo approximations. Thus we will consider three values of N , that are 5000, which is the

number recommended by Jung and Tremayne (2006), as well as N = 50000 and N = 5000000.

Table 2 reports the CPU time and the conditional p.m.f.’s at horizons h = 1, 5 and 10 obtained

from the three methods, given observations up to time T of the INAR(2) process, with λ = 1.

Method Taylor’s expansion, τ = 6 Markov chain, τ = 6 Monte-Carlo, N = 5000
CPU time 0.003 s 0.008 s 0.6 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.235 0.198 0.193 0.236 0.198 0.193 0.231 0.210 0.200
ph(1|XT ) 0.353 0.317 0.315 0.353 0.317 0.314 0.352 0.312 0.314
ph(2|XT ) 0.250 0.258 0.259 0.25 0.258 0.259 0.258 0.255 0.248
ph(6|XT ) 0.002 0.006 0.006 0.002 0.006 0.006 0.002 0.005 0.007

Method Taylor’s expansion, τ = 10 Markov chain, τ = 10 Monte-Carlo, N = 50000
CPU time 0.005 s 0.06 s 6 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.235 0.198 0.193 0.235 0.198 0.193 0.232 0.199 0.191
ph(1|XT ) 0.353 0.317 0.314 0.353 0.317 0.314 0.356 0.321 0.314
ph(2|XT ) 0.250 0.258 0.259 0.250 0.261 0.271 0.249 0.259 0.264
ph(6|XT ) 0.002 0.006 0.006 0.002 0.006 0.006 0.002 0.006 0.006

Method Taylor’s expansion, τ = 20 Markov chain, τ = 20 Monte-Carlo, N = 500000
CPU time 0.005 s 1.2 s 60 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.235 0.198 0.193 0.235 0.198 0.193 0.232 0.199 0.191
ph(1|XT ) 0.353 0.317 0.314 0.353 0.317 0.314 0.356 0.321 0.314
ph(2|XT ) 0.250 0.258 0.259 0.250 0.258 0.259 0.253 0.257 0.257
ph(6|XT ) 0.002 0.006 0.006 0.002 0.006 0.006 0.002 0.006 0.006

Table 2: Conditional p.m.f. at different horizons obtained by different methods for the Poisson-
INAR(2) model. For expository purpose we only report their values at points 0, 1, 2, and 6.

The CPU times correspond to the calculation of ph(k|Xt) for all horizons h = 1, 2, ..., 20 and

all arguments k = 0, ..., τ . The Monte-Carlo approach is computationally the most intensive,with
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a CPU time that is roughly proportional to the number of draws. Our approach, on the other

hand, is the quickest, with a computational time that is slowly increasing in τ . As for the Markov

chain approach, its CPU time is small when τ = 6, but increases quite significantly in τ . Indeed,

the Markov chain approach requires the computation of a matrix of dimension (τ+1)p×(τ+1)p,

whose computational cost is quadratic in τ for p = 2. Note that in this comparison, we have

fixed the values of the parameters. In practice, it might also be preferable to take into account

the uncertainty of the parameter forecast. In other words, if the simulation approach is used, one

should first draw a large number of possible values of the parameter; then for each parameter

value, a large number of draws of future path of the process are drawn. As a consequence, the

computational cost would be even much larger than the 6 seconds reported in the table.

Let us now compare the p.m.f.’s obtained from the three approaches. As expected, for different

values of τ , our method produces the same conditional p.m.f. at various horizons. For the Monte-

Carlo approach, as N increases, the simulated conditional p.m.f.’s become closer and closer to the

results obtained by our method, and for N = 5000000, both approaches provide roughly the same

results. Finally, the p.m.f.’s obtained by the Markov chain approach are nearly (resp. exactly,

up to a precision of 3 decimal places) the same as the Taylor’s expansion. This is expected, since

as τ increases, the quality of approximation in the Markov chain approach becomes better and

better. Overall, in terms of precision, the Taylor’s expansion and the Markov chain approaches

strongly dominate the Monte-Carlo approach.

Next, let us illustrate that the advantage of our approach still exists for other thinning-type

models satisfying (3). To this end we report a similar experiment for a NBAR(2) process. For

illustration we assume that Z1, Z2 and εt in equation (3) all follow a special NB distribution: the

geometric distribution, which has a degree of freedom parameter r = 1. Their probability pa-

rameters q1, q2 are set such that their respective expectations match the corresponding Bernoulli

and Poisson parameters in equation (2), that is:

q1

1− q1
= q2

1− q2
= 0.2.

This makes the marginal mean of this NBAR(2) process to be the same as the above Poisson-

INAR(2) process (and equal to E[εt]
1−E[Z1]−E[Z2] under the stationarity condition E[Z1]+E[Z2] < 1),
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hence facilitating the comparison between the two tables. The p.m.f.’s are reported in Table 3

and the conclusions we can draw are similar as for Table 2 and are thus omitted.

Method Taylor’s expansion, τ = 6 Markov chain, τ = 6 Monte-Carlo, N = 5000
CPU time 0.003 s 0.008 s 0.6 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.379 0.344 0.339 0.379 0.344 0.339 0.375 0.357 0.332
ph(1|XT ) 0.265 0.250 0.250 0.265 0.250 0.250 0.270 0.247 0.260
ph(2|XT ) 0.159 0.162 0.163 0.159 0.162 0.163 0.163 0.162 0.158
ph(6|XT ) 0.014 0.020 0.021 0.014 0.020 0.021 0.015 0.020 0.019

Method Taylor’s expansion, τ = 10 Markov chain, τ = 10 Monte-Carlo, N = 50000
CPU time 0.005 s 0.06 s 0.6 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.379 0.344 0.339 0.379 0.344 0.339 0.378 0.343 0.340
ph(1|XT ) 0.265 0.250 0.250 0.265 0.250 0.250 0.263 0.252 0.246
ph(2|XT ) 0.159 0.162 0.163 0.159 0.162 0.163 0.160 0.161 0.167
ph(6|XT ) 0.014 0.020 0.021 0.014 0.020 0.021 0.014 0.021 0.020

Method Taylor’s expansion, τ = 20 Markov chain, τ = 20 Monte-Carlo, N = 500000
CPU time 0.005 s 1.2 s 60 s
horizon h h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ph(0|XT ) 0.379 0.344 0.339 0.379 0.344 0.339 0.38 0.344 0.340
ph(1|XT ) 0.265 0.250 0.250 0.265 0.250 0.250 0.265 0.250 0.250
ph(2|XT ) 0.159 0.162 0.163 0.159 0.162 0.163 0.159 0.163 0.163
ph(6|XT ) 0.014 0.020 0.021 0.014 0.020 0.021 0.015 0.020 0.021

Table 3: Conditional p.m.f. at different horizons obtained by different methods for the NBAR(2)
model. For expository purpose we only report their values at points 0, 1, 2, and 6.

In the next exercise, we compare the computational cost of forecasting up to horizon 20

using different approaches, when we increase progressively the lag p of the Poisson-INAR(p)

model, from p = 2 to 5. The individual models are obtained recursively and backwardly from the

INAR(5), by dropping each time the last term in equation (3), while keeping the other parameters

unchanged. We have not reported the comparison of the precision of the p.m.f.’s, as these results

are rather similar across different values of p.

Method Taylor’s expansion Markov chain Monte-Carlo, N = 50000
τ = 6 τ = 10 τ = 20 τ = 6 τ = 10 τ = 20 N = 5000 N = 50000 N = 500000

p = 2 0.003 0.005 0.006 0.008 0.06 1.2 0.6 6 60
p = 3 0.004 0.006 0.006 0.20 0.4 5.2 0.8 9 58
p = 4 0.004 0.006 0.006 6.0 50 NA 0.11 10 90
p = 5 0.004 0.006 0.007 180 NA NA 0.13 12 116

Table 4: CPU time for forecasting in a Poisson-INAR(5) model, using different approaches.
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We can see that for the Markov chain approach, the CPU time is often missing when τ and p

are large, indicating a failure of the computer program in these cases. This is mainly due to the

necessity to compute a matrix of dimension (τ + 1)p × (τ + 1)p. For instance, if p = 5, τ = 10,

the algorithm requires a flash memory of 25GB, which exceeds the capacity of a standard PC.

As a consequence, while for small values of p, the Markov chain approach is an acceptable (but

more costly and less precise) alternative to our approach, it becomes infeasible for higher-order

models.

To conclude this section, Table 5 summarizes the above comparison in terms of three major

criteria. We can see that our method combines the strength of its two competitors, while at the

same time mitigating their downsides.

Method Taylor’s expansion Markov chain Monte-Carlo
Computation accuracy Very High High Low

Sensitivity of CPU time w.r.t. threshold τ Low Very High NA
Sensitivity of CPU time w.r.t. lag p Low Very High High

Table 5: Comparison of the three approaches in terms of three major criteria. The sensitivity
concerns the computational cost for forecasting.

Finally, note that while for expository purpose we have limited our comparison to models with

order p non larger than 5, there is little doubt that for larger p, the advantage of our method

becomes more and more important.

5 Conclusion

We have solved the open computational difficulty concerning the predictive distributions in

thinning-based, higher-order count processes models. This family is quite large and includes,

among others, Poisson-INARCH(p), Poisson-INAR(p), NB-INAR(p), NBAR(p), as well as some

infinite order models such as Poisson-INGARCH(1,1). Existing methods usually suffer from one

or several of the following downsides, such as:

• introducing significant approximation errors [see e.g. Pedeli et al. (2015)]

• being time consuming [see e.g. McCabe et al. (2011); Jung and Tremayne (2006)]

• being specific to the one-step-ahead predictive distribution [see Bu et al. (2008)]
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• being specific to INAR(p) models [see Pedeli et al. (2015)]

Our approach is exact, generically faster than competing methods as demonstrated by simula-

tions, and is unified in the sense that it can be used for forecasting at any horizons, for a large

family of models. Our method is based on i) the simple relationship between the p.g.f. and

p.m.f. for a count distribution; ii) the CaR property of these processes. Because of its reduced

computational cost and wide applicability, our method significantly facilitates the practical im-

plementation of many of these higher-order models.

Finally, is it possible to extend the result of this paper to bivariate count processes? Recently

Darolles et al. (2019) show that for a specific bivariate extension of the INAR(p) models, this

is indeed the case. However a systematic treatment of this question requires substantially more

investigation and is left for future research.
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Appendix 1: Proof of Proposition 2

Let us proceed by induction. The case where h = 1 is a direct consequence of Equation (5).

Assume that (20) holds for a certain horizon h, then:

E[uXt+h |Xt−1] = E
[
E[uXt+h |Xt] | Xt−1

]
= E[exp

[
Bh,0(u) +

p∑
i=1

Bh,i(u)Xt+1−i

]
|Xt−1]

= exp
[
Bh,0(u) +

p∑
i=2

Bh,i(u)Xt+1−i

]
E
[

exp
(
Bh,1(u)Xt

)
|Xt−1

]
(39)

= exp
[
Bh,0(u) +

p∑
i=2

Bh,i(u)Xt+1−i + g0(eBh,1(u)) +
p∑
i=1

gi(eBh,1(u))
]
.

Thus (20) holds for any h.

Appendix 2: Proof of Proposition 3

We have:

Bh+1,0(u) = Bh,0(u) + c0,0 +
τ∑
j=1

c0,je
jBh,1(u) +O(uτ+1)

= Bh,0(u) + c0,0 +
τ∑
j=1

c0,j

τ∑
k=0

Bkh,1(u)jk

k! +O(uτ+1)

= Bh,0(u) + c0,0 +
τ∑
k=0

Bkh,1(u)
k!

τ∑
j=1

c0,jj
k +O(uτ+1),
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and the proof of the second equality for Bh+1,i(u) is similar and omitted.

Appendix 3: Expanding the log p.g.f. using the p.m.f.

In this section we discuss how the Taylor’s expansion of the log p.g.f. can be obtained from the

p.m.f. We have:

log
(
E[uX ]

)
= log

[
p0 + p1u+ p2u

2 + · · ·+ pτu
τ +O(uτ+1)

]
= log p0 + log

[
1 + p1

p0
u+ p2

p0
u2 + · · ·+ pτ

p0
uτ +O(uτ+1)

]
= log p0 +

n∑
k=1

(−1)k

k

[p1

p0
u+ p2

p0
u2 + · · ·+ pτ

p0
uτ
]k

+O(uτ+1), (40)

for a fixed integer n. Thus by applying Proposition 1, the vector of the first n+ 1 coefficients of

the Taylor’s expansion of log
(
E[uX ]

)
are equal to:



log p0

0

· · ·

0

0


+

τ∑
k=1

(−1)k

k



0 0 0 · · · 0
p1
p0

0 0 · · · 0
p2
p0

p1
p0

0 · · · 0

· · · · · · · · · · · · · · ·
pτ
p0

pτ−1
p0

· · · p1
p0

0



k 

1

0

0

· · ·

0


.

Remark 1. Clearly, the above series expansion requires p0 = P[X = 0] to be non zero. Let us

discuss the case where this condition is not satisfied by either Zi or εt in model (3).

• If either of the Zi’s is such that Zi ≥ 1 almost surely, then we have: Xt+1 ≥ Xt almost

surely for each t, with a nonzero probability that the inequality holds strictly. Thus the

process is explosive, nonstationary. This is out of the scope of the present paper.

• If the distribution of εt is such that P[εt = 0] = · · · = P[εt = K − 1] = 0 and P[εt = K] > 0,

then any random variable following this distribution admits the stochastic representation:

X = K +Z, where Z is again a nonnegative count variable. Thus in this case it suffices to

consider the process (Zt) = (Xt) −K instead of the initial process (Xt). Then the above
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algorithm continues to be applicable.

Appendix 4: Proof of Proposition 4

We proceed by induction. The initial condition h = 1 is obvious. Let us assume that equations

(35) and (36) are satisfied for a certain h ≥ 1. Then we have:

E[uXt+h |Xt−1] = E
[
E[uXt+h |Xt] | Xt−1

]
= E

[
eBh,1(u)λt+1+Bh,0(u) | Xt−1

]
= E

[
eBh,1(u)[ρλt+λ0+aXt]+Bh,0(u) | Xt−1

]
= eρBh,1(u)λt+Bh,1(u)λ0+Bh,0(u)E[(eaBh,1(u))Xt | Xt−1]

= eρBh,1(u)λt+Bh,1(u)λ0+Bh,0(u)+λt(eaBh,1(u)−1).

Hence (35) and (36) are also satisfied for h+ 1.

Appendix 5: The predictive distribution in NB-INGARCH(1,1)

model

In this section we establish the analogue of Proposition 4 for NB-INGARCH(1,1) model defined

by (32). We have:

Proposition 5. In the NB-INGARCH(1,1) model defined by (32), the multi-step-ahead condi-

tional p.g.f. is:

E[uXt+h−1 |Xt−1] = exp
[
Bh,1(u)λt +Bh,0(u)

]
, ∀h ≥ 1,

with B1,1(u) = log( 1− q
1− qu ), B1,0(u) = 0,

Bh+1,1(u) = log( 1− q
1− qeaBh,1(u) ) + ρBh,1(u),

Bh+1,0(u) = Bh,1(u)λ0 +Bh,0(u), ∀h ≥ 0.
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The proof (by induction) is similar to the proof of Proposition 4 and is thus omitted.

36


