Love and death: A Freund model with frailty

Christian Gouriéroux, Yang Lu

To cite this version:

Christian Gouriéroux, Yang Lu. Love and death: A Freund model with frailty. Insurance: Mathematics and Economics, 2015, 63, pp.191-203. 10.1016/j.insmatheco.2015.03.016 . hal-02419013

HAL Id: hal-02419013

https://hal.science/hal-02419013

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Love and Death : A Freund Model with Frailty

Christian Gourieroux*, Yang Lu**

Abstract

We introduce new models for analyzing the mortality dependence between individuals in a couple. The mortality risk dependence is usually taken into account in the actuarial literature by introducing special copulas with continuous density. This practice implies symmetric effects on the remaining lifetime of the surviving spouse. The new model allows for both asymmetric reactions by means of a Freund model, and risk dependence by means of an unobservable common risk factor (or frailty). These models allow for distinguishing in the lifetime dependence the component due to common lifetime (frailty) from the jump in mortality intensity upon death of spouse (Freund model). The model is applied to the pricing of insurance products such as joint life policy, last survivor insurance, or contracts with reversionary annuities. A discussion of identification is also provided.

Keywords: Life Insurance, Coupled Lives, Frailty, Freund Model, Broken-Heart, Copula, Last Survivor Insurance, Competing Risks.

1. Introduction

This paper introduces new models for analyzing the mortality dependence between individuals in a couple. This type of model is needed for risk management and pricing of life insurance products written on two lives, such as joint life policy, last survivor insurance policy, or contract with reversionary annuities.

The basic actuarial literature usually assumed the independence between the spouses' mortality risks. Recently the mortality risk dependence has been introduced by means of copulas [see e.g. Frees et al. (1996), Youn and Shemyakin (1999), Carriere (2000), Denuit et al. (2001), Shemyakin and Youn (2006), Luciano et al. (2008), Luciano et al. (2010)], and the effect of this dependence on the risk premia starts to be measured. However, standard copula models assume

[^0]continuous copula densities. This implies symmetric reactions of the mortality of a member of the couple when the other dies. An alternative consists in introducing jumps in mortality intensity (the Freund model) at the time of death of the spouse, to capture the death of a spouse [see e.g. Spreeuw and Wang (2008), Ji et al. (2011), Spreeuw and Owadally (2013)]. Our paper extends this literature by mixing the Freund model, which allows for asymmetric reactions of the mortality intensities at a death event, with unobservable common factor (or frailty), which underlies many usual Archimedean copulas ${ }^{1}$.

The basic Freund model and its properties in terms of conditional intensities are presented in Section 2. This model allows for jump in the mortality intensity of a given spouse when the other spouse dies. The magnitude of this jump and its variation with respect to the age of the couple is the basis for constructing a convenient association measure, useful to analyze the broken-heart syndrome. The Freund model is extended in Section 3 to include common unobserved static frailty. In particular we discuss the properties of Freund models with latent intensities which are exponential affine functions of the frailty. These models are used in Section 4 to derive the prices of various contracts written on two lives. We consider these prices at the inception of the contract as well as during its lifetime. We emphasize the effect of the dependence between the mortality risks of the two spouses on these prices. Section 5 concludes. Proofs are gathered in appendices and a discussion on the identification issues is provided in Appendix 4 .

2. The basic Freund model

This type of model has been introduced by Freund (1961) to construct bivariate survival models for dependent duration variables, while still featuring the lack of memory property. It has been noted by Tosch and Holmes (1980) that such models have an interpretation in terms of latent variables. We follow this interpretation. The model is written for a given couple, without specifying the index of the couple and possibly its observed characteristics such as the birth dates of the spouses, the difference between their ages Youn and Shemyakin (1999)], or their age at the time of their marriage or common law relationship. In the application, such static couple characteristics will be introduced to capture the generation effects. The analysis is in continuous time and the lifetime variables are continuous variables.

2.1. The latent model

Let us consider a given couple with two spouses 1 and 2 . The potential lifetimes of individuals 1 and 2, when both are alive, are denoted by X_{1} and X_{2}, respectively.

[^1]To get a unique time origin for the two members of the couple, these latent lifetimes are measured since the beginning of the common life. A first individual in the couple dies at date $\min \left(X_{1}, X_{2}\right)$. He/she is individual 1 (resp. individual 2), if $\min \left(X_{1}, X_{2}\right)=X_{1}\left[\right.$ resp. $\left.\min \left(X_{1}, X_{2}\right)=X_{2}\right]$. After this event, there can be a change in the potential residual lifetime distribution of the surviving individual. The potential residual lifetime of individual 1 (resp. individual 2) after the death of individual 2 (resp. individual 1) is denoted by X_{3} (resp. X_{4}).

The joint distribution of the four latent variables is characterized by
i) the joint survival function of $\left(X_{1}, X_{2}\right)$:

$$
\begin{equation*}
S_{12}\left(x_{1}, x_{2}\right)=\mathbb{P}\left[X_{1}>x_{1}, X_{2}>x_{2}\right] ; \tag{2.1}
\end{equation*}
$$

ii) the survival function of X_{3} given $X_{2}=\min \left(X_{1}, X_{2}\right)=z$:

$$
\begin{equation*}
S_{3}\left(x_{3} ; z\right)=\mathbb{P}\left[X_{3}>x_{3} \mid X_{2}=\min \left(X_{1}, X_{2}\right)=z\right] . \tag{2.2}
\end{equation*}
$$

iii) The survival function of X_{4} given $X_{1}=\min \left(X_{1}, X_{2}\right)=z$:

$$
\begin{equation*}
S_{4}\left(x_{4} ; z\right)=\mathbb{P}\left[X_{4}>x_{4} \mid X_{1}=\min \left(X_{1}, X_{2}\right)=z\right] . \tag{2.3}
\end{equation*}
$$

These three joint and conditional survival functions, defined on $(0, \infty)$, characterize the latent model for the analysis of the mortality in the couple. In this model there exist at least three generation effects corresponding to the generations of each spouse, and to the generation of the couple, respectively.

2.2. Individual lifetimes

2.2.1. Link between the individual lifetimes and the latent variables

The lifetimes of individuals 1 and 2 (since the beginning of the common life) are denoted by Y_{1} and Y_{2}. They can be expressed in terms of the latent variables as :

$$
\left\{\begin{array}{l}
Y_{1}=X_{1} \mathbb{1}_{X_{1}<X_{2}}+\left(X_{2}+X_{3}\right) \mathbb{1}_{X_{2}<X_{1}}=\min \left(X_{1}, X_{2}\right)+X_{3} \mathbb{1}_{X_{2}<X_{1}}, \tag{2.4}\\
Y_{2}=X_{2} \mathbb{1}_{X_{2}<X_{1}}+\left(X_{1}+X_{4}\right) \mathbb{1}_{X_{1}<X_{2}}=\min \left(X_{1}, X_{2}\right)+X_{4} \mathbb{1}_{X_{1}<X_{2}} .
\end{array}\right.
$$

This system can be partially solved. First, the X_{1}, X_{2} variables are related to variables $\left(Y_{1}, Y_{2}\right)$:

$$
\min \left(Y_{1}, Y_{2}\right)=\min \left(X_{1}, X_{2}\right), \text { and } Y_{1}>Y_{2}, \text { if and only if } X_{1}>X_{2} .
$$

Then the variables X_{3} and X_{4} can be deduced in some regimes ${ }^{2}$ since :

$$
X_{3} \mathbb{1}_{Y_{2}<Y_{1}}=Y_{1}-\min \left(Y_{1}, Y_{2}\right) \text { and } X_{4} \mathbb{1}_{Y_{1}<Y_{2}}=Y_{2}-\min \left(Y_{1}, Y_{2}\right) .
$$

As noted in Norberg (1989), the observed model can be interpreted in terms of a chain with four possible states $\left\{^{3}\right.$, that are:

- state 1: both spouses are alive,
- state 2: husband dead, wife alive,
- state 3: husband alive, wife dead,
- state 4: both spouses are dead,
and transitions can only arise between states 1 and 2,1 and 3,2 and 4 , and 3 and 4. Since the mortality intensity of a spouse can depend not only on the current state, but potentially on the time elapsed since the death of the other spouse, we get an example of a semi-Markov chain.

2.2.2. The joint density function and its decomposition

The joint probability density function (pdf) of $\left(Y_{1}, Y_{2}\right)$ is easily derived from the distribution of the latent variables. We have (see Appendix 1) :

$$
\begin{align*}
f\left(y_{1}, y_{2}\right) & =\left[-\frac{\partial S_{12}}{\partial x_{1}}\left(y_{1}, y_{1}\right)\right]\left[-\frac{\partial S_{4}}{\partial x_{4}}\left(y_{2}-y_{1} ; y_{1}\right)\right], \text { if } y_{2}>y_{1} \tag{2.5}\\
& =\left[-\frac{\partial S_{12}}{\partial x_{2}}\left(y_{2}, y_{2}\right)\right]\left[-\frac{\partial S_{3}}{\partial x_{3}}\left(y_{1}-y_{2} ; y_{2}\right)\right], \text { if } y_{1}>y_{2}
\end{align*}
$$

Therefore, the joint density function can feature a discontinuity when $y_{1}=y_{2}$.
Let us consider the case $y_{2}>y_{1}$. The density can also be written as:

$$
\begin{equation*}
f\left(y_{1}, y_{2}\right)=-\frac{\partial S^{*}}{\partial y}\left(y_{1}\right)\left[\frac{\partial S_{12}}{\partial x_{1}}\left(y_{1}, y_{1}\right) / \frac{\partial S^{*}}{\partial y}\left(y_{1}\right)\right]\left[-\frac{\partial S_{4}}{\partial x_{4}}\left(y_{2}-y_{1} ; y_{1}\right)\right], \tag{2.6}
\end{equation*}
$$

where $S^{*}(y)=S_{12}(y, y)$ is the survival function of $\min \left(X_{1}, X_{2}\right)$ and

[^2]$\frac{\partial S^{*}}{\partial y}(y)=\frac{\partial S_{12}}{\partial x_{1}}(y, y)+\frac{\partial S_{12}}{\partial x_{2}}(y, y)$. Thus, the decomposition of the bivariate density involves three components :
i) $\left[-\frac{\partial S^{*}}{\partial y}\left(y_{1}\right)\right]$ is the density of the first death event;
ii) the ratio $\left[\frac{\partial S_{12}}{\partial x_{1}}\left(y_{1}, y_{1}\right) / \frac{\partial S^{*}}{\partial y}\left(y_{1}\right)\right]$ is the probability that individual 1 dies at this first death event. It is equal to :
$$
\mathbb{P}\left[Y_{1}<Y_{2} \mid \min \left(Y_{1}, Y_{2}\right)=y_{1}\right],
$$
iii) $\left[-\frac{\partial S_{4}}{\partial x_{4}}\left(y_{2}-y_{1} ; y_{1}\right)\right]$ is the density of the residual lifetime after this event.

2.2.3. Individual mortality intensities

Let us now derive the individual mortality intensities given the current information concerning the couple. Their expressions depend on the state either alive, or dead, of the other spouse.
i) Let us first consider a date y at which both individuals are still alive, that is, such that $Y_{1} \geq y, Y_{2} \geq y$. The mortality intensity of individual 1 is defined by :

$$
\begin{align*}
\lambda_{1}\left(y \mid Y_{1} \geq y, Y_{2} \geq y\right) & =\lim _{d y \rightarrow 0^{+}}\left\{\frac{1}{d y} P\left[y \leq Y_{1} \leq y+d y \mid Y_{1} \geq y, Y_{2} \geq y\right]\right\} \\
& =\int_{y}^{\infty} f\left(y, y_{2}\right) d y_{2} / S^{*}(y) \tag{2.7}
\end{align*}
$$

After replacing the bivariate density by its expression (2.5) for $y_{2}>y_{1}$ and computing the integral, we get :

$$
\begin{equation*}
\lambda_{1}\left(y \mid Y_{1} \geq y, Y_{2} \geq y\right)=\left[-\frac{\partial S_{12}}{\partial x_{1}}(y, y)\right] / S^{*}(y) \tag{2.8}
\end{equation*}
$$

This is the crude intensity function of individual 1 involved in the decomposition of the joint density function.

Similarly, we have :

$$
\begin{align*}
\lambda_{2}\left(y \mid Y_{1} \geq y, Y_{2} \geq y\right) & =\lim _{d y \rightarrow 0^{+}}\left(\frac{1}{d y} P\left[y \leq Y_{2} \leq y+d y \mid Y_{1} \geq y, Y_{2} \geq y\right]\right) \\
& =\int_{y}^{\infty} f\left(y_{1}, y\right) d y_{1} / S^{*}(y) \tag{2.9}\\
& =\left[-\frac{\partial S_{12}}{\partial x_{2}}(y, y)\right] / S^{*}(y)
\end{align*}
$$

ii) The expression of the mortality intensities can change if one of the individual dies exactly at date y. The mortality intensity of individual 1 at date y, if individual 2 dies at date y, becomes:

$$
\begin{align*}
& \lambda_{1 \mid 2}\left(y \mid Y_{1} \geq y, Y_{2}=y\right) \\
= & \lim _{d y \rightarrow 0^{+}}\left[\frac{1}{d y} P\left(y<Y_{1} \leq y+d y \mid Y_{1} \geq y, Y_{2}=y\right)\right] \\
= & {[f(y, y)] /\left[-\frac{\partial S_{12}}{\partial x_{2}}(y, y)\right] } \\
= & -\frac{\partial S_{3}}{\partial x_{3}}(0, y) \tag{2.10}
\end{align*}
$$

by applying the expression of the joint density (2.5) with $y_{1}=y_{2}=y$.
Similarly, we get :

$$
\begin{align*}
& \lambda_{2 \mid 1}\left(y \mid Y_{1}=y, Y_{2} \geq y\right) \\
= & \lim _{d y \rightarrow 0^{+}}\left\{\frac{1}{d y} P\left[y \leq Y_{2} \leq y+d y \mid Y_{1}=y, Y_{2} \geq y\right]\right\} \\
= & -\frac{\partial S_{4}}{\partial x_{4}}(0, y) \tag{2.11}
\end{align*}
$$

Note that $S_{3}(0, y)=S_{4}(0, y)=1$. Therefore we also have :

$$
\begin{aligned}
& \lambda_{1 \mid 2}\left(y \mid Y_{1} \geq y, Y_{2}=y\right) \quad=-\frac{\partial \log S_{3}}{\partial x_{3}}(0, y), \\
& \text { and } \lambda_{2 \mid 1}\left(y \mid Y_{1}=y, Y_{2} \geq y\right)=\frac{-\partial \log _{4} S_{4}}{\partial x_{4}}(0, y),
\end{aligned}
$$

which are the expected expressions of the intensities in terms of survival functions.
iii) Finally, we can also consider the mortality intensity of spouse 1 , when the other spouse is dead since a given time. We have, for $y>y^{*}$:

$$
\begin{aligned}
& \lambda_{1 \mid 2}\left(y \mid Y_{1} \geq y, Y_{2}=y^{*}\right) \\
= & \lim _{d y \rightarrow 0^{+}} \frac{1}{d y} P\left[y<Y_{1}<y+d y \mid Y_{1} \geq y, Y_{2}=y^{*}\right] \\
= & f\left(y, y^{*}\right) / \int_{y}^{\infty} f\left(u, y^{*}\right) d u \\
= & -\frac{\partial \log S_{3}}{\partial x_{3}}\left(y-y^{*}, y^{*}\right),
\end{aligned}
$$

which is just the intensity of the residual lifetime X_{3} given the date of the first death.

2.2.4. Dependence and Jump in Intensities

It has been suggested in Clayton (1978) to measure the dependence between duration variables by considering the jump in intensities following the news of a death. We get a functional measure of dependence function of the age y of the couple, which is especially appropriate for following the dependence phenomenon during the couple life. These per-cent jumps are the following ones :

When individual 2 dies at date y, the jump at this date of the mortality intensity of individual 1 is :

$$
\begin{align*}
\gamma_{1 \mid 2}(y) & =\lambda_{1 \mid 2}\left(y \mid Y_{1} \geq y, Y_{2}=y\right) / \lambda_{1}\left(y \mid Y_{1} \geq y, Y_{2} \geq y\right) \\
& =\left\{\left[-\frac{\partial S_{3}}{\partial x_{3}}(0 ; y)\right] S^{*}(y)\right\} /\left[-\frac{\partial S_{12}}{\partial x_{1}}(y, y)\right] . \tag{2.12}
\end{align*}
$$

Symmetrically, we get :

$$
\begin{align*}
\gamma_{2 \mid 1}(y) & =\lambda_{2 \mid 1}\left(y \mid Y_{1}=y, Y_{2} \geq y\right) / \lambda_{2}\left(y \mid Y_{1} \geq y, Y_{2} \geq y\right) \\
& =\left\{\left[-\frac{\partial S_{4}}{\partial x_{4}}(0 ; y)\right] S^{*}(y)\right\} /\left[-\frac{\partial S_{12}}{\partial x_{2}}(y, y)\right] . \tag{2.13}
\end{align*}
$$

In the standard literature on bivariate survival models, the bivariate density function is continuous at $y_{1}=y_{2}=y$. Then, the two measures $\gamma_{1 \mid 2}(y)$ and $\gamma_{2 \mid 1}(y)$ coincide for any age y and it is easily checked that in this case, they are equal to the cross ratio function defined in Oakes (1989) [see also the discussion in Section 3.2]. This equality is not necessarily satisfied in a Freund model and we can observe different reactions of a spouse at the death of the other spouse in the couple.

Definition 1. We have the immediate broken-heart syndrome for spouse 1 (resp. 2) at date y, if $\gamma_{1 \mid 2}(y)>1\left[\right.$ resp. $\left.\gamma_{2 \mid 1}(y)>1\right]$.

We can have the immediate broken-heart syndrome (or the reverse immediate broken-heart syndrome when the directional measure of association is strictly smaller than 1), with different magnitude according to the age and spouse. We can even observe reactions in different directions. This arises when the wife is devastated by the death of her husband, with an increase of her mortality intensity, whereas the death of the wife may provide more freedom to her husband and possibly a decrease of his mortality rate. This is the "love and death" phenomenon with the fact that love is not always shared and can be age-dependent.

Definition 1 focuses on the immediate effect of the death of a spouse. According to this definition, many standard copula models [see e.g. Frees et al. (1996), Carriere (2000)] as well as the multiple state models in Ji et al. (2011) and Spreeuw and Owadally (2013) all allow for the broken-heart syndrome. There exist alternative definitions measuring the long-term or short-term persistence of the effect of the bereavement. For instance, Hougaard (2000) defines the broken-heart syndrome as a typical example of short-term effect: the mortality of the surviving spouse as a function of time elapsed since death of the partner is decreasing. Moreover, there can also be a long-term effect, that is, the effect of the death of the spouse is asymptotically non vanishing, or even increasing in the time elapsed. The Freund model, as well as models in Ji et al. (2011) and Spreeuw and Owadally (2013), are flexible enough to allow short-term (and/or long-term) effect; on the other hand, Spreeuw (2006) shows that usual copula models can only capture long-term effect.

There exist a few studies trying to measure the effect and showing a positive estimated broken-heart syndrome [see e.g. Parkes et al. (1969), Jagger and Sutton (1991), Ji et al. (2011)]. Moreover it is shown that the broken-heart syndrome affects widowers more than widows [see Spreeuw and Owadally (2013)]. However, by neglecting the frailty effect discussed later on in Section 3, the estimates may suffer from an omitted heterogeneity bias.

2.3. Observed and latent intensities

Let us now link the distributions of the observed and latent variables. Since (X_{1}, X_{3}) and (X_{2}, X_{4}) cannot be simultaneously observed, let us first assume that these two pairs of variables are independent ${ }^{4}$. Then the distribution of the latent variables is characterized by the following latent intensities :
i) the latent intensity of X_{1} denoted by $a_{1}\left(x_{1}\right)$;
ii) the latent intensity of X_{2} denoted by $a_{2}\left(x_{2}\right)$;
iii) the latent intensity of X_{3} given $X_{2}=\min \left(X_{1}, X_{2}\right)=z$, denoted by $a_{3}\left(x_{3} ; z\right)$;

[^3]iv) the latent intensity of X_{4} given $X_{1}=\min \left(X_{1}, X_{2}\right)=z$, denoted by $a_{4}\left(x_{4} ; z\right)$.

The associated cumulated intensities, that are their primitives with respect to the x argument, are denoted by $A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), A_{3}\left(x_{3} ; z\right), A_{4}\left(x_{4} ; z\right)$, respectively. We deduce that :

$$
\begin{aligned}
& S_{12}\left(x_{1}, x_{2}\right)=\exp \left\{-\left[A_{1}\left(x_{1}\right)+A_{2}\left(x_{2}\right)\right]\right\}, S_{3}\left(x_{3} ; z\right)=\exp \left[-A_{3}\left(x_{3} ; z\right)\right], \\
& S_{4}\left(x_{4} ; z\right)=\exp \left[-A_{4}\left(x_{4} ; z\right)\right]
\end{aligned}
$$

Then, the expression (2.5) of the bivariate probability density function becomes :

$$
\begin{align*}
f\left(y_{1}, y_{2}\right) & =a_{1}\left(y_{1}\right) \exp \left\{-\left[A_{1}\left(y_{1}\right)+A_{2}\left(y_{2}\right)\right]\right\} a_{4}\left(y_{2}-y_{1} ; y_{1}\right) \exp \left[-A_{4}\left(y_{2}-y_{1} ; y_{1}\right)\right], \text { if } y_{2}>y_{1}, \\
& =a_{2}\left(y_{2}\right) \exp \left[-\left(A_{1}\left(y_{1}\right)+A_{2}\left(y_{2}\right)\right)\right] a_{3}\left(y_{1}-y_{2} ; y_{2}\right) \exp \left[-A_{3}\left(y_{1}-y_{2} ; y_{2}\right)\right], \text { if } y_{1}>y_{2} . \tag{2.14}
\end{align*}
$$

Similarly the directional measures of association can be written in terms of the latent intensities by using the expressions (2.12)-(2.13).

Property 1. The directional measures of association are:

$$
\begin{equation*}
\gamma_{1 \mid 2}(y)=a_{3}(0 ; y) / a_{1}(y), \gamma_{2 \mid 1}(y)=a_{4}(0 ; y) / a_{2}(y) \tag{2.15}
\end{equation*}
$$

3. Freund model with static frailty

The notion of (shared) frailty has been first introduced by Vaupel et al. (1979). The idea is to use the unobserved heterogeneity (or frailty) in bivariate duration models in order to create an additional dependence between lifetimes. In the basic specification, this frailty is static, since it depends on the couple only, neither on time, nor age. It represents the effect of common lifestyle, or common disasters encountered by the couple. In the extended model, the dependence between the lifetimes are due to either the frailty, or to the so-called contagion effects, that are the jumps in the intensities at the time of default. This new specification introduced below allows to disentangle these two effects. We first extend the Freund model of Section 2.4 to include unobserved frailty. Then, we discuss special cases.

3.1. The model

Let us denote by F the frailty variable, possibly multivariate. We consider a Freund model with the structure introduced in Section 2.4, where X_{1} and X_{2} are independent conditional on F, with latent intensities conditional on F given by : $a_{1}\left(x_{1} ; F\right), a_{2}\left(x_{2} ; F\right), a_{3}\left(x_{3} ; z ; F\right), a_{4}\left(x_{4} ; z, F\right)$. Let us now derive the latent ${ }^{5}$ survival functions $S_{12}\left(x_{1}, x_{2}\right), S_{3}\left(x_{3} ; z\right), S_{4}(x ; z)$, when frailty F has been integrated out. We have :

$$
\begin{aligned}
S_{12}\left(x_{1}, x_{2}\right) & =\mathbb{E}\left[\mathbb{P}\left[X_{1} \geq x_{1}, X_{2} \geq x_{2} \mid F\right]\right] \\
& =\mathbb{E}\left\{\exp -\left[A_{1}\left(x_{1} ; F\right)+A_{2}\left(x_{2} ; F\right)\right]\right\}
\end{aligned}
$$

where the expectation is taken with respect to the distribution of F.
Similarly we get :

$$
\begin{aligned}
S_{3}\left(x_{3} ; z\right) & =\mathbb{P}\left[X_{3}>x_{3} \mid X_{2}=\min \left(X_{1}, X_{2}\right)=z\right] \\
& =\mathbb{P}\left[X_{3}>x_{3} \mid X_{2}=z, X_{1}>z\right] \\
& =\frac{\mathbb{E}\left[a_{2}(z, F) \exp \left(-\left[A_{1}(z, F)+A_{2}(z ; F)+A_{3}\left(x_{3} ; z ; F\right)\right]\right)\right]}{\mathbb{E}\left[a_{2}(z ; F) \exp \left(-\left[A_{1}(z ; F)+A_{2}(z ; F)\right]\right)\right]} .
\end{aligned}
$$

These formulas can be used as inputs to derive the bivariate observed density (2.5) and the directional measures of association (2.12)-(2.13). For instance, we have by (2.12) :

$$
\gamma_{1 \mid 2}(y)=\frac{\mathbb{E}\left\{a_{3}(0 ; y ; F) a_{2}(y, F) \exp \left(-\left[A_{1}(y ; F)+A_{2}(y ; F)\right]\right\} \mathbb{E}\left[\exp \left(-\left[A_{1}(y ; F)+A_{2}(y ; F)\right]\right)\right]\right.}{\mathbb{E}\left\{a_{2}(y ; F) \exp \left(-\left[A_{1}(y ; F)+A_{2}(y ; F)\right]\right)\right\} E\left\{a_{1}(y ; F) \exp \left[-A_{1}(y ; F)+A_{2}(y ; F)\right]\right\}}
$$

We deduce the property below.

Property 2.

$$
\begin{equation*}
\gamma_{1 \mid 2}(y)=\frac{\frac{Q_{y}}{\mathbb{E}}\left[a_{3}(0 ; y ; F) a_{2}(y ; F)\right]}{\frac{Q_{y}}{\mathbb{E}}\left[a_{1}(y ; F)\right] \frac{Q_{y}}{\mathbb{E}}\left[a_{2}(y ; F)\right]}, \tag{3.1}
\end{equation*}
$$

where Q_{y} denotes the probability distribution with density :

$$
q_{y}(F)=\exp \left\{-\left[A_{1}(y)+A_{2}(y)\right] F\right\} / \mathbb{E}\left[\exp \left(-\left(A_{1}(y)+A_{2}(y)\right) F\right],\right.
$$

with respect to the distribution of F. Thus, if the p.d.f. of F is $g(F)$, the p.d.f. of the modified measure Q_{y} is $q_{y}(F) g(F)$.

[^4]The change of density q_{y} is due to the aging of the heterogeneity structure in the population of surviving couples, called Population-at-Risk (PaR) at age y [see e.g. Vaupel et al. (1979), eq. (5)].

Since the conditional directional measure of association is [see (2.15)] :

$$
\gamma_{1 \mid 2}(y ; F)=a_{3}(0, y ; F) / a_{1}(y, F)
$$

we can also write the corresponding unconditional measure as :

$$
\begin{aligned}
& \gamma_{1 \mid 2}(y)=\frac{\frac{Q_{y}}{\mathbb{E}}\left[\gamma_{1 \mid 2}(y ; F) a_{1}(y ; F) a_{2}(y ; F)\right]}{Q_{y}\left(Q_{y}\right.} \underset{\mathbb{E}\left[a_{1}(y ; F)\right] \frac{Q_{y}}{\mathbb{E}}\left(a_{2}(y ; F)\right]}{Q_{y}} \\
& =\frac{\tilde{Q}_{y}}{\mathbb{E}}\left[\gamma_{1 \mid 2}(y ; F)\right] \frac{Q_{y}}{\mathbb{E}\left[a_{1}(y ; F) a_{2}(y ; F)\right]} \underset{\mathbb{Q}\left[a_{1}(y ; F)\right] \mathbb{Q}\left[a_{2}(y ; F)\right]}{Q_{y}}, \\
& \text { where : } d \tilde{Q}^{y}=\frac{a_{1}(y ; F) a_{2}(y ; F)}{\frac{Q_{y}}{\mathbb{E}}\left[a_{1}(y ; F) a_{2}(y ; F)\right]} d Q^{y} .
\end{aligned}
$$

Thus the unconditional directional measure of association $\gamma_{1 \mid 2}(y)$ is an average of the conditional directional measures of association with respect to a modified probability distribution, and adjusted for the dependence between $a_{1}(y ; F)$ and $a_{2}(y ; F)$, since the adjustment term equals 1 , when these variables are not correlated under Q^{y}.

3.2. Single proportional frailty

Following Vaupel et al. (1979), it is usual to consider a single positive frailty with proportional effects on all latent intensities. This implies an Archimedean copula (with completely monotonic generator) for the bivariate latent variables X_{1} and X_{2} [see Oakes (1989), McNeil and Nešlehová (2009)], but not for the observed variables Y_{1}, Y_{2}, due to the changes in intensities after the first death event. More precisely, if :
$a_{1}\left(x_{1} ; F\right)=a_{1}\left(x_{1}\right) F, a_{2}\left(x_{2} ; F\right)=a_{2}\left(x_{2}\right) F, a_{3}\left(x_{3} ; z ; F\right)=a_{3}\left(x_{3} ; z\right) F ; a_{4}\left(x_{4} ; z ; F\right)=a_{4}\left(x_{4} ; z\right) F$, we deduce from 2 eq.(3.1) that :

$$
\begin{equation*}
\gamma_{1 \mid 2}(y)=\frac{a_{3}(0 ; y)}{a_{1}(y)} \frac{\frac{Q_{y}}{\mathbb{E}}\left(F^{2}\right)}{\left[\frac{Q_{y}}{\mathbb{E}}(F)\right]^{2}}, \gamma_{2 \mid 1}(y)=\frac{a_{4}(0 ; y)}{a_{2}(y)} \frac{\frac{Q_{y}}{\mathbb{E}}\left(F^{2}\right)}{\left[\frac{Q_{y}}{\mathbb{E}}(F)\right]^{2}} . \tag{3.2}
\end{equation*}
$$

In this simple case, the directional measures of association given F are [see (2.15)] :

$$
\gamma_{1 \mid 2}(y ; F)=\frac{a_{3}(0 ; y) F}{a_{1}(y) F}=\frac{a_{3}(0 ; y)}{a_{1}(y)}, \gamma_{2 \mid 1}(y ; F)=\frac{a_{4}(0 ; y)}{a_{2}(y)} .
$$

They are independent of frailty F, but not necessarily equal, which allows for asymmetric reactions.

The omitted heterogeneity introduces a positive bias on these measures. Indeed, we have $\stackrel{Q_{y}}{\mathbb{E}}\left(F^{2}\right) /\left[\mathbb{Q}_{y}(F)\right]^{2} \geq 1$, by Cauchy-Schwartz inequality and more generally the property below :

Property 3. In a Freund model with single proportional frailty the unconditional directional measures of association are larger than the conditional ones. They are equal if and only if frailty F is constant, that is, if there is no omitted heterogeneity :

$$
\gamma_{1 \mid 2}(y) \geq \gamma_{1 \mid 2}(y ; F), \gamma_{2 \mid 1}(y) \geq \gamma_{2 \mid 1}(y ; F), \forall F .
$$

However the per-cent adjustment for omitted heterogeneity is independent of age y and of the direction, which is considered. In particular the symmetry condition between spouses is preserved since :

$$
\gamma_{1 \mid 2}(y ; F)=\gamma_{2 \mid 1}(y ; F) \Longleftrightarrow \gamma_{1 \mid 2}(y)=\gamma_{2 \mid 1}(y) .
$$

3.3. The actuarial literature

The models with mortality dependence considered in the actuarial literature are often special cases of the single proportional frailty model of Section 3.2.1, assuming moreover the continuity of the latent intensities :

Continuity assumption of the latent intensities

$$
\begin{aligned}
& a_{3}\left(x_{3} ; z\right)=a_{1}\left(x_{3}+z\right), \forall x_{3}, z, \\
& a_{4}\left(x_{4} ; z\right)=a_{2}\left(x_{4}+z\right), \forall x_{4}, z
\end{aligned}
$$

Under the continuity assumption, the lifetimes Y_{1}, Y_{2} are independent given the shared frailty F, with joint conditional survivor function :

$$
S_{12}\left(y_{1}, y_{2} \mid F\right)=\exp \left[-\left[A_{1}\left(y_{1}\right)+A_{2}\left(y_{2}\right)\right] F\right] .
$$

To ensure the positivity of the intensity, the frailty F has to be positive. Let us denote by ψ its Laplace transform defined for positive arguments u by :

$$
\begin{equation*}
\psi(u)=\mathbb{E}[\exp (-u F)] . \tag{3.3}
\end{equation*}
$$

By integrating out the frailty, we deduce the joint survivor function :

$$
\begin{equation*}
S_{12}\left(y_{1}, y_{2}\right)=\psi\left[A_{1}\left(y_{1}\right)+A_{2}\left(y_{2}\right)\right] . \tag{3.4}
\end{equation*}
$$

A similar computation can be performed to derive the marginal survivor functions. We get :

$$
\begin{equation*}
S_{1}\left(y_{1}\right)=\psi\left[A_{1}\left(y_{1}\right)\right], S_{2}\left(y_{2}\right)=\psi\left[A_{2}\left(y_{2}\right)\right] . \tag{3.5}
\end{equation*}
$$

Since the Laplace transform of F is continuous and strictly increasing, it is invertible. We deduce the expression of S_{12} in terms of S_{1}, S_{2} and ψ :

$$
\begin{equation*}
S_{12}\left(y_{1}, y_{2}\right)=\psi\left[\psi^{-1}\left[S_{1}\left(y_{1}\right)\right]+\psi^{-1}\left[S_{2}\left(y_{2}\right)\right]\right] \tag{3.6}
\end{equation*}
$$

This is the standard definition of a copula Sklar (1959)]:

$$
\begin{equation*}
S_{12}\left(y_{1}, y_{2}\right)=C\left[S_{1}\left(y_{1}\right), S_{2}\left(y_{2}\right)\right] \tag{3.7}
\end{equation*}
$$

with a survivor Archimedean copula Genest and MacKay (1986)]:

$$
\begin{equation*}
C\left(u_{1}, u_{2}\right)=\psi\left[\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)\right], \tag{3.8}
\end{equation*}
$$

Property 4. Let us consider a Freund model with single proportional frailty. Under the continuity assumption, the dependence between the lifetime variables Y_{1}, Y_{2} is summarized by an Archimedean copula with the Laplace transform of the frailty as the generator.

Conversely, most usual Archimedean copulas admit a frailty interpretation ${ }^{6}$ The actuarial literature has considered this special case [see Tables 1 and 2, for examples in the actuarial literature, and Nelsen (1999) for a rather extensive list of copulas ${ }^{7}$ with different choices of the marginal distributions of the lifetimes and of the copulas.

[^5]Table 1: Selected Marginal Distribution

Gompertz	Frees et al., (1996), Carriere (2000), Youn and Shemyakin (2001) Luciano et a.8. (2008, 2010)
Weibull	Frees et al. (1996), Youn and Shemyakin (1999, 2001), Shemyakin and Youn (2006)

Table 2: Selected Copula

Frank	Frees et al., (1996), Carriere (2000), Youn and Shemyakin (2001) Spreeuw (2006), Luciano et al. (2008, 2010)
Gumbel-Hougaard	Youn and Shemyakin (1999, 2001), Shemyakin and Youn (2006) Spreeuw (2006), Luciano et al. (2008, 2010)
Clayton	Carriere (2000), Luciano et al. (2008, 2010), Spreeuw (2006)
4.2 .20 Nelsen copula 9	Spreeuw (2006), Luciano et al. (2008, 2010)

A more recent literature [see e.g. Denuit and Cornet (1999), Spreeuw (2006), Spreeuw and Wang (2008), Ji et al. (2011), Spreeuw and Owadally (2013)] focus on the broken-heart syndrome, but without introducing frailty in the specification of the intensities. This literature also identifies another downside of the common cop-

[^6]ula approach. Indeed, Spreeuw (2006) shows that for most common Archimedean copulas, the mortality of the surviving spouse as a function of time elapsed since death of the partner is increasing, which is not underpinned by empirical evidences [see Spreeuw and Owadally (2013) as well as Section 2.2.4 for a relevant discussion].

3.4. Affine intensity model

A simple extension of the bivariate survival model discussed in Section 3.2 is obtained by introducing an intercept in the basic proportional frailty model [the so-called Generalized Shared Frailty model developed in Iachine (2004) in a special case]. The specification becomes :

$$
\begin{aligned}
& a_{1}\left(x_{1} ; F\right)=a_{1}\left(x_{1}\right) F+b_{1}\left(x_{1}\right), a_{2}\left(x_{2} ; F\right)=a_{2}\left(x_{2}\right) F+b_{2}\left(x_{2}\right), \\
& a_{3}\left(x_{3} ; z ; F\right)=a_{3}\left(x_{3} ; z\right) F+b_{3}\left(x_{3} ; z\right), a_{4}\left(x_{4} ; z ; F\right)=a_{4}\left(x_{4} ; z\right) F+b_{4}\left(x_{4} ; z\right) .
\end{aligned}
$$

This extended version allows for conditional directional measures of association $\gamma_{1 \mid 2}(y ; F)$ and $\gamma_{2 \mid 1}(y ; F)$ depending on frailty F, and leads to non Archimedean copulas, when considering the joint distribution of latent lifetimes X_{1} and X_{2}.

The affine specification is likely the most appropriate one for representing the effect of common lifestyle F and especially the memory features. After the death of a spouse, we expect that the effect of common lifestyle will diminish and asymptotically vanish. Thus, we expect that the latent intensity $a_{3}\left(x_{3} ; z\right)$ resp. $a_{4}\left(x_{4} ; z\right)$] is a decreasing function of x_{3} (resp. x_{4}) tending to zero at infinity. Then functions b_{3} and b_{4} provide the limiting mortality intensity a long time after the death of the other spouse. See also Section 2.2.4 for a detailed discussion on the long-term and short-term effect of losing his/her partner.

Finally, this affine intensity models assumes implicitly no remarriage or new common law relationship of the surviving spouse. This assumption is rather realistic for our purpose, since the insurance policies of interest are generally taken by rather old couples to profit of tax reductions, or to provide a rent to the surviving spouse.

4. Pricing contracts on two lives

We will now derive the pricing formulas for insurance contracts written on two lives such as joint life policies, last survivor policies and policies with reversionary annuities. By considering extended Freund models (under the risk-neutral probability), we analyze the effect of jumps in intensity on prices at the contract issuing as well as on the premium updating during the life of the contract.

4.1. Prices at the inception of the contracts

The premium computations for the joint policies are based on the joint remaining lifetimes risk-neutral distribution conditional on the ages of the spouses at the beginning of their common life $y_{1,0}^{*}, y_{2,0}^{*}$, say, and on the fact that both spouses are still alive with an age of the life in couple equal to z_{0}, say, at the inception of the contract. Thus, the joint risk-neutral density of the remaining lifetimes $\tilde{y}_{j}=Y_{j}-z_{0}, j=1,2$ at the inception of the contract is ${ }^{10}$:

$$
\begin{align*}
& \tilde{f}_{0}\left(\tilde{y}_{1}, \tilde{y}_{2} \mid z_{0}\right) \\
= & \lim _{d y_{1}, d y_{2} \rightarrow 0}\left\{\frac { 1 } { d y _ { 1 } d y _ { 2 } } P \left[Y_{1} \in\left(\tilde{y}_{1}+z_{0}, \tilde{y}_{1}+z_{0}+d y_{1}\right), Y_{2} \in\left(\tilde{y}_{2}+z_{0}, \tilde{y}_{2}+z_{0}+d y_{2}\right)\right.\right. \\
& \left.\mid Y_{1}>z_{0}, Y_{2} \geq z_{0}, y_{1,0}^{*}, y_{2,0}^{*}\right] \\
= & f_{0}\left(\tilde{y}_{1}+z_{0}, \tilde{y}_{2}+z_{0}\right) / S_{0}\left(z_{0}\right), \tag{3.1}
\end{align*}
$$

where the index 0 means that the distribution characteristics of Section 3 can now depend on the initial ages $y_{1,0}^{*}, y_{2,0}^{*}$.

Let us now illustrate the premium computation in a continuous time framework with instantaneous constant interest rate r. For each insurance product, we have to analyze the risk-neutral distribution of the discounted cash-flows.

i) Joint life policy

Let us denote by a the premium rate and consider an insurance paying $1 \$$ immediately at the first death of a spouse. The discounted sequence of cash-flows measured at the inception of the contract is :

$$
\begin{align*}
C_{0}^{(1)}\left(a, r, z_{0} ; Y_{1}, Y_{2}\right) & =a \int_{0}^{\min \left(Y_{1}, Y_{2}\right)-z_{0}} \exp (-r h) d h-\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right] \\
& \left.=\frac{a}{r}\left\{1-\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right]\right\}-\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right]\right\} \tag{3.2}
\end{align*}
$$

There exist different ways for balancing the stochastic positive and negative

[^7]cash-flows. In particular the premium rate ${ }^{11}$ can be defined by fixing equal expectations to these sequences. We get :
\[

$$
\begin{equation*}
a_{0}^{*(1)}(r)=r \frac{\mathbb{E}_{0}\left\{\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}{1-\mathbb{E}_{0}\left\{\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}} \tag{3.3}
\end{equation*}
$$

\]

ii) Last survivor policy

Let us now assume that the death event written in the policy is the second death of a spouse. The formulas are the same as for the joint life policy above after substituting $\max \left(Y_{1}, Y_{2}\right)$ to $\min \left(Y_{1}, Y_{2}\right)$. For instance, the fair premium becomes :

$$
\begin{equation*}
a_{0}^{*(2)}(r)=r \frac{\mathbb{E}_{0}\left(\exp \left[-r\left(\max \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right)}{1-\mathbb{E}_{0}\left\{\exp \left[-r\left(\max \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}} \tag{3.4}
\end{equation*}
$$

iii) Reversionary annuities

Finally, let us consider a product in which the premium is paid when both spouses are alive and a unitary annuity is paid to the surviving spouse up to his/her death. The discounted sequence of cash-flows becomes :

$$
\begin{align*}
C^{(3)}\left(a, r, z_{0} ; Y_{1}, Y_{2}\right)= & a \int_{0}^{\min \left(Y_{1}, Y_{2}\right)-z_{0}} \exp (-r h) d h-\int_{\min \left(Y_{1}, Y_{2}\right)-z_{0}}^{\max \left(Y_{1} Y_{2}\right)-z_{0}} \exp (-r h) d h \\
= & \frac{a}{r}\left\{1-\exp \left(-r\left[\min \left(Y_{1}, Y_{2}\right)-z_{0}\right]\right)\right\} \\
& -\frac{1}{r}\left\{\exp \left[-r\left(\min \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right]\right. \\
& \left.-\exp \left[-r\left(\max \left(Y_{1}, Y_{2}\right)-z_{0}\right)\right]\right\} . \tag{3.5}
\end{align*}
$$

The associated premium rate is :
$a_{0}^{*(3)}(r)=\frac{\mathbb{E}_{0}\left\{\exp \left(-r\left[\min \left(Y_{1}, Y_{2}\right)-z_{0}\right]\right)-\exp \left(-r\left[\max \left(Y_{1}, Y_{2}\right)-z_{0}\right]\right) \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}{1-\mathbb{E}_{0}\left\{\exp \left(-r\left[\min \left(Y_{1}, Y_{2}\right)-z_{0}\right]\right) \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}$.

iv) Individual products

The premia for joint products have naturally to be compared with the premia of a life insurance paying $1 \$$ at the death of a single life.

[^8]The associated fair premium is :

$$
\begin{equation*}
a_{j, 0}^{*}(r)=r \frac{\mathbb{E}_{0}\left(\exp \left[-r\left(Y_{j}-z_{0}\right)\right] \mid Y_{j} \geq z_{0}\right)}{\left.1-\mathbb{E}_{0}\left(\exp \left[-r\left(Y_{j}-z_{0}\right)\right] \mid Y_{j} \geq z_{0}\right]\right)} \tag{3.7}
\end{equation*}
$$

if only information on spouse j is taken into account and

$$
\begin{equation*}
a_{j, 0}^{* *}(r)=\frac{r \mathbb{E}_{0}\left(\exp \left[-r\left(Y_{j}-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right)}{1-\mathbb{E}_{0}\left(\exp \left[-r\left(Y_{j}-z_{0}\right)\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right)} \tag{3.8}
\end{equation*}
$$

if the information on the couple is taken into account.
In the limiting case of a zero risk-free rate $r=0$, the expressions of the premia are obtained by a Taylor expansion. We get :

$$
\begin{gathered}
a_{0}^{*(1)}(0)=\frac{1}{\mathbb{E}_{0}\left\{\left[\min \left(Y_{1}, Y_{2}\right)-z_{0}\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}, \\
a_{0}^{*(2)}(0)=\frac{1}{\mathbb{E}_{0}\left\{\left[\max \left(Y_{1}, Y_{2}\right)-z_{0}\right] \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}, \\
a_{0}^{*(3)}(0)=\frac{\mathbb{E}_{0}\left\{\max \left(Y_{1}, Y_{2}\right)-\min \left(Y_{1}, Y_{2}\right) \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}{\mathbb{E}_{0}\left\{\min \left(Y_{1}, Y_{2}\right) \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}}, \\
a_{j, 0}^{*}(0)=\frac{1}{\mathbb{E}_{0}\left\{Y_{j}-z_{0} \mid Y_{j} \geq z_{0}\right\}}, \\
a_{j, 0}^{* *}(0)=\frac{1}{\mathbb{E}_{0}\left\{Y_{j}-z_{0} \mid Y_{1} \geq z_{0}, Y_{2} \geq z_{0}\right\}} .
\end{gathered}
$$

The pricing of the individual contracts of two spouses cannot be done separately. Indeed the survival probabilities of a single life, and then the price of the individual contract, depend on the life history of the spouse, whether or not he/she is still alive and, when he/she died if applicable [see e.g. Youn et al. (2002)].

4.2. Effect of risk dependence on prices

Let us now illustrate the effect on policy prices of risk dependencies: due to the frailty and to the asymmetric jump in intensities existing in a Freund model.

We consider a model with single proportional frailty (see Section 3.2). The population of couples is such that the two spouses have the same age 30 . The distribution of the heterogeneity F at age 30 is assumed to be a gamma distribution. Note that when there is no jump in latent intensities, the joint distribution of the lifetimes is associated to a Clayton copula. Due to the mover-stayer phenomenon, as the population ages, the distribution given that both spouses survive up to age $z_{0}>30$, that is, the heterogeneity distribution that the insurance company applies to price a contract for a couple with an underwriting age $z_{0}>30$, will depend on
age z_{0}. Intensities of the latent duration variables X_{1} (female), X_{2} (male) are of the following form:

$$
a_{1}\left(x_{1}\right)=\exp \left(\alpha_{1} x_{1}+\beta_{1}\right), \quad \forall x_{1}>0,
$$

and

$$
a_{2}\left(x_{2}\right)=\exp \left(\alpha_{2} x_{2}+\beta_{2}\right), \quad \forall x_{2}>0 .
$$

For illustration purpose, we assume that the death of the spouse has a constant multiplicative effect γ on the mortality intensity of the survivor. Thus, given $z=\min \left(X_{1}, X_{2}\right)$, the conditional intensities of X_{3}, X_{4} are of the form:

$$
a_{3}\left(x_{3}, z\right)=\gamma \exp \left(\alpha_{1}\left(z+x_{3}\right)+\beta_{1}\right), \quad \forall x_{3}>0
$$

and

$$
a_{4}\left(x_{4}, z\right)=\gamma \exp \left(\alpha_{2}\left(z+x_{4}\right)+\beta_{2}\right), \quad \forall x_{4}>0
$$

where the constant $\gamma=\frac{a_{3}(0, z)}{a_{1}(z)}=\frac{a_{4}(0, z)}{a_{2}(z)}$ is larger than 1 to reflect the broken-heart syndrome. Thus the model adopted here is similar to Denuit and Cornet (1999) except that frailty is incorporated. For the illustration the jump in mortality on death of the first life is the same, whether male or female. For numerical illustrations, parameters $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are chosen to fit the marginal intensities of American females and males at ages $31,32, \ldots, 110$, provided by the Human Mortality Databas ${ }^{122}$. Their values are reported below:

$$
\alpha_{1}=0.089, \beta_{1}=-7.613, \alpha_{2}=0.081, \beta_{2}=-6.934
$$

The measure of association γ is the same in both directions with values $\gamma \in$ $\{1,3,5\} . \gamma=5$ corresponds to a very huge impact of the death of the spouse on the survivor lifetime and $\gamma=1$ corresponds to the case of no impact (at the individual level, indeed, even in this case there is still jump of intensity when the heterogeneity is integrated out, see e.q.(3.2)). The gamma distribution of the heterogeneity at age 30 is set to have a shape parameter k and a scale parameter $1 / k$. Therefore, the average mortality intensity at age 30 is the same for each value of k, since $\mathbb{E}(F)=1 / k \cdot k=1$ does not depend on k. The heterogeneity parameter k will be set to $k \in\{2,5,10\} . k=10$ corresponds to a low heterogeneity level and

[^9]$k=2$ corresponds to a high one. This specification of the duration distribution is the risk-neutral distribution, which can be used to price the different life insurance contracts described in Section 4.1. The risk-free interest rate is set to $r=1 \%$. We provide in Figure 1 the evolution of the premium rates as a function of the underwriting age $z_{0} \in 31,32, \ldots, 80$, for different contracts and for $\gamma=5, k=2$. The contracts include a joint life policy, a last survivor policy, a contract with reversionary annuities, and the individual insurance products for female with, or without, the information on the survival of the husband up to z_{0}.

Figure 1: Premium rate as a function of the age of the couple at the time of underwriting. In the lower right panel for individual life insurance policies, the dashed line (respectively solid line) represents the premium rates when the information on the spouse is (respectively is not) taken into account.

These premia are not directly comparable, since the premia paid by the insured people (resp. the payments by the insurance company) do not correspond to a same period. Nevertheless for each product, the premium rate is increasing with the age of underwriting of the couple, which is in conformity with the usual premium
structure without heterogeneity.
In general, in a model with heterogeneity, the average intensity (as well as the premium) is not necessarily monotone in z_{0}. Indeed, the aging of the population has a positive impact on the premium when z_{0} increases, while the mover-stayer phenomenon has a negative impact on the premium since couples with higher risks die out more quickly; hence the average heterogeneity is improving in time. In this example, the first effect is more important, which results in an increasing premium.

Besides, the premium rate of an individual insurance contract for a female is always lower when the insurance company know that her spouse is still alive, as shown in the lower right panel. The difference is negligible at low ages, but increases significantly with respect to z_{0}. We also observe that the curves of the premia are convex, except for reversionary annuities, where the trend is almost linear.

Let us now illustrate the effect of risk dependencies and heterogeneity for the different insurance contracts. We first illustrate in Tables 3 and 4 the effect of the measure of association γ for two different ages 30 and 50 . This parameter has no effect on the joint insurance policies: indeed, the contract terminates up to the first death whereas the measure of association impacts only the residual lifetime beyond the first death event. Therefore, premium rates of the joint insurance are not reported in the Tables. The two last columns correspond to the individual insurance contract for a female with and without information on the survival of her spouse. We get premia, which increase with the γ parameter, except for the reversionary annuities. Indeed, unlike other contracts which concern death benefit, a reversionary annuity pays survival benefits; therefore its relationship with the deterioration of mortality is opposite to other products.

	Last	Reversionary	Individual, female, without husband's information	Individual, female, with husband's information
$\gamma=5$	survivor	annuity	0.0194	0.134
0.0212	0.0210			
$\gamma=3$	0.0182	0.181	0.0203	0.0202
$\gamma=1$	0.0153	0.318	0.0184	0.0183

Table 3: Effect of the broken heart syndrome on premium rates with a fixed heterogeneity distribution $(k=6)$, at age 30 .

	Last	Reversionary	Individual, female, with husband's information	Individual, female, without husband's information
$\gamma=5$	0.0279	0.166	0.0319	0.0303
$\gamma=3$	0.0260	0.225	0.0309	0.0290
$\gamma=1$	0.0214	0.404	0.0275	0.0258

Table 4: Effect of the broken heart syndrome on premium rates with a fixed heterogeneity distribution $(k=6)$, at age 50 .

Then we illustrate in Tables 5 and 6 the effect of heterogeneity, characterized by parameter k, for two different ages 30 and 50 . For instance, for the joint life contract, the premium increases as the heterogeneity decreases ${ }^{133}$. However, this effect is less clear for other products. Indeed, in a more heterogeneous population ($k=2$), there are more couples of extremely high risk, as well as more couples of extremely low risk. The first couples contribute to an increase in the premium whereas the latter couples contribute to diminish the premium. For the reversionary annuity, a riskier couple is expected to trigger annuity payment earlier, which means less premium income, but the payment is also expected to terminate earlier, which spells less total payment. In our simulation studies, we observe that, for each product, the premium rate is decreasing in the heterogeneity, both for age 30 and 50 . Figure 2 plots, for each k, simulated lifetimes distributions for the last survivor, respectively for $z_{0}=30$ and 50 .

[^10]and the corresponding unconditional intensity function is:
$$
\lambda(t)=\frac{a_{1}(t)+a_{2}(t)}{1+1 / k\left(A_{1}(t)+A_{2}(t)\right)},
$$
thus the premia for a joint life contract is higher for $k=10$.

	Joint	Last	Reversionary	Individual, female, with husband's information	Individual, female, without husband's information
$k=2$	0.0186	survivor	0.0153	annuity	0.129
0.0167	0.0167				
$k=6$	0.0196	0.0161	0.135	0.0176	0.0176
$k=10$	0.0197	0.0162	0.136	0.0177	0.0177

Table 5: Effect of heterogeneity on premium rates with a fixed broken heart syndrome $(\gamma=5)$, at age 30 .

	Joint	Last	Reversionary	Individual, female, with husband's information	Individual, female, without husband's information
$k=2$	0.0334	survivor	0.0265	annuity	0.188
0.0299	0.0293				
$k=6$	0.0364	0.0287	0.199	0.0324	0.0318
$k=10$	0.0371	0.0292	0.203	0.0329	0.0323

Table 6: Effect of heterogeneity on premium rates with a fixed broken heart syndrome $(\gamma=5)$, at age 50 .

Figure 2: Probability density functions of the last survivor's lifetime upon z_{0}, for $z_{0}=30,50$.

Special attention should be paid when comparing premium rates at age 50 for different values of parameter k. Indeed, for each value of $k, \gamma(k, 1 / k)$ is the heterogeneity distribution at age 30 , but the heterogeneity distribution conditional on the survival of both spouses up to age 50 is no longer the same. However, it is still a gamma distribution $\gamma\left(k, 1 /\left[k+A_{1}\left(z_{1}-z_{0}\right)+A_{2}\left(z_{1}-z_{0}\right)\right]\right.$), where $z_{0}=30$, $z_{1}=50$ and A_{1}, A_{2} are the cumulative intensities (see Appendix 3). Therefore, the mean of the heterogeneity is $k /\left[k+A_{1}\left(z_{1}-z_{0}\right)+A_{2}\left(z_{1}-z_{0}\right)\right]$, and quotient between the variance at age 50 and that at age 30 is $k^{2} /\left[k+A_{1}\left(z_{1}-z_{0}\right)+A_{2}\left(z_{1}-z_{0}\right)\right]^{2}$. Both quantities are decreasing functions of k, that is, the mean and the variance of the heterogeneity diminish (in proportion) faster in the population with initially the highest heterogeneity $(k=2)$. Figure 3 plots, for each k, the probability density function of the heterogeneity both at age 30 and at age 50 . The gamma
distribution parameters at age 50 are reported in Table 7.

Figure 3: Probability density functions of the heterogeneity, at ages 30 and 50 .

	Shape parameter	Scale parameter	$\sqrt{\frac{\text { Variance at age } 50}{\text { Variance at age } 30}}$
$k=2$	0.4816	2	0.9279
$k=6$	0.1646	6	0.9750
$k=10$	0.0992	10	0.9849

Table 7: Gamma distribution parameters at age 50 for different gamma distributions $\gamma(k, 1 / k)$ at age 30. The scale parameter is the same as at age 30 . The fourth column gives values of $k /\left[k+A_{1}(x)+A_{2}(x)\right]$, which equals also the mean of the heterogeneity distribution. It measures the reduction of the heterogeneity due to the mover-stayer phenomenon.

4.3. Evolution of the price of the contract during the life of the contract

A premium level a_{0} is fixed at the inception of each contract (see Section 4.1). However, it is important to evaluate regularly the residual value of this contract during its life, for instance, to include it correctly in the balance sheet, or, if it is securitized, to evaluate the price of the corresponding component of the Insurance Linked Security (ILS).

Let us first focus on the joint life policy. The fair value of this contract at a date where both spouses are still alive and the age of the couple is $z_{1}, z_{1} \geq z_{0}$, is given by :

$$
\begin{align*}
& C_{10}^{(1)}\left(a_{0}, r, z_{1} ; Y_{1}, Y_{2}\right) \\
= & \mathbb{E}_{0}\left[C_{0}^{(1)}\left(a_{0}, r, z_{1} ; Y_{1}, Y_{2}\right) \mid Y_{1} \geq z_{1}, Y_{2} \geq z_{1}\right] . \tag{3.9}
\end{align*}
$$

a_{0} is for instance equal to the fair premium $a_{0}=a_{0}^{*(1)}$ given in (4.3) when $z_{1}=z_{0}$.
The price updating is more complicated for the reversionary annuities product, since we have to distinguish the two possible regimes existing during the life of the contract. In the first regime the two spouses are both alive, with an age of the couple equal to z_{1}. In the second regime, there is just one surviving spouse, the available information includes the date of the first death and the fact that the surviving spouse is the husband, or the wife. In both regimes, the residual value is systematically negative. First, in the second regime the only cash flows are the payment of the annuity, which are negative. Second, in the first regime, the premium rate of the reversionary annuity is increasing in z_{0} (see Figure 1), therefore, couples who entered into the contract at age $z_{0}<z_{1}$ pay, at age z_{1}, less premium than newly underwritten couples of age z_{1}, while the two groups have the same heterogeneity distribution, thus the same risk profile.

For illustration, let us calculate the residual value of a reversionary annuity underwritten at the age of 30 . At date $t>30$, the residual value of this contract depends on the survival status of the couple. We use the same model as in the previous section and Figure 4 displays the evolution of the residual value of the contract, first when both spouses are still alive at date t, then when one of the spouse died before t. The parameters are $\gamma=5, k=2, z_{0}=30$. As expected we observe that in both case, the value of the contract is negative. We observe also in the second case, that the value of the contract is smaller for widows than for widowers. Indeed, at the same age and with the same marital status, women have a smaller mortality intensity than men have.

Figure 4: Evolution of the residual value of a reversionary annuity. Left panel: both spouses are still alive. Right panel: one of the spouses died before t.

5. Concluding remarks

The standard insurance literature for analyzing and pricing insurance contracts written on two lives are pure models. A first category assumes a continuous bivariate distribution of the spouses' lifetimes with a continuous probability density function. This continuity assumption implies no jump in intensity when a spouse dies. A second category of models apply a pure Freund model to describe the broken-heart syndrome. These two effects impact the price of insurance contracts and of annuity values in different ways, not only the price of contracts written on two lives, but also the prices of individual contracts written on a single life ${ }^{14}$. By considering appropriate extensions of the Freund model, we have explained how to account for both individual heterogeneity and potential jumps at the time of a spouse's death.

A similar problem arises in the credit risk literature where the death event is replaced by a default event. The standard credit risk literature prices the default intensity, not the default event itself, leading to possible mis-pricing of credit derivatives. The idea of introducing jumps in intensity to correct such a mispricing has been proposed in Jarrow and Yu (2001) for a credit derivative, written on two corporations ${ }^{15}$ [see also the discussions in Benzoni et al. (2012) and Bai et al.

[^11](2014)]. Recently Gourieroux et al. (2014) derived the pricing formulas for credit derivatives written on a large pool of corporations and taking into account the jumps arising when corporations in the pool default.

Finally formulas providing the prices of insurance contracts written on two lives depend on parameters explaining how the exogenous variable impact the bivariate lifetime (risk-neutral) distribution. These variables include the individual characteristics of the couple, in particular the information on their generation. This generation information for each given age allows for taking into account the deterministic time dependence of the mortality rate. Moreover, the unobserved explanatory variables can also depend on time in a stochastic way. Thus the longevity feature can be taken into account either by introducing generation (time) as an explanatory variable, or by introducing unobserved dynamic factor [see Duffie et al. (2009) for an example of unobserved dynamic Gaussian factor in credit risk modelling]. The parameters have to be calibrated, especially the parameters measuring the magnitude of the jumps (or of the association measures), the parameters capturing the frailty and how they depend on generation (i.e. time). We explain in Appendix 4 why all the intensities are nonparametrically identified, in a mixed proportional hazard model, whenever the generation (cohort) effect is taken into account. The development of nonparametric, or semi-parametric, estimation methods is out of the scope of this paper on pricing, but they will clearly require enough data on coupled lives, disaggregated by generations of spouses and contracts.

Appendices

Appendix 1. Joint density of lifetimes

Let us assume $y_{1}<y_{2}$. We have :

$$
\begin{aligned}
f\left(y_{1}, y_{2}\right)= & \lim _{d y_{1}, d y_{2} \rightarrow 0} \frac{1}{d y_{1} d y_{2}} P\left[Y_{1} \in\left(y_{1}, y_{1}+d y_{1}\right), Y_{2} \in\left(y_{2}, y_{2}+d y_{2}\right)\right] \\
= & \lim _{d y_{1}, d y_{2} \rightarrow 0} \frac{1}{d y_{1} d y_{2}} P\left[X_{1}<X_{2}, X_{1} \in\left(y_{1}, y_{1}+d y_{1}\right), X_{1}+X_{4} \in\left(y_{2}, y_{2}+d y_{2}\right)\right] \\
= & \lim _{d y_{1}, d y_{2} \rightarrow 0}\left[\frac{1}{d y_{1}} P\left[y_{1}<X_{2}, X_{1} \in\left(y_{1}, y_{1}+d y_{1}\right)\right]\right. \\
& \left.\frac{1}{d y_{2}} P\left[X_{4} \in\left(y_{2}-y_{1}, y_{2}-y_{1}+d y_{2}\right) \mid X_{1}=\min \left(X_{1}, X_{2}\right)=y_{1}\right]\right] \\
= & {\left[-\frac{\partial S_{12}}{\partial x_{1}}\left(y_{1}, y_{1}\right)\right]\left[-\frac{\partial S_{4}}{\partial x_{4}}\left(y_{2}-y_{1} ; y_{1}\right)\right] . }
\end{aligned}
$$

Appendix 2. Link between the historical and risk-neutral distributions

For expository purpose we set the risk-free rate $r=0$. Then we have to consider jointly the historical (or physical) distribution, with characteristics indexed by P, and the risk-neutral (or adjusted for risk) distribution, with characteristics indexed by Q. Since we are in an incomplete market frameworks, these two distributions can be specified independently. Let us now discuss the possible effects of the change of probability.
i) The stochastic discount factor (sdf) is the ratio between the risk-neutral and historical densities:

$$
m\left(y_{1}, y_{2}, F\right)=\frac{f^{Q}\left(y_{1}, y_{2}, F\right)}{f^{P}\left(y_{1}, y_{2}, F\right)}
$$

for a model with frailty for instance. A discontinuity of the risk-neutral density f^{Q} on the 45° line $y_{1}=y_{2}$, that is, jumps in the risk-neutral intensities, can result from either jumps in the historical intensities, or jumps in the adjustment for risk (sdf) when a death occurs.

The standard insurance literature computing the prices from a specification of the historical distribution and the sdf has omitted the second possibility. This is typical of the practice of pricing by Esscher transforms [see e.g. Esscher (1932), Gerber and Shiu (1994)] written on factor F, that is choosing $m\left(y_{1}, y_{2}, F\right)=$
$\exp (\alpha+\beta F)$, where α and β are such that $E^{P}[\exp (\alpha+\beta F)]=1$ to get the zero risk-free rate.

Intuitively to reintroduce the effect of death event while using the practice of Esscher transforms, we may introduce the Esscher transforms on the distributions of the latent variables, that is,

> for the pair $\left(X_{1}, X_{2}\right): \exp \left(\alpha_{12}+\beta_{12} F\right)$, say,
> for the pair $X_{3}: \exp \left(\alpha_{3}+\beta_{3} F\right)$, say,
> for the pair $\left(X_{4}\right): \exp \left(\alpha_{4}+\beta_{4} F\right)$, say.
with parameters linked by the condition of zero risk-free rate.

Appendix 3. Probability distribution function of the heterogeneity given survival up to time \boldsymbol{t}.

We derive the probability density function of the heterogeneity of the set of couples such that both spouses survive up to age $z_{0}+x$. It is denoted g_{x}, We also denote by g_{0} the heterogeneity distribution at age $z_{0}=30$, which equals $\gamma(k, 1 / k)$, therefore:

$$
g_{0}(f) \propto f^{k-1} \exp [-k f] .
$$

The unconditional survival probability that both survive up to age $z_{0}+x$ is:

$$
\begin{aligned}
S(x) & =\mathbb{P}\left(Y_{1}>z_{0}+x, Y_{2}>z_{0}+x \mid Y_{1}>z_{0}, Y_{1}>z_{0}\right) \\
& =\int \exp \left[-\left[A_{1}(x)+A_{2}(x)\right] f\right] g_{0}(f) \mathrm{d} f,
\end{aligned}
$$

where A_{1} and A_{2} are cumulative intensities. Then the unconditional mortality intensity at age $z_{0}+x$ is:

$$
\begin{aligned}
\lambda(x) & =-\frac{\mathrm{d}}{\mathrm{~d} x} \log S(x) \\
& =\frac{\int\left[a_{1}(x)+a_{2}(x)\right] f \exp \left[-\left[A_{1}(x)+A_{2}(x)\right] f\right] g_{0}(f) \mathrm{d} f}{\int \exp \left[-\left[A_{1}(x)+A_{2}(x)\right] f\right] g_{0}(f) \mathrm{d} f} .
\end{aligned}
$$

Therefore, we deduce that the heterogeneity distribution function is:

$$
\begin{aligned}
g_{x}(f) & =\frac{g_{0}(f) \exp \left[-\left[A_{1}(x)+A_{2}(x)\right] f\right]}{\int g_{0}(f) \exp \left[-\left[A_{1}(x)+A_{2}(x)\right] f\right] \mathrm{d} f} \\
& \propto f^{k-1} \exp \left[-\left[k+A_{1}(x)+A_{2}(x)\right] f\right]
\end{aligned}
$$

which is a gamma distribution with shape parameter k and scale parameter $1 /(k+$ $\left.A_{1}(x)+A_{2}(x)\right)$.

Appendix 4. Identification of the model

To illustrate the possibility of nonparametric identification, let us consider a mixed proportional hazard model, where the latent intensities are of the type:

$$
\begin{equation*}
\lambda_{j}\left(t \mid z, x_{j}\right)=a_{j}\left(x_{j}\right) b_{j}(z) F_{j}, \quad j=1,2,3,4 \tag{a.1}
\end{equation*}
$$

where z are the observable individual covariates, F_{j} unobserved heterogeneity, a_{j} baseline intensities. The observed covariates can be the generation ${ }^{[16]}$, as well as the date of the event $\min \left(Y_{1}, Y_{2}\right)$ for variables $j=3,4$ to allow for semi-Markov intensities.

We can distinguish different models based on the specification a.1) according to the observed durations:

- The model $M_{1,2}$, if we observe $\left(Y_{1}, Y_{2}\right)$.
- The model $M_{1 \mid 2}$, if we observe $\left(Y_{1}, Y_{2} \mathbb{1}_{Y_{2}<Y_{1}}\right)=\left(X_{1}+X_{3} \mathbb{1}_{X_{2}<X_{1}}, X_{2} \mathbb{1}_{X_{2}<X_{1}}\right)$. In this model, the main duration variable of interest is Y_{1} and Y_{2} is observed only if it is smaller than Y_{1}.
- The model $M_{2 \mid 1}$, if we observe $\left(Y_{2}, Y_{1} \mathbb{1}_{Y_{2}<Y_{1}}\right)=\left(X_{2}+X_{4} \mathbb{1}_{X_{1}<X_{2}}, X_{1} \mathbb{1}_{X_{1}<X_{2}}\right)$. In this model, the main duration variable of interest is Y_{2} and Y_{2} is observed only if it is smaller than Y_{2}.
- The model $M_{1 \wedge 2}$, if we observe $\left(\min \left[Y_{1}, Y_{2}\right], \mathbb{1}_{Y_{2}<Y_{1}}\right)$.

These models are embedded in the following sequence:

$$
M_{1 \wedge 2} \subset{ }_{M_{1 \mid 2}}^{M_{2 \mid 1}} \subset M_{1,2}
$$

Model $M_{1 \wedge 2}$ is commonly called competing risks model [see e.g. Abbring and van den Berg (2003a)] and is used in the analysis of mortality by causes. Model $M_{1 \mid 2}$ (resp. $M_{2 \mid 1}$) is called semi-competing risks model [see e.g. Xu et al. (2010)] in biostatistics or (survival) models with treatment effect in microeconometrics [see Abbring and van den Berg (2003b)]. For instance, model $M_{1 \mid 2}$ is a model for mortality of individual 1 subject to the death of 2 as treatment. Due to the sequence of embedded models, any function identifiable under $M_{1 \wedge 2}$ (resp. $M_{1 \mid 2}$, $M_{2 \mid 1}$) is also identifiable under $M_{1 \mid 2}$ and $M_{2 \mid 1}$ (resp. $M_{1,2}$). This allows for applying Proposition 4 in (Abbring and van den Berg, 2003b), valid for the identification of

[^12]treatment effects in duration models. Under mild conditions $\sqrt{17}$, we can, in Model $M_{1 \mid 2}$, identify nonparametrically functions ${ }^{18}$
$$
a_{1}, a_{2}, b_{1}, b_{2}, a_{3}, b_{3} \text { and the joint distribution of } F_{1}, F_{2}, F_{3} .
$$

In Model $M_{2 \mid 1}$, we can identify:

$$
a_{1}, a_{2}, b_{1}, b_{2}, a_{4}, b_{4} \text { and the joint distribution of } F_{1}, F_{2}, F_{4} .
$$

Thus under $M_{1,2}$ we can identify all functions $a_{j}, b_{j}, j=1,2,3,4$, as well as the 3 -dimensional distributions of $\left(F_{1}, F_{2}, F_{3}\right)$ and $\left(F_{1}, F_{2}, F_{4}\right)$.

In practice, we often assume that $F_{1}=F_{3}, F_{2}=F_{4}$, where F_{1} and F_{2} can be dependent. Under this additional assumption on unobserved heterogeneities, Model $M_{1,2}$ is nonparametrically identified.

However, the identification issues have not yet been solved for other types of intensities, such as the affine intensities of Section 3.4.

Acknowledgements: The authors gratefully acknowledge useful comments from D. Hainaut, C.Y. Robert, J. Spreeuw, as well as an anonymous referee. The first author acknowledges financial support of the Global Risk Institute and of the Chair: Regulation and Systemic Risk. The views are those of the authors. They do not necessarily reflect the views of the Prudential Supervision and Resolution Authority (ACPR) and of SCOR SE.

Bibliography

Abbring, J. and van den Berg, G. (2003a). The Identifiability of the Mixed Proportional Hazards Competing Risks Model. Journal of the Royal Statistical Society: Series B, 65(3):701-710.

Abbring, J. and van den Berg, G. (2003b). The Nonparametric Identification of Treatment Effects in Duration Models. Econometrica, 71(5):1491-1517.

Bai, J., Collin-Dufresne, P., Goldstein, R., and Helwege, J. (2014). On Bounding Credit Event Risk Premia. forthcoming Review of Financial Studies.

Benzoni, L., Collin-Dufresne, P., Goldstein, R., and Helwege, J. (2012). Modeling Credit Contagion via the Updating of Fragile Beliefs. Federal Reserve Bank of Chicago Working Paper.

[^13]Carriere, J. (2000). Bivariate Survival Models for Coupled Lives. Scandinavian Actuarial Journal, (1):17-32.

Clayton, D. (1978). A Model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence. Biometrika, 65(1):141-151.

Denuit, M. and Cornet, A. (1999). Multilife Premium Calculation with Dependent Future Lifetimes. Journal of Actuarial Practice, 7:147-171.

Denuit, M., Dhaene, J., Le Bailly de Tilleghem, C., Teghem, S., et al. (2001). Measuring the Impact of Dependence Among Insured Life Lengths. Belgian Actuarial Bulletin, 1(1):18-39.

Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty Correlated Default. Journal of Finance, 64(5):2089-2123.

Esscher, F. (1932). On the Probability Function in the Collective Theory of Risk. Skandinavisk Aktuarietidskift, 15:175-195.

Frees, E., Carriere, J., and Valdez, E. (1996). Annuity Valuation with Dependent Mortality. Journal of Risk and Insurance, 63(2):229-261.

Freund, J. (1961). A Bivariate Extension of the Exponential Distribution. Journal of the American Statistical Association, 56(296):971-977.

Genest, C. and MacKay, J. (1986). Copules Archimédiennes et Familles de Lois Bidimensionnelles dont les Marges sont Données. Canadian Journal of Statistics, 14(2):145-159.

Gerber, H. and Shiu, E. (1994). Option Pricing by Esscher Transforms. Transactions of the Society of Actuaries, 46:99-140.

Gourieroux, C., Monfort, A., and Renne, J.-P. (2014). Pricing Default Events: Surprise, Exogeneity and Contagion. Journal of Econometrics, 182(2):397-411.

Hougaard, P. (2000). Analysis of Multivariate Survival Data, volume 564. Springer New York.

Iachine, I. (2004). Identifiability of Bivariate Frailty Models. University of Southern Denmark Working Paper.

Jagger, C. and Sutton, C. (1991). Death After Marital Bereavement-Is the Risk Increased? Statistics in Medicine, 10(3):395-404.

Jarrow, R. and Yu, F. (2001). Counterparty Risk and the Pricing of Defaultable Securities. The Journal of Finance, 56(5):1765-1799.

Ji, M., Hardy, M., and Li, S. (2011). Markovian Approaches to Joint-Life Mortality. North American Actuarial Journal, 15(3):357-376.

Luciano, E., Spreeuw, J., and Vigna, E. (2008). Modelling Stochastic Mortality for Dependent Lives. Insurance: Mathematics and Economics, 43(2):234-244.

Luciano, E., Spreeuw, J., and Vigna, E. (2010). Cross-Generational Comparison of Stochastic Mortality of Coupled Lives. University of Torino Working Paper.

McNeil, A. and Nešlehová, J. (2009). Multivariate Archimedean Copulas, dMonotone Functions and l_{1}-Norm Symmetric Distributions. Annals of Statistics, 37(5B):3059-3097.

Nelsen, R. (1999). An Introduction to Copulas. Springer Verlag, New-York.
Nihtilä, E. and Martikainen, P. (2008). Institutionalization of Older Adults After the Death of a Spouse. American Journal of Public Health, 98(7):1228.

Norberg, R. (1989). Actuarial Analysis of Dependent Lives. Bulletin of the Swiss Association of Actuaries, (2):243-254.

Oakes, D. (1989). Bivariate Survival Models Induced by Frailties. Journal of the American Statistical Association, 84(406):487-493.

Parkes, M., Benjamin, B., and Fitzgerald, R. (1969). Broken Heart: A Statistical Study of Increased Mortality Among Widowers. British Medical Journal, 1(5646):740-743.

Shemyakin, A. and Youn, H. (2006). Copula Models of Joint Last Survivor Analysis. Applied Stochastic Models in Business and Industry, 22(2):211-224.

Sklar, M. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l'Institut de Statistique de l'Université de Paris, (8):229-231.

Spreeuw, J. (2006). Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models. Scandinavian Actuarial Journal, (5):286-309.

Spreeuw, J. and Owadally, I. (2013). Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives. Annals of Actuarial Science, 7(2):236-257.

Spreeuw, J. and Wang, X. (2008). Modelling the Short-term Dependence Between Two Remaining Lifetimes. Cass Business School Discussion Paper.

Tosch, T. and Holmes, P. (1980). A Bivariate Failure Model. Journal of the American Statistical Association, 75(370):415-417.

Vaupel, J., Manton, K., and Stallard, E. (1979). The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality. Demography, 16(3):439-454.

Xu, J., Kalbfleisch, J. D., and Tai, B. (2010). Statistical Analysis of Illness-Death Processes and Semicompeting Risks Data. Biometrics, 66(3):716-725.

Youn, H. and Shemyakin, A. (1999). Statistical Aspects of Joint Life Insurance Pricing. Proceedings of the Business and Statistics Section of the American Statistical Association.

Youn, H. and Shemyakin, A. (2001). Pricing Practices for Joint Last Survivor Insurance. Actuarial Research Clearing House, 1(2):3.

Youn, H., Shemyakin, A., and Herman, E. (2002). A Re-Examination of the Joint Mortality Functions. North American Actuarial Journal, 6(1):166-170.

[^0]: *CREST and University of Toronto
 **SCOR and CREST
 Email addresses: gouriero@ensae.fr (Christian Gourieroux), yang.lu@ensae.fr (Yang Lu)

[^1]: ${ }^{1}$ More precisely Archimedean copulas with completely monotone generators [see McNeil and Nešlehová (2009)]

[^2]: ${ }^{2}$ There are two regimes, corresponding respectively to the cases $Y_{1}<Y_{2}$ and $Y_{2}<Y_{1}$.
 ${ }^{3}$ In their analysis Ji et al. (2011) consider also the possibility of a direct transition from state 1 to state 4 to account for catastrophic events (car accidents, plane crash) implying simultaneous deaths. They use a 5 -day cut-off to account for a possible lag in reporting.

[^3]: ${ }^{4}$ In the next Section, this independence assumption is relaxed and replaced by an assumption of conditional independence given an unobserved heterogeneity variable F. Then by integrating out F, we will create unconditional dependence between the variables.

[^4]: ${ }^{5}$ Note that the model has two layers of latent variables, first F, second $X_{1}, X_{2}, X_{3}, X_{4}$.

[^5]: ${ }^{6}$ Indeed the Archimedean copulas that admit this representation are those whose generator is completely monotone, see McNeil and Nešlehová (2009) for a characterization of Archimedean copulas.
 ${ }^{7}$ Some authors consider non Archimedean copulas, for instance normal copulas in Carriere (2000) or some multiple parameter families in Luciano et al. (2010). However, these copulas are still continuous and thus do not allow for asymmetric reactions. For this reason we have not listed these examples.

[^6]: ${ }^{8}$ More precisely, these authors use a stochastic extension of the Gompertz law.
 ${ }^{9}$ The numbers 4.2.20 indicate the copula in the list provided by Nelsen (1999).

[^7]: ${ }^{10}$ The link between the historical and risk-neutral bivariate distributions of the lifetimes is discussed in ??. The insurance literature often prices the insurance contracts by means of the historical distribution to get the so called fair premium, that is, neglects the correction for risk [see e.g. Ji et al. (2011), Section 5.6].

[^8]: ${ }^{11}$ The fair premium rate is obtained by replacing the risk-neutral distribution by the historical distribution in formula (4.3). Otherwise the premium rate accounts for a risk premium.

[^9]: ${ }^{12}$ The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. It is maintained by the University of California, Berkeley, and the Max Planck Institute for Demographic Research in Rostock, Germany; its official website is http://www.mortality.org

[^10]: ${ }^{13}$ This is expected. Indeed, the unconditional survivor function of the first death is:

 $$
 S^{*}(t)=\mathbb{E}\left[e^{-\left(A_{1}(t)+A_{2}(t)\right) F}\right]=\frac{1}{\left(1+1 / k\left(A_{1}(t)+A_{2}(t)\right)\right)^{k}},
 $$

[^11]: ${ }^{14}$ For the same reason they can impact the price of health insurance or of long-term care contracts, for instance, since the risk of entering into long-term institutional care after the death of a spouse can increase [Nihtilä and Martikainen (2008)].
 ${ }^{15}$ which is equivalent to an insurance product written on two lives.

[^12]: ${ }^{16}$ As we pointed out earlier in the paper, there are at least three generation effects, that are respectively the cohort of the husband, the cohort of the wife, and the year of inception of the contract.

[^13]: ${ }^{17}$ Roughly speaking, the observed covariate $b_{j}(z)$ should cover a non empty open set, that is, there should be sufficient covariate variation among different couples.
 ${ }^{18}$ Whereas in the standard competing risks model $M_{1 \wedge 2}$, we can nonparametrically identify $a_{1}, a_{2}, b_{1}, b_{2}$ and the joint distribution of F_{1}, F_{2} under the same mild conditions [see Abbring and van den Berg (2003a), Proposition 2].

