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Introduction

This paper introduces new models for analyzing the mortality dependence between individuals in a couple. This type of model is needed for risk management and pricing of life insurance products written on two lives, such as joint life policy, last survivor insurance policy, or contract with reversionary annuities.

The basic actuarial literature usually assumed the independence between the spouses' mortality risks. Recently the mortality risk dependence has been introduced by means of copulas [see e.g. [START_REF] Frees | Annuity Valuation with Dependent Mortality[END_REF], [START_REF] Youn | Statistical Aspects of Joint Life Insurance Pricing[END_REF], [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF], [START_REF] Denuit | Measuring the Impact of Dependence Among Insured Life Lengths[END_REF], [START_REF] Shemyakin | Copula Models of Joint Last Survivor Analysis[END_REF], [START_REF] Luciano | Modelling Stochastic Mortality for Dependent Lives[END_REF], [START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF]], and the effect of this dependence on the risk premia starts to be measured. However, standard copula models assume continuous copula densities. This implies symmetric reactions of the mortality of a member of the couple when the other dies. An alternative consists in introducing jumps in mortality intensity (the Freund model) at the time of death of the spouse, to capture the death of a spouse [see e.g. [START_REF] Spreeuw | Modelling the Short-term Dependence Between Two Remaining Lifetimes[END_REF], [START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF], [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF]]. Our paper extends this literature by mixing the Freund model, which allows for asymmetric reactions of the mortality intensities at a death event, with unobservable common factor (or frailty), which underlies many usual Archimedean copulas 1 .

The basic Freund model and its properties in terms of conditional intensities are presented in Section 2. This model allows for jump in the mortality intensity of a given spouse when the other spouse dies. The magnitude of this jump and its variation with respect to the age of the couple is the basis for constructing a convenient association measure, useful to analyze the broken-heart syndrome. The Freund model is extended in Section 3 to include common unobserved static frailty. In particular we discuss the properties of Freund models with latent intensities which are exponential affine functions of the frailty. These models are used in Section 4 to derive the prices of various contracts written on two lives. We consider these prices at the inception of the contract as well as during its lifetime. We emphasize the effect of the dependence between the mortality risks of the two spouses on these prices. Section 5 concludes. Proofs are gathered in appendices and a discussion on the identification issues is provided in Appendix 4.

The basic Freund model

This type of model has been introduced by [START_REF] Freund | A Bivariate Extension of the Exponential Distribution[END_REF] to construct bivariate survival models for dependent duration variables, while still featuring the lack of memory property. It has been noted by [START_REF] Tosch | A Bivariate Failure Model[END_REF] that such models have an interpretation in terms of latent variables. We follow this interpretation. The model is written for a given couple, without specifying the index of the couple and possibly its observed characteristics such as the birth dates of the spouses, the difference between their ages [START_REF] Youn | Statistical Aspects of Joint Life Insurance Pricing[END_REF]], or their age at the time of their marriage or common law relationship. In the application, such static couple characteristics will be introduced to capture the generation effects. The analysis is in continuous time and the lifetime variables are continuous variables.

The latent model

Let us consider a given couple with two spouses 1 and 2. The potential lifetimes of individuals 1 and 2, when both are alive, are denoted by X 1 and X 2 , respectively.

To get a unique time origin for the two members of the couple, these latent lifetimes are measured since the beginning of the common life. A first individual in the couple dies at date min(X 1 , X 2 ). He/she is individual 1 (resp. individual 2), if min(X 1 , X 2 ) = X 1 [resp. min(X 1 , X 2 ) = X 2 ]. After this event, there can be a change in the potential residual lifetime distribution of the surviving individual. The potential residual lifetime of individual 1 (resp. individual 2) after the death of individual 2 (resp. individual 1) is denoted by X 3 (resp. X 4 ).

The joint distribution of the four latent variables is characterized by i) the joint survival function of (X 1 , X 2 ) :

S 12 (x 1 , x 2 ) = P[X 1 > x 1 , X 2 > x 2 ];
(2.1)

ii) the survival function of X 3 given X 2 = min(X 1 , X 2 ) = z :

S 3 (x 3 ; z) = P[X 3 > x 3 |X 2 = min(X 1 , X 2 ) = z]. (2.2)
iii) The survival function of

X 4 given X 1 = min(X 1 , X 2 ) = z : S 4 (x 4 ; z) = P[X 4 > x 4 |X 1 = min(X 1 , X 2 ) = z].
(2.3)

These three joint and conditional survival functions, defined on (0, ∞), characterize the latent model for the analysis of the mortality in the couple. In this model there exist at least three generation effects corresponding to the generations of each spouse, and to the generation of the couple, respectively.

Individual lifetimes 2.2.1. Link between the individual lifetimes and the latent variables

The lifetimes of individuals 1 and 2 (since the beginning of the common life) are denoted by Y 1 and Y 2 . They can be expressed in terms of the latent variables as :

Y 1 = X 1 1l X 1 <X 2 + (X 2 + X 3 )1l X 2 <X 1 = min(X 1 , X 2 ) + X 3 1l X 2 <X 1 , , Y 2 = X 2 1l X 2 <X 1 + (X 1 + X 4 )1l X 1 <X 2 = min(X 1 , X 2 ) + X 4 1l X 1 <X 2 .
(2.4)

This system can be partially solved. First, the X 1 , X 2 variables are related to variables

(Y 1 , Y 2 ): min(Y 1 , Y 2 ) = min(X 1 , X 2 ), and Y 1 > Y 2 , if and only if X 1 > X 2 .
Then the variables X 3 and X 4 can be deduced in some regimes2 since :

X 3 1l Y 2 <Y 1 = Y 1 -min(Y 1 , Y 2 ) and X 4 1l Y 1 <Y 2 = Y 2 -min(Y 1 , Y 2 ).
As noted in [START_REF] Norberg | Actuarial Analysis of Dependent Lives[END_REF], the observed model can be interpreted in terms of a chain with four possible states3 , that are:

• state 1: both spouses are alive,

• state 2: husband dead, wife alive,

• state 3: husband alive, wife dead,

• state 4: both spouses are dead, and transitions can only arise between states 1 and 2, 1 and 3, 2 and 4, and 3 and 4. Since the mortality intensity of a spouse can depend not only on the current state, but potentially on the time elapsed since the death of the other spouse, we get an example of a semi-Markov chain.

The joint density function and its decomposition

The joint probability density function (pdf) of (Y 1 , Y 2 ) is easily derived from the distribution of the latent variables. We have (see Appendix 1) :

f (y 1 , y 2 ) = - ∂S 12 ∂x 1 (y 1 , y 1 ) - ∂S 4 ∂x 4 (y 2 -y 1 ; y 1 ) , if y 2 > y 1 , (2.5) = - ∂S 12 ∂x 2 (y 2 , y 2 ) - ∂S 3 ∂x 3 (y 1 -y 2 ; y 2 ) , if y 1 > y 2 .
Therefore, the joint density function can feature a discontinuity when y 1 = y 2 . Let us consider the case y 2 > y 1 . The density can also be written as :

f (y 1 , y 2 ) = - ∂S * ∂y (y 1 ) ∂S 12 ∂x 1 (y 1 , y 1 )/ ∂S * ∂y (y 1 ) - ∂S 4 ∂x 4 (y 2 -y 1 ; y 1 ) , (2.6)
where S * (y) = S 12 (y, y) is the survival function of min(X 

P[Y 1 < Y 2 | min(Y 1 , Y 2 ) = y 1 ],
iii) -∂S 4 ∂x 4 (y 2 -y 1 ; y 1 ) is the density of the residual lifetime after this event.

Individual mortality intensities

Let us now derive the individual mortality intensities given the current information concerning the couple. Their expressions depend on the state either alive, or dead, of the other spouse.

i) Let us first consider a date y at which both individuals are still alive, that is, such that Y 1 ≥ y, Y 2 ≥ y. The mortality intensity of individual 1 is defined by :

λ 1 (y|Y 1 ≥ y, Y 2 ≥ y) = lim dy→0 + 1 dy P [y ≤ Y 1 ≤ y + dy|Y 1 ≥ y, Y 2 ≥ y] = ∞ y f (y, y 2 )dy 2 /S * (y).
(2.7)

After replacing the bivariate density by its expression (2.5) for y 2 > y 1 and computing the integral, we get :

λ 1 (y|Y 1 ≥ y, Y 2 ≥ y) = - ∂S 12 ∂x 1 (y, y) /S * (y). (2.8)
This is the crude intensity function of individual 1 involved in the decomposition of the joint density function.

Similarly, we have :

λ 2 (y|Y 1 ≥ y, Y 2 ≥ y) = lim dy→0 + ( 1 dy P [y ≤ Y 2 ≤ y + dy|Y 1 ≥ y, Y 2 ≥ y]) = ∞ y f (y 1 , y)dy 1 /S * (y).
(2.9)

= -∂S 12 ∂x 2 (y, y) /S * (y).

ii) The expression of the mortality intensities can change if one of the individual dies exactly at date y. The mortality intensity of individual 1 at date y, if individual 2 dies at date y, becomes :

λ 1|2 (y|Y 1 ≥ y, Y 2 = y) = lim dy→0 + 1 dy P (y < Y 1 ≤ y + dy|Y 1 ≥ y, Y 2 = y) = [f (y, y)] / - ∂S 12 ∂x 2 (y, y) = - ∂S 3 ∂x 3 (0, y), (2.10)
by applying the expression of the joint density (2.5) with y 1 = y 2 = y.

Similarly, we get :

λ 2|1 (y|Y 1 = y, Y 2 ≥ y) = lim dy→0 + 1 dy P [y ≤ Y 2 ≤ y + dy|Y 1 = y, Y 2 ≥ y] = - ∂S 4 ∂x 4 (0, y).
(2.11)

Note that S 3 (0, y) = S 4 (0, y) = 1. Therefore we also have :

λ 1|2 (y|Y 1 ≥ y, Y 2 = y) = - ∂ log S 3 ∂x 3 (0, y),
and λ 2|1 (y|Y 1 = y, Y 2 ≥ y) = -∂ log S 4 ∂x 4 (0, y),
which are the expected expressions of the intensities in terms of survival functions.

iii) Finally, we can also consider the mortality intensity of spouse 1, when the other spouse is dead since a given time. We have, for y > y * :

λ 1|2 (y|Y 1 ≥ y, Y 2 = y * ) = lim dy→0 + 1 dy P [y < Y 1 < y + dy|Y 1 ≥ y, Y 2 = y * ] = f (y, y * )/ ∞ y f (u, y * )du = - ∂ log S 3 ∂x 3 (y -y * , y * ),
which is just the intensity of the residual lifetime X 3 given the date of the first death.

Dependence and Jump in Intensities

It has been suggested in [START_REF] Clayton | A Model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence[END_REF] to measure the dependence between duration variables by considering the jump in intensities following the news of a death. We get a functional measure of dependence function of the age y of the couple, which is especially appropriate for following the dependence phenomenon during the couple life. These per-cent jumps are the following ones :

When individual 2 dies at date y, the jump at this date of the mortality intensity of individual 1 is :

γ 1|2 (y) = λ 1|2 (y|Y 1 ≥ y, Y 2 = y)/λ 1 (y|Y 1 ≥ y, Y 2 ≥ y) = - ∂S 3 ∂x 3 (0; y) S * (y) / - ∂S 12 ∂x 1 (y, y) .
(2.12) Symmetrically, we get :

γ 2|1 (y) = λ 2|1 (y|Y 1 = y, Y 2 ≥ y)/λ 2 (y|Y 1 ≥ y, Y 2 ≥ y) = - ∂S 4 ∂x 4 (0; y) S * (y) / - ∂S 12 ∂x 2 (y, y) .
(2.13)

In the standard literature on bivariate survival models, the bivariate density function is continuous at y 1 = y 2 = y. Then, the two measures γ 1|2 (y) and γ 2|1 (y) coincide for any age y and it is easily checked that in this case, they are equal to the cross ratio function defined in [START_REF] Oakes | Bivariate Survival Models Induced by Frailties[END_REF] [see also the discussion in Section 3.2]. This equality is not necessarily satisfied in a Freund model and we can observe different reactions of a spouse at the death of the other spouse in the couple.

Definition 1. We have the immediate broken-heart syndrome for spouse 1 (resp. 2) at date y,

if γ 1|2 (y) > 1 [resp.γ 2|1 (y) > 1].
We can have the immediate broken-heart syndrome (or the reverse immediate broken-heart syndrome when the directional measure of association is strictly smaller than 1), with different magnitude according to the age and spouse. We can even observe reactions in different directions. This arises when the wife is devastated by the death of her husband, with an increase of her mortality intensity, whereas the death of the wife may provide more freedom to her husband and possibly a decrease of his mortality rate. This is the "love and death" phenomenon with the fact that love is not always shared and can be age-dependent.

Definition 1 focuses on the immediate effect of the death of a spouse. According to this definition, many standard copula models [see e.g. [START_REF] Frees | Annuity Valuation with Dependent Mortality[END_REF], [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF]] as well as the multiple state models in [START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF] and [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF] all allow for the broken-heart syndrome. There exist alternative definitions measuring the long-term or short-term persistence of the effect of the bereavement. For instance, [START_REF] Hougaard | Analysis of Multivariate Survival Data[END_REF] defines the broken-heart syndrome as a typical example of short-term effect: the mortality of the surviving spouse as a function of time elapsed since death of the partner is decreasing. Moreover, there can also be a long-term effect, that is, the effect of the death of the spouse is asymptotically non vanishing, or even increasing in the time elapsed. The Freund model, as well as models in [START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF] and [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF], are flexible enough to allow short-term (and/or long-term) effect; on the other hand, [START_REF] Spreeuw | Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models[END_REF] shows that usual copula models can only capture long-term effect.

There exist a few studies trying to measure the effect and showing a positive estimated broken-heart syndrome [see e.g. [START_REF] Parkes | Broken Heart: A Statistical Study of Increased Mortality Among Widowers[END_REF], [START_REF] Jagger | Death After Marital Bereavement-Is the Risk Increased?[END_REF], [START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF]]. Moreover it is shown that the broken-heart syndrome affects widowers more than widows [see [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF]]. However, by neglecting the frailty effect discussed later on in Section 3, the estimates may suffer from an omitted heterogeneity bias.

Observed and latent intensities

Let us now link the distributions of the observed and latent variables. Since (X 1 , X 3 ) and (X 2 , X 4 ) cannot be simultaneously observed, let us first assume that these two pairs of variables are independent4 . Then the distribution of the latent variables is characterized by the following latent intensities :

i) the latent intensity of X 1 denoted by a 1 (x 1 ); ii) the latent intensity of X 2 denoted by a 2 (x 2 ); iii) the latent intensity of X 3 given X 2 = min(X 1 , X 2 ) = z, denoted by a 3 (x 3 ; z); iv) the latent intensity of X 4 given X 1 = min(X 1 , X 2 ) = z, denoted by a 4 (x 4 ; z).
The associated cumulated intensities, that are their primitives with respect to the x argument, are denoted by A 1 (x 1 ),A 2 (x 2 ),A 3 (x 3 ;z),A 4 (x 4 ;z), respectively. We deduce that :

S 12 (x 1 , x 2 ) = exp{-[A 1 (x 1 ) + A 2 (x 2 )]}, S 3 (x 3 ; z) = exp[-A 3 (x 3 ; z)], S 4 (x 4 ; z) = exp[-A 4 (x 4 ; z)]
Then, the expression (2.5) of the bivariate probability density function becomes :

f (y 1 , y 2 ) = a 1 (y 1 ) exp{-[A 1 (y 1 ) + A 2 (y 2 )]}a 4 (y 2 -y 1 ; y 1 ) exp[-A 4 (y 2 -y 1 ; y 1 )], if y 2 > y 1 , = a 2 (y 2 ) exp[-(A 1 (y 1 ) + A 2 (y 2 ))]a 3 (y 1 -y 2 ; y 2 ) exp[-A 3 (y 1 -y 2 ; y 2 )], if y 1 > y 2 .
(2.14)

Similarly the directional measures of association can be written in terms of the latent intensities by using the expressions (2.12)-(2.13).

Property 1. The directional measures of association are : γ 1|2 (y) = a 3 (0; y)/a 1 (y), γ 2|1 (y) = a 4 (0; y)/a 2 (y).

(2.15)

Freund model with static frailty

The notion of (shared) frailty has been first introduced by [START_REF] Vaupel | The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality[END_REF]. The idea is to use the unobserved heterogeneity (or frailty) in bivariate duration models in order to create an additional dependence between lifetimes. In the basic specification, this frailty is static, since it depends on the couple only, neither on time, nor age. It represents the effect of common lifestyle, or common disasters encountered by the couple. In the extended model, the dependence between the lifetimes are due to either the frailty, or to the so-called contagion effects, that are the jumps in the intensities at the time of default. This new specification introduced below allows to disentangle these two effects. We first extend the Freund model of Section 2.4 to include unobserved frailty. Then, we discuss special cases.

The model

Let us denote by F the frailty variable, possibly multivariate. We consider a Freund model with the structure introduced in Section 2.4, where X 1 and X 2 are independent conditional on F , with latent intensities conditional on F given by : a 1 (x 1 ; F ), a 2 (x 2 ; F ), a 3 (x 3 ; z; F ), a 4 (x 4 ; z, F ). Let us now derive the latent5 survival functions S 12 (x 1 , x 2 ), S 3 (x 3 ; z), S 4 (x; z), when frailty F has been integrated out. We have :

S 12 (x 1 , x 2 ) = E P[X 1 ≥ x 1 , X 2 ≥ x 2 |F ] = E{exp -[A 1 (x 1 ; F ) + A 2 (x 2 ; F )]},
where the expectation is taken with respect to the distribution of F .

Similarly we get :

S 3 (x 3 ; z) = P[X 3 > x 3 |X 2 = min(X 1 , X 2 ) = z] = P[X 3 > x 3 |X 2 = z, X 1 > z] = E[a 2 (z, F ) exp(-[A 1 (z, F ) + A 2 (z; F ) + A 3 (x 3 ; z; F )])] E[a 2 (z; F ) exp(-[A 1 (z; F ) + A 2 (z; F )])]
.

These formulas can be used as inputs to derive the bivariate observed density (2.5) and the directional measures of association (2.12)-(2.13). For instance, we have by (2.12) :

γ 1|2 (y) = E{a 3 (0; y; F )a 2 (y, F ) exp(-[A 1 (y; F ) + A 2 (y; F )]}E[exp(-[A 1 (y; F ) + A 2 (y; F )])] E{a 2 (y; F ) exp(-[A 1 (y; F ) + A 2 (y; F )])}E{a 1 (y; F ) exp[-A 1 (y; F ) + A 2 (y; F )]}
We deduce the property below.

Property 2.

γ 1|2 (y) = Qy E [a 3 (0; y; F )a 2 (y; F )] Qy E [a 1 (y; F )] Qy E [a 2 (y; F )] , (3.1)
where Q y denotes the probability distribution with density :

q y (F ) = exp{-[A 1 (y) + A 2 (y)]F }/E[exp(-(A 1 (y) + A 2 (y))F ],
with respect to the distribution of F . Thus, if the p.d.f. of F is g(F ), the p.d.f. of the modified measure Q y is q y (F )g(F ).

The change of density q y is due to the aging of the heterogeneity structure in the population of surviving couples, called Population-at-Risk (PaR) at age y [see e.g. [START_REF] Vaupel | The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality[END_REF], eq. ( 5)].

Since the conditional directional measure of association is [see (2.15)] :

γ 1|2 (y; F ) = a 3 (0, y; F )/a 1 (y, F ),
we can also write the corresponding unconditional measure as :

γ 1|2 (y) = Qy E [γ 1|2 (y; F )a 1 (y; F )a 2 (y; F )] Qy E [a 1 (y; F )] Qy E (a 2 (y; F )] = Qy E [γ 1|2 (y; F )] Qy E [a 1 (y; F )a 2 (y; F )] Qy E [a 1 (y; F )] Qy E [a 2 (y; F )]
,

where :

d Qy = a 1 (y; F )a 2 (y; F ) Qy E [a 1 (y; F )a 2 (y; F )] dQ y .
Thus the unconditional directional measure of association γ 1|2 (y) is an average of the conditional directional measures of association with respect to a modified probability distribution, and adjusted for the dependence between a 1 (y; F ) and a 2 (y; F ), since the adjustment term equals 1, when these variables are not correlated under Q y .

Single proportional frailty

Following [START_REF] Vaupel | The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality[END_REF], it is usual to consider a single positive frailty with proportional effects on all latent intensities. This implies an Archimedean copula (with completely monotonic generator) for the bivariate latent variables X 1 and X 2 [see Oakes (1989), McNeil and[START_REF] Mcneil | Multivariate Archimedean Copulas, d-Monotone Functions and l 1 -Norm Symmetric Distributions[END_REF]], but not for the observed variables Y 1 , Y 2 , due to the changes in intensities after the first death event. More precisely, if :

a 1 (x 1 ; F ) = a 1 (x 1 )F, a 2 (x 2 ; F ) = a 2 (x 2 )F, a 3 (x 3 ; z; F ) = a 3 (x 3 ; z)F ; a 4 (x 4 ; z; F ) = a 4 (x 4 ; z)F,
we deduce from 2 eq.(3.1) that :

γ 1|2 (y) = a 3 (0; y) a 1 (y) Qy E (F 2 ) [ Qy E (F )] 2 , γ 2|1 (y) = a 4 (0; y) a 2 (y) Qy E (F 2 ) [ Qy E (F )] 2 . (3.2)
In this simple case, the directional measures of association given F are [see (2.15)] :

γ 1|2 (y; F ) = a 3 (0; y)F a 1 (y)F = a 3 (0; y) a 1 (y) , γ 2|1 (y; F ) = a 4 (0; y) a 2 (y) .
They are independent of frailty F , but not necessarily equal, which allows for asymmetric reactions.

The omitted heterogeneity introduces a positive bias on these measures. Indeed, we have 

Qy E (F 2 )/[ Qy E (F )] 2 ≥ 1,
γ 1|2 (y) ≥ γ 1|2 (y; F ), γ 2|1 (y) ≥ γ 2|1 (y; F ), ∀F.
However the per-cent adjustment for omitted heterogeneity is independent of age y and of the direction, which is considered. In particular the symmetry condition between spouses is preserved since :

γ 1|2 (y; F ) = γ 2|1 (y; F ) ⇐⇒ γ 1|2 (y) = γ 2|1 (y).

The actuarial literature

The models with mortality dependence considered in the actuarial literature are often special cases of the single proportional frailty model of Section 3.2.1, assuming moreover the continuity of the latent intensities :

Continuity assumption of the latent intensities

a 3 (x 3 ; z) = a 1 (x 3 + z), ∀x 3 , z, a 4 (x 4 ; z) = a 2 (x 4 + z), ∀x 4 , z.
Under the continuity assumption, the lifetimes Y 1 , Y 2 are independent given the shared frailty F , with joint conditional survivor function :

S 12 (y 1 , y 2 |F ) = exp[-[A 1 (y 1 ) + A 2 (y 2 )]F ].
To ensure the positivity of the intensity, the frailty F has to be positive. Let us denote by ψ its Laplace transform defined for positive arguments u by :

ψ(u) = E[exp(-uF )].
(3.3)

By integrating out the frailty, we deduce the joint survivor function :

S 12 (y 1 , y 2 ) = ψ[A 1 (y 1 ) + A 2 (y 2 )].
(3.4)

A similar computation can be performed to derive the marginal survivor functions. We get :

S 1 (y 1 ) = ψ[A 1 (y 1 )], S 2 (y 2 ) = ψ[A 2 (y 2 )].
(3.5)

Since the Laplace transform of F is continuous and strictly increasing, it is invertible. We deduce the expression of S 12 in terms of S 1 , S 2 and ψ:

S 12 (y 1 , y 2 ) = ψ[ψ -1 [S 1 (y 1 )] + ψ -1 [S 2 (y 2 )]] (3.6)
This is the standard definition of a copula [START_REF] Sklar | Fonctions de Répartition à n Dimensions et Leurs Marges[END_REF]]:

S 12 (y 1 , y 2 ) = C[S 1 (y 1 ), S 2 (y 2 )], (3.7) 
with a survivor Archimedean copula [START_REF] Genest | Copules Archimédiennes et Familles de Lois Bidimensionnelles dont les Marges sont Données[END_REF]]:

C(u 1 , u 2 ) = ψ[ψ -1 (u 1 ) + ψ -1 (u 2 )], (3.8) 
Property 4. Let us consider a Freund model with single proportional frailty. Under the continuity assumption, the dependence between the lifetime variables Y 1 , Y 2 is summarized by an Archimedean copula with the Laplace transform of the frailty as the generator.

Conversely, most usual Archimedean copulas admit a frailty interpretation 6 . The actuarial literature has considered this special case [see Tables 1 and2, for examples in the actuarial literature, and [START_REF] Nelsen | An Introduction to Copulas[END_REF] for a rather extensive list of copulas] 7 with different choices of the marginal distributions of the lifetimes and of the copulas.

6 Indeed the Archimedean copulas that admit this representation are those whose generator is completely monotone, see [START_REF] Mcneil | Multivariate Archimedean Copulas, d-Monotone Functions and l 1 -Norm Symmetric Distributions[END_REF] for a characterization of Archimedean copulas.

7 Some authors consider non Archimedean copulas, for instance normal copulas in [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF] or some multiple parameter families in [START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF]. However, these copulas are still continuous and thus do not allow for asymmetric reactions. For this reason we have not listed these examples. Gompertz [START_REF] Frees | Annuity Valuation with Dependent Mortality[END_REF], [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF], [START_REF] Youn | Pricing Practices for Joint Last Survivor Insurance[END_REF] Luciano et al 8 . (2008,2010) Weibull [START_REF] Frees | Annuity Valuation with Dependent Mortality[END_REF], Youn andShemyakin (1999, 2001), [START_REF] Shemyakin | Copula Models of Joint Last Survivor Analysis[END_REF] Frank [START_REF] Frees | Annuity Valuation with Dependent Mortality[END_REF], [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF], Youn and Shemyakin ( 2001) [START_REF] Spreeuw | Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models[END_REF], [START_REF] Luciano | Modelling Stochastic Mortality for Dependent Lives[END_REF][START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF] Gumbel-Hougaard Youn andShemyakin (1999, 2001), Shemyakin andYoun (2006) Spreeuw (2006) , [START_REF] Luciano | Modelling Stochastic Mortality for Dependent Lives[END_REF][START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF] Clayton [START_REF] Carriere | Bivariate Survival Models for Coupled Lives[END_REF], [START_REF] Luciano | Modelling Stochastic Mortality for Dependent Lives[END_REF][START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF], [START_REF] Spreeuw | Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models[END_REF] 4.2.20 Nelsen copula 9 Spreeuw (2006), [START_REF] Luciano | Modelling Stochastic Mortality for Dependent Lives[END_REF][START_REF] Luciano | Cross-Generational Comparison of Stochastic Mortality of Coupled Lives[END_REF] A more recent literature [see e.g. [START_REF] Denuit | Multilife Premium Calculation with Dependent Future Lifetimes[END_REF], [START_REF] Spreeuw | Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models[END_REF], [START_REF] Spreeuw | Modelling the Short-term Dependence Between Two Remaining Lifetimes[END_REF], [START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF], [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF]] focus on the broken-heart syndrome, but without introducing frailty in the specification of the intensities. This literature also identifies another downside of the common cop-8 More precisely, these authors use a stochastic extension of the Gompertz law. 9 The numbers 4.2.20 indicate the copula in the list provided by [START_REF] Nelsen | An Introduction to Copulas[END_REF]. ula approach. Indeed, [START_REF] Spreeuw | Types of Dependence and Time-Dependent Association Between Two Lifetimes in Single Parameter Copula Models[END_REF] shows that for most common Archimedean copulas, the mortality of the surviving spouse as a function of time elapsed since death of the partner is increasing, which is not underpinned by empirical evidences [see [START_REF] Spreeuw | Investigating the Broken-Heart Effect: a Model for Short-Term Dependence Between the Remaining Lifetimes of Joint Lives[END_REF] as well as Section 2.2.4 for a relevant discussion].

Affine intensity model

A simple extension of the bivariate survival model discussed in Section 3.2 is obtained by introducing an intercept in the basic proportional frailty model [the so-called Generalized Shared Frailty model developed in [START_REF] Iachine | Identifiability of Bivariate Frailty Models[END_REF] in a special case]. The specification becomes :

a 1 (x 1 ; F ) = a 1 (x 1 )F + b 1 (x 1 ), a 2 (x 2 ; F ) = a 2 (x 2 )F + b 2 (x 2 ), a 3 (x 3 ; z; F ) = a 3 (x 3 ; z)F + b 3 (x 3 ; z), a 4 (x 4 ; z; F ) = a 4 (x 4 ; z)F + b 4 (x 4 ; z).
This extended version allows for conditional directional measures of association γ 1|2 (y; F ) and γ 2|1 (y; F ) depending on frailty F , and leads to non Archimedean copulas, when considering the joint distribution of latent lifetimes X 1 and X 2 .

The affine specification is likely the most appropriate one for representing the effect of common lifestyle F and especially the memory features. After the death of a spouse, we expect that the effect of common lifestyle will diminish and asymptotically vanish. Thus, we expect that the latent intensity a 3 (x 3 ; z) [resp. a 4 (x 4 ; z)] is a decreasing function of x 3 (resp. x 4 ) tending to zero at infinity. Then functions b 3 and b 4 provide the limiting mortality intensity a long time after the death of the other spouse. See also Section 2.2.4 for a detailed discussion on the long-term and short-term effect of losing his/her partner.

Finally, this affine intensity models assumes implicitly no remarriage or new common law relationship of the surviving spouse. This assumption is rather realistic for our purpose, since the insurance policies of interest are generally taken by rather old couples to profit of tax reductions, or to provide a rent to the surviving spouse.

Pricing contracts on two lives

We will now derive the pricing formulas for insurance contracts written on two lives such as joint life policies, last survivor policies and policies with reversionary annuities. By considering extended Freund models (under the risk-neutral probability), we analyze the effect of jumps in intensity on prices at the contract issuing as well as on the premium updating during the life of the contract.

Prices at the inception of the contracts

The premium computations for the joint policies are based on the joint remaining lifetimes risk-neutral distribution conditional on the ages of the spouses at the beginning of their common life y * 1,0 , y * 2,0 , say, and on the fact that both spouses are still alive with an age of the life in couple equal to z 0 , say, at the inception of the contract. Thus, the joint risk-neutral density of the remaining lifetimes ỹj = Y j -z 0 , j = 1, 2 at the inception of the contract is10 :

f0 (ỹ 1 , ỹ2 |z 0 ) = lim dy 1 ,dy 2 →0 1 dy 1 dy 2 P [Y 1 ∈ (ỹ 1 + z 0 , ỹ1 + z 0 + dy 1 ), Y 2 ∈ (ỹ 2 + z 0 , ỹ2 + z 0 + dy 2 ) |Y 1 > z 0 , Y 2 ≥ z 0 , y * 1,0 , y * 2,0 ] = f 0 (ỹ 1 + z 0 , ỹ2 + z 0 )/S 0 (z 0 ), (3.1)
where the index 0 means that the distribution characteristics of Section 3 can now depend on the initial ages y * 1,0 , y * 2,0 .

Let us now illustrate the premium computation in a continuous time framework with instantaneous constant interest rate r. For each insurance product, we have to analyze the risk-neutral distribution of the discounted cash-flows.

i) Joint life policy

Let us denote by a the premium rate and consider an insurance paying 1$ immediately at the first death of a spouse. The discounted sequence of cash-flows measured at the inception of the contract is :

C (1) 0 (a, r, z 0 ; Y 1 , Y 2 ) = a min(Y 1 ,Y 2 )-z 0 0 exp(-rh)dh -exp[-r(min(Y 1 , Y 2 ) -z 0 )] = a r {1 -exp[-r(min(Y 1 , Y 2 ) -z 0 )]} -exp[-r(min(Y 1 , Y 2 ) -z 0 )]}.
(

3.2)

There exist different ways for balancing the stochastic positive and negative cash-flows. In particular the premium rate11 can be defined by fixing equal expectations to these sequences. We get :

a * ( 1)

0 (r) = r E 0 {exp[-r(min(Y 1 , Y 2 ) -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 } 1 -E 0 {exp[-r(min(Y 1 , Y 2 ) -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 } . (3.3)
ii) Last survivor policy

Let us now assume that the death event written in the policy is the second death of a spouse. The formulas are the same as for the joint life policy above after substituting max(Y 1 , Y 2 ) to min(Y 1 , Y 2 ). For instance, the fair premium becomes :

a * (2) 0 (r) = r E 0 (exp[-r(max(Y 1 , Y 2 ) -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 ) 1 -E 0 {exp[-r(max(Y 1 , Y 2 ) -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 } . (3.4)
iii) Reversionary annuities

Finally, let us consider a product in which the premium is paid when both spouses are alive and a unitary annuity is paid to the surviving spouse up to his/her death. The discounted sequence of cash-flows becomes :

C (3) (a, r, z 0 ; Y 1 , Y 2 ) = a min(Y 1 ,Y 2 )-z 0 0 exp(-rh)dh - max(Y 1 ,Y 2 )-z 0 min(Y 1 ,Y 2 )-z 0 exp(-rh)dh = a r {1 -exp(-r[min(Y 1 , Y 2 ) -z 0 ])} - 1 r {exp[-r(min(Y 1 , Y 2 ) -z 0 )] -exp[-r(max(Y 1 , Y 2 ) -z 0 )]}. (3.5)
The associated premium rate is :

a * (3) 0 (r) = E 0 {exp(-r[min(Y 1 , Y 2 ) -z 0 ]) -exp(-r[max(Y 1 , Y 2 ) -z 0 ])|Y 1 ≥ z 0 , Y 2 ≥ z 0 } 1 -E 0 {exp(-r[min(Y 1 , Y 2 ) -z 0 ])|Y 1 ≥ z 0 , Y 2 ≥ z 0 } . (3.6) iv) Individual products
The premia for joint products have naturally to be compared with the premia of a life insurance paying 1$ at the death of a single life.

The associated fair premium is :

a * j,0 (r) = r E 0 (exp[-r(Y j -z 0 )]|Y j ≥ z 0 ) 1 -E 0 (exp[-r(Y j -z 0 )]|Y j ≥ z 0 ]) , (3.7)
if only information on spouse j is taken into account and

a * * j,0 (r) = rE 0 (exp[-r(Y j -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 ) 1 -E 0 (exp[-r(Y j -z 0 )]|Y 1 ≥ z 0 , Y 2 ≥ z 0 ) , (3.8)
if the information on the couple is taken into account.

In the limiting case of a zero risk-free rate r = 0, the expressions of the premia are obtained by a Taylor expansion. We get : a * ( 1)

0 (0) = 1 E 0 {[min(Y 1 , Y 2 ) -z 0 ]|Y 1 ≥ z 0 , Y 2 ≥ z 0 } , a * (2) 0 (0) = 1 E 0 {[max(Y 1 , Y 2 ) -z 0 ]|Y 1 ≥ z 0 , Y 2 ≥ z 0 } , a * (3) 0 (0) = E 0 {max(Y 1 , Y 2 ) -min(Y 1 , Y 2 )|Y 1 ≥ z 0 , Y 2 ≥ z 0 } E 0 {min(Y 1 , Y 2 )|Y 1 ≥ z 0 , Y 2 ≥ z 0 } , a * j,0 (0) = 1 E 0 {Y j -z 0 |Y j ≥ z 0 } , a * * j,0 (0) = 1 E 0 {Y j -z 0 |Y 1 ≥ z 0 , Y 2 ≥ z 0 } .
The pricing of the individual contracts of two spouses cannot be done separately. Indeed the survival probabilities of a single life, and then the price of the individual contract, depend on the life history of the spouse, whether or not he/she is still alive and, when he/she died if applicable [see e.g. [START_REF] Youn | A Re-Examination of the Joint Mortality Functions[END_REF]].

Effect of risk dependence on prices

Let us now illustrate the effect on policy prices of risk dependencies: due to the frailty and to the asymmetric jump in intensities existing in a Freund model.

We consider a model with single proportional frailty (see Section 3.2). The population of couples is such that the two spouses have the same age 30. The distribution of the heterogeneity F at age 30 is assumed to be a gamma distribution. Note that when there is no jump in latent intensities, the joint distribution of the lifetimes is associated to a Clayton copula. Due to the mover-stayer phenomenon, as the population ages, the distribution given that both spouses survive up to age z 0 > 30, that is, the heterogeneity distribution that the insurance company applies to price a contract for a couple with an underwriting age z 0 > 30, will depend on age z 0 . Intensities of the latent duration variables X 1 (female), X 2 (male) are of the following form:

a 1 (x 1 ) = exp(α 1 x 1 + β 1 ), ∀x 1 > 0,
and

a 2 (x 2 ) = exp(α 2 x 2 + β 2 ), ∀x 2 > 0.
For illustration purpose, we assume that the death of the spouse has a constant multiplicative effect γ on the mortality intensity of the survivor. Thus, given z = min(X 1 , X 2 ), the conditional intensities of X 3 , X 4 are of the form:

a 3 (x 3 , z) = γ exp α 1 (z + x 3 ) + β 1 , ∀x 3 > 0,
and

a 4 (x 4 , z) = γ exp α 2 (z + x 4 ) + β 2 , ∀x 4 > 0,
where the constant γ = a 3 (0,z) a 1 (z) = a 4 (0,z) a 2 (z) is larger than 1 to reflect the broken-heart syndrome. Thus the model adopted here is similar to [START_REF] Denuit | Multilife Premium Calculation with Dependent Future Lifetimes[END_REF] except that frailty is incorporated. For the illustration the jump in mortality on death of the first life is the same, whether male or female. For numerical illustrations, parameters α 1 , α 2 , β 1 , β 2 are chosen to fit the marginal intensities of American females and males at ages 31, 32, ..., 110, provided by the Human Mortality Database12 . Their values are reported below:

α 1 = 0.089, β 1 = -7.613, α 2 = 0.081, β 2 = -6.934.
The measure of association γ is the same in both directions with values γ ∈ {1, 3, 5}. γ = 5 corresponds to a very huge impact of the death of the spouse on the survivor lifetime and γ = 1 corresponds to the case of no impact (at the individual level, indeed, even in this case there is still jump of intensity when the heterogeneity is integrated out, see e.q.(3.2)). The gamma distribution of the heterogeneity at age 30 is set to have a shape parameter k and a scale parameter 1/k. Therefore, the average mortality intensity at age 30 is the same for each value of k, since E(F ) = 1/k • k = 1 does not depend on k. The heterogeneity parameter k will be set to k ∈ {2, 5, 10}. k = 10 corresponds to a low heterogeneity level and k = 2 corresponds to a high one. This specification of the duration distribution is the risk-neutral distribution, which can be used to price the different life insurance contracts described in Section 4.1. The risk-free interest rate is set to r = 1%. We provide in Figure 1 the evolution of the premium rates as a function of the underwriting age z 0 ∈ 31, 32, ..., 80, for different contracts and for γ = 5, k = 2. The contracts include a joint life policy, a last survivor policy, a contract with reversionary annuities, and the individual insurance products for female with, or without, the information on the survival of the husband up to z 0 .

Figure 1: Premium rate as a function of the age of the couple at the time of underwriting. In the lower right panel for individual life insurance policies, the dashed line (respectively solid line) represents the premium rates when the information on the spouse is (respectively is not) taken into account.

These premia are not directly comparable, since the premia paid by the insured people (resp. the payments by the insurance company) do not correspond to a same period. Nevertheless for each product, the premium rate is increasing with the age of underwriting of the couple, which is in conformity with the usual premium structure without heterogeneity.

In general, in a model with heterogeneity, the average intensity (as well as the premium) is not necessarily monotone in z 0 . Indeed, the aging of the population has a positive impact on the premium when z 0 increases, while the mover-stayer phenomenon has a negative impact on the premium since couples with higher risks die out more quickly; hence the average heterogeneity is improving in time. In this example, the first effect is more important, which results in an increasing premium.

Besides, the premium rate of an individual insurance contract for a female is always lower when the insurance company know that her spouse is still alive, as shown in the lower right panel. The difference is negligible at low ages, but increases significantly with respect to z 0 . We also observe that the curves of the premia are convex, except for reversionary annuities, where the trend is almost linear.

Let us now illustrate the effect of risk dependencies and heterogeneity for the different insurance contracts. We first illustrate in Tables 3 and4 the effect of the measure of association γ for two different ages 30 and 50. This parameter has no effect on the joint insurance policies: indeed, the contract terminates up to the first death whereas the measure of association impacts only the residual lifetime beyond the first death event. Therefore, premium rates of the joint insurance are not reported in the Tables. The two last columns correspond to the individual insurance contract for a female with and without information on the survival of her spouse. We get premia, which increase with the γ parameter, except for the reversionary annuities. Indeed, unlike other contracts which concern death benefit, a reversionary annuity pays survival benefits; therefore its relationship with the deterioration of mortality is opposite to other products.

Last

Reversionary Then we illustrate in Tables 5 and6 the effect of heterogeneity, characterized by parameter k, for two different ages 30 and 50. For instance, for the joint life contract, the premium increases as the heterogeneity decreases 13 . However, this effect is less clear for other products. Indeed, in a more heterogeneous population (k = 2), there are more couples of extremely high risk, as well as more couples of extremely low risk. The first couples contribute to an increase in the premium whereas the latter couples contribute to diminish the premium. For the reversionary annuity, a riskier couple is expected to trigger annuity payment earlier, which means less premium income, but the payment is also expected to terminate earlier, which spells less total payment. In our simulation studies, we observe that, for each product, the premium rate is decreasing in the heterogeneity, both for age 30 and 50. Figure 2 plots, for each k, simulated lifetimes distributions for the last survivor, respectively for z 0 = 30 and 50.

13 This is expected. Indeed, the unconditional survivor function of the first death is:

S * (t) = E[e -(A1(t)+A2(t))F ] = 1 1 + 1/k(A 1 (t) + A 2 (t)) k ,
and the corresponding unconditional intensity function is:

λ(t) = a 1 (t) + a 2 (t) 1 + 1/k(A 1 (t) + A 2 (t)) ,
thus the premia for a joint life contract is higher for k = 10. Special attention should be paid when comparing premium rates at age 50 for different values of parameter k. Indeed, for each value of k, γ(k, 1/k) is the heterogeneity distribution at age 30, but the heterogeneity distribution conditional on the survival of both spouses up to age 50 is no longer the same. However, it is still a gamma distribution γ(k, 1/[k + A 1 (z 1 -z 0 ) + A 2 (z 1 -z 0 )]), where z 0 = 30, z 1 = 50 and A 1 , A 2 are the cumulative intensities (see Appendix 3). Therefore, the mean of the heterogeneity is k/[k +A 1 (z 1 -z 0 )+A 2 (z 1 -z 0 )], and quotient between the variance at age 50 and that at age 30 is k

2 /[k + A 1 (z 1 -z 0 ) + A 2 (z 1 -z 0 )] 2 .
Both quantities are decreasing functions of k, that is, the mean and the variance of the heterogeneity diminish (in proportion) faster in the population with initially the highest heterogeneity (k = 2). Figure 3 plots, for each k, the probability density function of the heterogeneity both at age 30 and at age 50. The gamma distribution parameters at age 50 are reported in Table 7. 

/[k + A 1 (x) + A 2 (x)],
which equals also the mean of the heterogeneity distribution. It measures the reduction of the heterogeneity due to the mover-stayer phenomenon.

Evolution of the price of the contract during the life of the contract

A premium level a 0 is fixed at the inception of each contract (see Section 4.1). However, it is important to evaluate regularly the residual value of this contract during its life, for instance, to include it correctly in the balance sheet, or, if it is securitized, to evaluate the price of the corresponding component of the Insurance Linked Security (ILS).

Let us first focus on the joint life policy. The fair value of this contract at a date where both spouses are still alive and the age of the couple is z 1 , z 1 ≥ z 0 , is given by :

C (1) 1|0 (a 0 , r, z 1 ; Y 1 , Y 2 ) = E 0 [C (1) 0 (a 0 , r, z 1 ; Y 1 , Y 2 )|Y 1 ≥ z 1 , Y 2 ≥ z 1 ].
(3.9) a 0 is for instance equal to the fair premium a 0 = a * (1) 0

given in (4.3) when z 1 = z 0 .

The price updating is more complicated for the reversionary annuities product, since we have to distinguish the two possible regimes existing during the life of the contract. In the first regime the two spouses are both alive, with an age of the couple equal to z 1 . In the second regime, there is just one surviving spouse, the available information includes the date of the first death and the fact that the surviving spouse is the husband, or the wife. In both regimes, the residual value is systematically negative. First, in the second regime the only cash flows are the payment of the annuity, which are negative. Second, in the first regime, the premium rate of the reversionary annuity is increasing in z 0 (see Figure 1), therefore, couples who entered into the contract at age z 0 < z 1 pay, at age z 1 , less premium than newly underwritten couples of age z 1 , while the two groups have the same heterogeneity distribution, thus the same risk profile.

For illustration, let us calculate the residual value of a reversionary annuity underwritten at the age of 30. At date t > 30, the residual value of this contract depends on the survival status of the couple. We use the same model as in the previous section and Figure 4 displays the evolution of the residual value of the contract, first when both spouses are still alive at date t, then when one of the spouse died before t. The parameters are γ = 5, k = 2, z 0 = 30. As expected we observe that in both case, the value of the contract is negative. We observe also in the second case, that the value of the contract is smaller for widows than for widowers. Indeed, at the same age and with the same marital status, women have a smaller mortality intensity than men have. 

Concluding remarks

The standard insurance literature for analyzing and pricing insurance contracts written on two lives are pure models. A first category assumes a continuous bivariate distribution of the spouses' lifetimes with a continuous probability density function. This continuity assumption implies no jump in intensity when a spouse dies. A second category of models apply a pure Freund model to describe the broken-heart syndrome. These two effects impact the price of insurance contracts and of annuity values in different ways, not only the price of contracts written on two lives, but also the prices of individual contracts written on a single life 14 . By considering appropriate extensions of the Freund model, we have explained how to account for both individual heterogeneity and potential jumps at the time of a spouse's death.

A similar problem arises in the credit risk literature where the death event is replaced by a default event. The standard credit risk literature prices the default intensity, not the default event itself, leading to possible mis-pricing of credit derivatives. The idea of introducing jumps in intensity to correct such a mispricing has been proposed in [START_REF] Jarrow | Counterparty Risk and the Pricing of Defaultable Securities[END_REF] for a credit derivative, written on two corporations 15 [see also the discussions in [START_REF] Benzoni | Modeling Credit Contagion via the Updating of Fragile Beliefs[END_REF] and Bai et al. 14 For the same reason they can impact the price of health insurance or of long-term care contracts, for instance, since the risk of entering into long-term institutional care after the death of a spouse can increase [START_REF] Nihtilä | Institutionalization of Older Adults After the Death of a Spouse[END_REF]].

15 which is equivalent to an insurance product written on two lives.

(2014)]. Recently [START_REF] Gourieroux | Pricing Default Events: Surprise, Exogeneity and Contagion[END_REF] derived the pricing formulas for credit derivatives written on a large pool of corporations and taking into account the jumps arising when corporations in the pool default. Finally formulas providing the prices of insurance contracts written on two lives depend on parameters explaining how the exogenous variable impact the bivariate lifetime (risk-neutral) distribution. These variables include the individual characteristics of the couple, in particular the information on their generation. This generation information for each given age allows for taking into account the deterministic time dependence of the mortality rate. Moreover, the unobserved explanatory variables can also depend on time in a stochastic way. Thus the longevity feature can be taken into account either by introducing generation (time) as an explanatory variable, or by introducing unobserved dynamic factor [see [START_REF] Duffie | Frailty Correlated Default[END_REF] for an example of unobserved dynamic Gaussian factor in credit risk modelling]. The parameters have to be calibrated, especially the parameters measuring the magnitude of the jumps (or of the association measures), the parameters capturing the frailty and how they depend on generation (i.e. time). We explain in Appendix 4 why all the intensities are nonparametrically identified, in a mixed proportional hazard model, whenever the generation (cohort) effect is taken into account. The development of nonparametric, or semi-parametric, estimation methods is out of the scope of this paper on pricing, but they will clearly require enough data on coupled lives, disaggregated by generations of spouses and contracts. treatment effects in duration models. Under mild conditions17 , we can, in Model M 1|2 , identify nonparametrically functions18 Thus under M 1,2 we can identify all functions a j , b j , j = 1, 2, 3, 4, as well as the 3-dimensional distributions of (F 1 , F 2 , F 3 ) and (F 1 , F 2 , F 4 ).

In practice, we often assume that F 1 = F 3 , F 2 = F 4 , where F 1 and F 2 can be dependent. Under this additional assumption on unobserved heterogeneities, Model M 1,2 is nonparametrically identified.

However, the identification issues have not yet been solved for other types of intensities, such as the affine intensities of Section 3.4.
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 2 Figure 2: Probability density functions of the last survivor's lifetime upon z 0 , for z 0 = 30, 50.

Figure 3 :

 3 Figure 3: Probability density functions of the heterogeneity, at ages 30 and 50.

Figure 4 :

 4 Figure 4: Evolution of the residual value of a reversionary annuity. Left panel: both spouses are still alive. Right panel: one of the spouses died before t.

  a 1 , a 2 , b 1 , b 2 , a 3 , b 3 and the joint distribution of F 1 , F 2 , F 3 .In Model M 2|1 , we can identify:a 1 , a 2 , b 1 , b 2 , a 4 , b 4 and the joint distribution of F 1 , F 2 , F 4 .

  

  by Cauchy-Schwartz inequality and more generally the property below : Property 3. In a Freund model with single proportional frailty the unconditional directional measures of association are larger than the conditional ones. They are equal if and only if frailty F is constant, that is, if there is no omitted heterogeneity :

Table 1 :

 1 Selected Marginal Distribution

Table 2 :

 2 Selected Copula

Table 3 :

 3 Effect of the broken heart syndrome on premium rates with a fixed heterogeneity distribution (k = 6), at age 30.

	Last	Reversionary Individual, female, Individual, female,
			with husband's	without husband's
	survivor	annuity	information	information
	γ = 5 0.0279	0.166	0.0319	0.0303
	γ = 3 0.0260	0.225	0.0309	0.0290
	γ = 1 0.0214	0.404	0.0275	0.0258

Table 4 :

 4 Effect of the broken heart syndrome on premium rates with a fixed heterogeneity distribution (k = 6), at age 50.

Table 5 :

 5 Effect of heterogeneity on premium rates with a fixed broken heart syndrome (γ = 5), at age 30.

	Joint	Last	Reversionary Individual, female, Individual, female,
				with husband's	without husband's
	life	survivor	annuity	information	information
	k = 2 0.0186 0.0153	0.129	0.0167	0.0167
	k = 6 0.0196 0.0161	0.135	0.0176	0.0176
	k = 10 0.0197 0.0162	0.136	0.0177	0.0177
	Joint	Last	Reversionary Individual, female, Individual, female,
				with husband's	without husband's
	life	survivor	annuity	information	information
	k = 2 0.0334 0.0265	0.188	0.0299	0.0293
	k = 6 0.0364 0.0287	0.199	0.0324	0.0318
	k = 10 0.0371 0.0292	0.203	0.0329	0.0323

Table 6 :

 6 Effect of heterogeneity on premium rates with a fixed broken heart syndrome (γ = 5), at age 50.

Table 7 :

 7 Gamma distribution parameters at age 50 for different gamma distributions γ(k, 1/k) at age 30. The scale parameter is the same as at age 30. The fourth column gives values of k

More precisely Archimedean copulas with completely monotone generators [see[START_REF] Mcneil | Multivariate Archimedean Copulas, d-Monotone Functions and l 1 -Norm Symmetric Distributions[END_REF] 

There are two regimes, corresponding respectively to the cases Y 1 < Y 2 and Y 2 < Y 1 .

In their analysis[START_REF] Ji | Markovian Approaches to Joint-Life Mortality[END_REF] consider also the possibility of a direct transition from state 1 to state

to account for catastrophic events (car accidents, plane crash) implying simultaneous deaths. They use a

5-day cut-off to account for a possible lag in reporting.

In the next Section, this independence assumption is relaxed and replaced by an assumption of conditional independence given an unobserved heterogeneity variable F . Then by integrating out F , we will create unconditional dependence between the variables.

Note that the model has two layers of latent variables, first F, second X 1 , X 2 , X 3 , X 4 .

The link between the historical and risk-neutral bivariate distributions of the lifetimes is discussed in ??. The insurance literature often prices the insurance contracts by means of the historical distribution to get the so called fair premium, that is, neglects the correction for risk [see e.g.Ji et al. (2011), Section 5.6].

The fair premium rate is obtained by replacing the risk-neutral distribution by the historical distribution in formula (4.3). Otherwise the premium rate accounts for a risk premium.

The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. It is maintained by the University of California, Berkeley, and the Max Planck Institute for Demographic Research in Rostock, Germany; its official website is http://www.mortality.org

As we pointed out earlier in the paper, there are at least three generation effects, that are respectively the cohort of the husband, the cohort of the wife, and the year of inception of the contract.

Roughly speaking, the observed covariate b j (z) should cover a non empty open set, that is, there should be sufficient covariate variation among different couples.

Whereas in the standard competing risks model M 1∧2 , we can nonparametrically identify a 1 , a 2 , b 1 , b 2 and the joint distribution of F 1 , F 2 under the same mild conditions [see Abbring and van den Berg (2003a), Proposition 2].
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Appendices Appendix 1. Joint density of lifetimes

Let us assume y 1 < y 2 . We have :

1 dy 1 dy 2 P [Y 1 ∈ (y 1 , y 1 + dy 1 ), Y 2 ∈ (y 2 , y 2 + dy 2 )] = lim

Appendix 2. Link between the historical and risk-neutral distributions

For expository purpose we set the risk-free rate r = 0. Then we have to consider jointly the historical (or physical) distribution, with characteristics indexed by P , and the risk-neutral (or adjusted for risk) distribution, with characteristics indexed by Q. Since we are in an incomplete market frameworks, these two distributions can be specified independently. Let us now discuss the possible effects of the change of probability.

i) The stochastic discount factor (sdf) is the ratio between the risk-neutral and historical densities:

for a model with frailty for instance. A discontinuity of the risk-neutral density f Q on the 45 • line y 1 = y 2 , that is, jumps in the risk-neutral intensities, can result from either jumps in the historical intensities, or jumps in the adjustment for risk (sdf) when a death occurs.

The standard insurance literature computing the prices from a specification of the historical distribution and the sdf has omitted the second possibility. This is typical of the practice of pricing by Esscher transforms [see e.g. [START_REF] Esscher | On the Probability Function in the Collective Theory of Risk[END_REF], [START_REF] Gerber | Option Pricing by Esscher Transforms[END_REF]] written on factor F , that is choosing m(y 1 , y 2 , F ) = exp(α + βF ), where α and β are such that E P [exp(α + βF )] = 1 to get the zero risk-free rate.

Intuitively to reintroduce the effect of death event while using the practice of Esscher transforms, we may introduce the Esscher transforms on the distributions of the latent variables, that is, for the pair (X 1 , X 2 ) : exp(α 12 + β 12 F ), say, for the pair X 3 : exp(α 3 + β 3 F ), say, for the pair (X 4 ) : exp(α 4 + β 4 F ), say. with parameters linked by the condition of zero risk-free rate.

Appendix 3. Probability distribution function of the heterogeneity given survival up to time t.

We derive the probability density function of the heterogeneity of the set of couples such that both spouses survive up to age z 0 + x. It is denoted g x , We also denote by g 0 the heterogeneity distribution at age z 0 = 30, which equals γ(k, 1/k), therefore:

The unconditional survival probability that both survive up to age z 0 + x is:

where A 1 and A 2 are cumulative intensities. Then the unconditional mortality intensity at age z 0 + x is:

.

Therefore, we deduce that the heterogeneity distribution function is:

which is a gamma distribution with shape parameter k and scale parameter 1/(k + A 1 (x) + A 2 (x)).

Appendix 4. Identification of the model

To illustrate the possibility of nonparametric identification, let us consider a mixed proportional hazard model, where the latent intensities are of the type:

where z are the observable individual covariates, F j unobserved heterogeneity, a j baseline intensities. The observed covariates can be the generation 16 , as well as the date of the event min(Y 1 , Y 2 ) for variables j = 3, 4 to allow for semi-Markov intensities.

We can distinguish different models based on the specification (a.1) according to the observed durations:

In this model, the main duration variable of interest is Y 1 and Y 2 is observed only if it is smaller than Y 1 .

In this model, the main duration variable of interest is Y 2 and Y 2 is observed

These models are embedded in the following sequence: ) is also identifiable under M 1|2 and M 2|1 (resp. M 1,2 ). This allows for applying Proposition 4 in (Abbring and van den Berg, 2003b), valid for the identification of