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Love and Death : A Freund Model with Frailty

Christian Gourieroux®, Yang Lu*™*

Abstract

We introduce new models for analyzing the mortality dependence between in-
dividuals in a couple. The mortality risk dependence is usually taken into account
in the actuarial literature by introducing special copulas with continuous density.
This practice implies symmetric effects on the remaining lifetime of the surviving
spouse. The new model allows for both asymmetric reactions by means of a Fre-
und model, and risk dependence by means of an unobservable common risk factor
(or frailty). These models allow for distinguishing in the lifetime dependence the
component due to common lifetime (frailty) from the jump in mortality intensity
upon death of spouse (Freund model). The model is applied to the pricing of
insurance products such as joint life policy, last survivor insurance, or contracts
with reversionary annuities. A discussion of identification is also provided.

Keywords: Life Insurance, Coupled Lives, Frailty, Freund Model, Broken-Heart,
Copula, Last Survivor Insurance, Competing Risks.

1. Introduction

This paper introduces new models for analyzing the mortality dependence be-
tween individuals in a couple. This type of model is needed for risk management
and pricing of life insurance products written on two lives, such as joint life policy,
last survivor insurance policy, or contract with reversionary annuities.

The basic actuarial literature usually assumed the independence between the
spouses’ mortality risks. Recently the mortality risk dependence has been intro-
duced by means of copulas [see e.g. [Frees et al| (1996), Youn and Shemyakin
(1999), (Carriere| (2000), Denuit et al. (2001), Shemyakin and Youn| (2006)), [Lu-
ciano et al.| (2008), [Luciano et al.| (2010)], and the effect of this dependence on
the risk premia starts to be measured. However, standard copula models assume
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continuous copula densities. This implies symmetric reactions of the mortality of
a member of the couple when the other dies. An alternative consists in introduc-
ing jumps in mortality intensity (the Freund model) at the time of death of the
spouse, to capture the death of a spouse [see e.g. |Spreeuw and Wang] (2008)), |Ji
et al.| (2011), Spreeuw and Owadally| (2013))]. Our paper extends this literature by
mixing the Freund model, which allows for asymmetric reactions of the mortality
intensities at a death event, with unobservable common factor (or frailty), which
underlies many usual Archimedean copuladl]

The basic Freund model and its properties in terms of conditional intensities
are presented in Section 2. This model allows for jump in the mortality intensity
of a given spouse when the other spouse dies. The magnitude of this jump and
its variation with respect to the age of the couple is the basis for constructing a
convenient association measure, useful to analyze the broken-heart syndrome. The
Freund model is extended in Section 3 to include common unobserved static frailty.
In particular we discuss the properties of Freund models with latent intensities
which are exponential affine functions of the frailty. These models are used in
Section 4 to derive the prices of various contracts written on two lives. We consider
these prices at the inception of the contract as well as during its lifetime. We
emphasize the effect of the dependence between the mortality risks of the two
spouses on these prices. Section 5 concludes. Proofs are gathered in appendices

and a discussion on the identification issues is provided in

2. The basic Freund model

This type of model has been introduced by [Freund| (1961) to construct bivariate
survival models for dependent duration variables, while still featuring the lack of
memory property. It has been noted by [Tosch and Holmes| (1980) that such models
have an interpretation in terms of latent variables. We follow this interpretation.
The model is written for a given couple, without specifying the index of the couple
and possibly its observed characteristics such as the birth dates of the spouses,
the difference between their ages [Youn and Shemyakin| (1999)], or their age at the
time of their marriage or common law relationship. In the application, such static
couple characteristics will be introduced to capture the generation effects. The
analysis is in continuous time and the lifetime variables are continuous variables.

2.1. The latent model

Let us consider a given couple with two spouses 1 and 2. The potential lifetimes
of individuals 1 and 2, when both are alive, are denoted by X; and X5, respectively.

More precisely Archimedean copulas with completely monotone generators [see McNeil and
Neslehovd| (2009))]



To get a unique time origin for the two members of the couple, these latent lifetimes
are measured since the beginning of the common life. A first individual in the
couple dies at date min(X;, X5). He/she is individual 1 (resp. individual 2), if
min(X;, Xo) = X [resp. min(Xy, Xo) = Xy]. After this event, there can be a
change in the potential residual lifetime distribution of the surviving individual.
The potential residual lifetime of individual 1 (resp. individual 2) after the death
of individual 2 (resp. individual 1) is denoted by X3 (resp. Xy).

The joint distribution of the four latent variables is characterized by

i) the joint survival function of (X;, Xs) :

512(.’131,1'2) = ]P[Xl > iL‘l,XQ > l’g], (21)

ii) the survival function of X3 given Xy = min(X;, Xs) = 2 :

Sg([L'3; Z) = P[Xg > {E3|X2 = min(Xl, X2) = Z]. (22)

iii) The survival function of X, given X; = min(X;, Xp) =z :

Si(zy; 2) = P[Xy > 24| Xy = min(Xy, Xo) = z]. (2.3)

These three joint and conditional survival functions, defined on (0, 00), char-
acterize the latent model for the analysis of the mortality in the couple. In this
model there exist at least three generation effects corresponding to the generations
of each spouse, and to the generation of the couple, respectively.

2.2. Individual lifetimes

2.2.1. Link between the individual lifetimes and the latent variables

The lifetimes of individuals 1 and 2 (since the beginning of the common life)
are denoted by Y7 and Y5. They can be expressed in terms of the latent variables
as :

(2.4)

Vi = Xilx<x, + (Xo+ X3)ly,cx, = min(Xy, Xo) + Xsly,<x,
Yo = Xolx,ox, + (X1 + Xy)lx, <x, = min( Xy, Xo) + Xyly, <x,.

This system can be partially solved. First, the X;, X, variables are related to
variables (Y7, Y3):

min (Y7, Y2) = min(X3, X5), and Y; > Y, if and only if X; > Xs.



Then the variables X3 and X, can be deduced in some regimed? since

X3ly,<y, = Y1 — min(Y), Ys) and X1y, <y, = Y2 — min(Y7, Y3).

As noted in |Norberg| (1989)), the observed model can be interpreted in terms of
a chain with four possible stateﬂ, that are:

e state 1: both spouses are alive,
e state 2: husband dead, wife alive,
e state 3: husband alive, wife dead,
e state 4: both spouses are dead,

and transitions can only arise between states 1 and 2, 1 and 3, 2 and 4, and 3 and
4. Since the mortality intensity of a spouse can depend not only on the current
state, but potentially on the time elapsed since the death of the other spouse, we
get an example of a semi-Markov chain.

2.2.2. The joint density function and its decomposition
The joint probability density function (pdf) of (Y7, Y5) is easily derived from
the distribution of the latent variables. We have (see [Appendix 1) :

flyy2) = l—aSu (yl,y1)1 l—a&l(yz — leyl)‘| ,ifyo >, (2.5)

0x1 Oy
a5 o9 .
= [_ 8;22 (yz,y2)] [_axz<yl - yz;?b)] , if g1 > yo.

Therefore, the joint density function can feature a discontinuity when y; = ys.
Let us consider the case iy, > y;. The density can also be written as :

05* {8512 05" ] [ 0S54

) == ) | 2 )/ )] |~ o = i) (2.)

where S*(y) = Si2(y, y) is the survival function of min(X;, Xy) and

2There are two regimes, corresponding respectively to the cases Y7 < Y5 and Y5 < V3.

3In their analysis Ji et al.| (2011) consider also the possibility of a direct transition from state
1 to state 4 to account for catastrophic events (car accidents, plane crash) implying simultaneous
deaths. They use a 5-day cut-off to account for a possible lag in reporting.



0S* 051 0512
9 (y) = o, (y,y) + s

density involves three components :

(y,y). Thus, the decomposition of the bivariate

i) l— %S (yl)] is the density of the first death event;
Y

oS 0S*
12 (y1,91)/ 5 (yl)] is the probability that individual 1 dies at this
Y

ii) the ratio | —
T
first death event. It is equal to :

P[Y; < Ya|min(Yy, Ys) = 1],

dS
iii) [—axj(yg — Y yl)l is the density of the residual lifetime after this event.

2.2.3. Individual mortality intensities

Let us now derive the individual mortality intensities given the current infor-
mation concerning the couple. Their expressions depend on the state either alive,
or dead, of the other spouse.

i) Let us first consider a date y at which both individuals are still alive, that
is, such that Y7 > y, Y5 > y. The mortality intensity of individual 1 is defined by :

' 1
MyYi>2y,Ya>y) = d;g%+ {dyP[y <Y <y+dylYy1 >y, Y > y]}

= [ )/ S W), (2.7
y

After replacing the bivariate density by its expression (2.5) for y > y; and
computing the integral, we get :

MylY: >y, Ys > y) = l—%ilf (y,y)] /S*(y)- (2.8)

This is the crude intensity function of individual 1 involved in the decomposition
of the joint density function.

Similarly, we have :



1
MyYi >y, Ya>y) = dﬁ%(@])[g <Y, <y+dyYi =2y Yz 2 y))

- / T Fyr ) /S (). (2.9)

- 52 50

ii) The expression of the mortality intensities can change if one of the individual
dies exactly at date y. The mortality intensity of individual 1 at date y, if individual
2 dies at date y, becomes :

Mp(yYh >y, Y =y)

, 1
= Jm, ldyP(y<Y1 <y+dylYr =2y, Yo =y)

= Ut/ |5

0S5

= 5.0y, (2.10)

by applying the expression of the joint density (2.5) with y; = yo = y.

Similarly, we get :

Ao (y|Yr =y, Y2 > )

_ 1
= dg}g{;{dyp[yélfz <y+dylYi =y, Y Zy]}

05,
= —— . 2.11
5 (0.1) 2.11)

Note that S3(0,y) = S4(0,y) = 1. Therefore we also have :
0dlog S

Mp(ylYh >y, Ye =y) = Ors (0,9),
—0Jlog S
and A (Y =3, Y2 2 y) = —52(0,),
Ty

which are the expected expressions of the intensities in terms of survival functions.

iii) Finally, we can also consider the mortality intensity of spouse 1, when the other
spouse is dead since a given time. We have, for y > y* :

6



)\1\2( |Y1 >1?/,YQ = ?/*)
= limgy o+ - P[y<Y1 <y+dylY1 >y, Ys =y

which is just the intensity of the residual lifetime X3 given the date of the first
death.

2.2.4. Dependence and Jump in Intensities

It has been suggested in (Clayton! (1978)) to measure the dependence between
duration variables by considering the jump in intensities following the news of a
death. We get a functional measure of dependence function of the age y of the
couple, which is especially appropriate for following the dependence phenomenon
during the couple life. These per-cent jumps are the following ones :

When individual 2 dies at date g, the jump at this date of the mortality intensity
of individual 1 is :

Tpy) = M@ >y, Yo =y)/ My >y, Y2 > y)
|- Sow)| s} |- ). 212)

Symmetrically, we get :

Yon(y) = XopyYi=y,Y2>y)/ Ma(ylYr >y, Y2 > y)
~ {520 s/ -T2 213)

In the standard literature on bivariate survival models, the bivariate density
function is continuous at y; = y» = y. Then, the two measures vyj2(y) and o1 (y)
coincide for any age y and it is easily checked that in this case, they are equal to the
cross ratio function defined in |Oakes| (1989) [see also the discussion in Section 3.2].
This equality is not necessarily satisfied in a Freund model and we can observe
different reactions of a spouse at the death of the other spouse in the couple.

Definition 1. We have the immediate broken-heart syndrome for spouse 1 (resp.
2) at date y, if y12(y) > 1 [resp.yop(y) > 1.



We can have the immediate broken-heart syndrome (or the reverse immedi-
ate broken-heart syndrome when the directional measure of association is strictly
smaller than 1), with different magnitude according to the age and spouse. We
can even observe reactions in different directions. This arises when the wife is
devastated by the death of her husband, with an increase of her mortality inten-
sity, whereas the death of the wife may provide more freedom to her husband and
possibly a decrease of his mortality rate. This is the “love and death” phenomenon
with the fact that love is not always shared and can be age-dependent.

Definition [I|focuses on the immediate effect of the death of a spouse. According
to this definition, many standard copula models [see e.g. [Frees et al.| (1996]), Car-
riere (2000)] as well as the multiple state models in|Ji et al.| (2011) and |Spreeuw and
Owadally (2013)) all allow for the broken-heart syndrome. There exist alternative
definitions measuring the long-term or short-term persistence of the effect of the
bereavement. For instance, Hougaard (2000) defines the broken-heart syndrome
as a typical example of short-term effect: the mortality of the surviving spouse
as a function of time elapsed since death of the partner is decreasing. Moreover,
there can also be a long-term effect, that is, the effect of the death of the spouse is
asymptotically non vanishing, or even increasing in the time elapsed. The Freund
model, as well as models in |Ji et al.| (2011) and |Spreeuw and Owadally| (2013), are
flexible enough to allow short-term (and/or long-term) effect; on the other hand,
Spreeuw| (2006) shows that usual copula models can only capture long-term effect.

There exist a few studies trying to measure the effect and showing a positive
estimated broken-heart syndrome [see e.g. [Parkes et al.| (1969), Jagger and Sutton
(1991), |Ji et al.| (2011)]. Moreover it is shown that the broken-heart syndrome
affects widowers more than widows [see Spreeuw and Owadally| (2013)]. However,
by neglecting the frailty effect discussed later on in Section 3, the estimates may
suffer from an omitted heterogeneity bias.

2.8. Observed and latent intensities

Let us now link the distributions of the observed and latent variables. Since
(X1, X3) and (X3, X4) cannot be simultaneously observed, let us first assume that
these two pairs of variables are independentﬁ. Then the distribution of the latent
variables is characterized by the following latent intensities :

i) the latent intensity of X denoted by a;(x1);
ii) the latent intensity of X5 denoted by ag(z2);
iii) the latent intensity of X3 given Xy = min(X;, X5) = z, denoted by as(x3; 2);

4In the next Section, this independence assumption is relaxed and replaced by an assumption
of conditional independence given an unobserved heterogeneity variable F'. Then by integrating
out F', we will create unconditional dependence between the variables.



iv) the latent intensity of X, given X; = min(X;, X3) = 2, denoted by ay(z4; 2).

The associated cumulated intensities, that are their primitives with respect to
the = argument, are denoted by Aj(x1), Aa(x2), As(ws; 2), As(xy; 2), respectively.
We deduce that :

Sia(w1, w2) = exp{—[Ai(21) + As(22)]}, S3(x3; 2) = exp[—As(z3; 2)],
Si(4; 2) = exp[—Ay(24; 2)]

Then, the expression (2.5) of the bivariate probability density function be-
comes :

fly,y2) = ai(y1) exp{—[A1(y1) + A2(y2)]}aa(y2 — y1;y1) exp[—As(y2 — y1;91)], ify2 > w1,
az(y2) exp[—(A1(y1) + A2(y2))]las(y1 — y2; y2) exp[—Az(y1 — y2;y2)], if y1 > ya.
(2.14)

Similarly the directional measures of association can be written in terms of the
latent intensities by using the expressions (2.12)-(2.13).

Property 1. The directional measures of association are :

Y112(y) = az(05y) /a1 (y), v211(y) = as(0;y)/az(y). (2.15)

3. Freund model with static frailty

The notion of (shared) frailty has been first introduced by [Vaupel et al.| (1979)).
The idea is to use the unobserved heterogeneity (or frailty) in bivariate duration
models in order to create an additional dependence between lifetimes. In the basic
specification, this frailty is static, since it depends on the couple only, neither on
time, nor age. It represents the effect of common lifestyle, or common disasters
encountered by the couple. In the extended model, the dependence between the
lifetimes are due to either the frailty, or to the so-called contagion effects, that
are the jumps in the intensities at the time of default. This new specification
introduced below allows to disentangle these two effects. We first extend the
Freund model of Section 2.4 to include unobserved frailty. Then, we discuss special
cases.



3.1. The model

Let us denote by F' the frailty variable, possibly multivariate. We consider
a Freund model with the structure introduced in Section 2.4, where X; and X5
are independent conditional on F', with latent intensities conditional on F' given
by @ ai(x1; F),as(xe; F), az(xs; z; F),aq(xy; 2, F). Let us now derive the latentﬂ
survival functions Sya(x1, x2), S3(xs; 2), Su(x; z), when frailty F' has been integrated
out. We have :

o, 22) — E[P[Xl > 21, Xy > IQ\F]]
= E{exp —[Ai(z1; F) + As(z9; F)]},

where the expectation is taken with respect to the distribution of F'.
Similarly we get :

Sg(l’g; Z) = P[Xg > I3|X2 = I'IliIl(Xl,Xg) = Z]
= P[Xg > I'3|X2 = Z,Xl > Z]
Elas(z, F)exp(—[A1(z, F) + As(z; F) + As(xs; z; F)))]
Elas(z; F) exp(—=[A1(2; F) + Az (2 F)])] '

These formulas can be used as inputs to derive the bivariate observed density
(2.5) and the directional measures of association (2.12)-(2.13). For instance, we
have by (2.12) :

o) = E{as(0;y; Faa(y, F) exp(=[Ai(y; F) + As(y; F)JE[exp(=[Ai(y; F) + As(y; F)])]
2 E{as(y; F) exp(—[A1(y; F) + Az (y; F)])}E{a1(y: F) exp[~ A, (y; F) + As(y; F)]}

We deduce the property below.

Property 2.
Qy
aly) = BB (3
E la1(y; F)] E [a2(y; F)]

where @, denotes the probability distribution with density :

qy(F) = exp{—[Ai(y) + A2(y)|F'}/Elexp(—(Ai(y) + A2(y)) F],

with respect to the distribution of F'. Thus, if the p.d.f. of F is g(F), the p.d.f. of
the modified measure Q,, is q,(F)g(F).

5Note that the model has two layers of latent variables, first F, second X1, X2, X3, X4.
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The change of density g, is due to the aging of the heterogeneity structure in
the population of surviving couples, called Population-at-Risk (PaR) at age y [see
e.g. [Vaupel et al| (1979), eq. (5)].

Since the conditional directional measure of association is [see (2.15)] :

Y2(y; F) = a3(0,y; F)/ar(y, F),

we can also write the corresponding unconditional measure as :

# [ij2(y; Fai(y; Faa(y; F))

71\2(3/) = ) )
B la1(y; F)] 612% (as(y; F)]
= % [12(y; F)]QUE iy Fzg?(y; b )
- EF[al(y; F)] E [as(y; F))
where : dQ¥ = a(y; Fas(y; F) dQy.

% aa(y: F)aa(; F)]

Thus the unconditional directional measure of association v;2(y) is an average
of the conditional directional measures of association with respect to a modified
probability distribution, and adjusted for the dependence between a;(y; F') and
as(y; F'), since the adjustment term equals 1, when these variables are not corre-
lated under QY.

3.2. Single proportional frailty

Following [Vaupel et al| (1979), it is usual to consider a single positive frailty
with proportional effects on all latent intensities. This implies an Archimedean
copula (with completely monotonic generator) for the bivariate latent variables
X; and Xy [see |Oakes (1989)), [McNeil and Neslehova (2009)], but not for the
observed variables Y7, Ys, due to the changes in intensities after the first death
event. More precisely, if :

ar(z1; F) = a1(21) F, az (a5 F) = az(22) F, az(ws; 2 F) = az(ws; 2) Fy aa(a; 23 F) = aa(za; 2) F,
we deduce from [2| eq.(3.1) that :

Qy Qy
az(0;y) E (F?) as(0;y) E (F?)
71 2(?4) = y V2 1(3/) = . (3-2)
| a®) & Fye ) ([ ()2

In this simple case, the directional measures of association given F' are [see
(2.15)] :

11



My F) = azic();)/},F = azic();y?,wl(y; F) = azi?yi)

They are independent of frailty F', but not necessarily equal, which allows for
asymmetric reactions.
The omitted heterogeneity introduces a positive bias on these measures. In-

Q Qo . .
deed, we have E (F*)/[E (F)]* > 1, by Cauchy-Schwartz inequality and more
generally the property below :

Property 3. In a Freund model with single proportional frailty the unconditional
directional measures of association are larger than the conditional ones. They are
equal if and only if frailty F' is constant, that is, if there is no omitted heterogeneity :

Y12(y) = 112(Y; F), von (y) > von (y; F), VF.

However the per-cent adjustment for omitted heterogeneity is independent of
age y and of the direction, which is considered. In particular the symmetry condi-
tion between spouses is preserved since :

Y2y F) = %en(y; F) <= 712(y) = 721 (y)-

3.3. The actuarial literature

The models with mortality dependence considered in the actuarial literature
are often special cases of the single proportional frailty model of Section 3.2.1,
assuming moreover the continuity of the latent intensities :

Continuity assumption of the latent intensities

as(xs;2z) = ai(ws + 2), Vs, 2,
as(z4;2) = ag(xrg+ 2),Vay, 2.

Under the continuity assumption, the lifetimes Y7, Y5 are independent given the
shared frailty F', with joint conditional survivor function :

S12(y1, ya| F) = exp[—[A1(y1) + A2(y2)] F].

To ensure the positivity of the intensity, the frailty F' has to be positive. Let
us denote by v its Laplace transform defined for positive arguments u by :

(u) = Elexp(—ul)]. (3.3)

By integrating out the frailty, we deduce the joint survivor function :

12



S12(y1,y2) = Y[Ar(y1) + Az(y2)]- (3.4)

A similar computation can be performed to derive the marginal survivor func-
tions. We get :

Si(y1) = Y[A1(y1)], S2(y2) = Y[A2(y2)]- (3.5)

Since the Laplace transform of F' is continuous and strictly increasing, it is
invertible. We deduce the expression of Si5 in terms of Sy,.Sy and v:

Si2(yr, y2) = V[T [S1(y)] + 7 [Sa(y2)]] (3.6)
This is the standard definition of a copula [Sklar| (1959)]:

S12(y1,y2) = CS1(y1), S2(y2)], (3.7)
with a survivor Archimedean copula |Genest and MacKay (1986))]:

Clug, uz) = Y[~ (ur) + 9~ (ug)], (3.8)

Property 4. Let us consider a Freund model with single proportional frailty. Un-
der the continuity assumption, the dependence between the lifetime variables Y7, Ys
s summarized by an Archimedean copula with the Laplace transform of the frailty
as the generator.

Conversely, most usual Archimedean copulas admit a frailty interpretationﬂ
The actuarial literature has considered this special case [see Tables 1 and 2, for
examples in the actuarial literature, and Nelsen| (1999)) for a rather extensive list
of copulas]m with different choices of the marginal distributions of the lifetimes and
of the copulas.

6Indeed the Archimedean copulas that admit this representation are those whose generator is
completely monotone, see [McNeil and Neslehova) (2009) for a characterization of Archimedean
copulas.

"Some authors consider non Archimedean copulas, for instance normal copulas in (Carriere
(2000) or some multiple parameter families in |Luciano et al|(2010). However, these copulas are
still continuous and thus do not allow for asymmetric reactions. For this reason we have not
listed these examples.

13



Table 1: Selected Marginal Distribution

Gompertz | Frees et al., (1996), Carriere (2000), [Youn and Shemyakin! (2001)
Luciano et alfl (2008, 2010)

Weibull Frees et al. (1996), Youn and Shemyakin (1999, 2001), Shemyakin and Youn (2006)

Table 2: Selected Copula

Frank Frees et al., (1996), Carriere (2000), Youn and Shemyakin (2001)
Spreeuw (2006), Luciano et al. (2008, 2010)

Gumbel-Hougaard Youn and Shemyakin (1999, 2001), Shemyakin and Youn (2006)
Spreeuw| (2006) , Luciano et al. (2008, 2010)

Clayton Carriere (2000), Luciano et al. (2008, 2010), Spreeuw (2006)

4.2.20 Nelsen copula [l | Spreeuw (2006), Luciano et al. (2008, 2010)

A more recent literature [see e.g. Denuit and Cornet| (1999), [Spreeuw] (2000]),
Spreeuw and Wang (2008)), [Ji et al.| (2011)), Spreeuw and Owadally (2013))] focus on
the broken-heart syndrome, but without introducing frailty in the specification of
the intensities. This literature also identifies another downside of the common cop-

8More precisely, these authors use a stochastic extension of the Gompertz law.
9The numbers 4.2.20 indicate the copula in the list provided by Nelsen (1999).
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ula approach. Indeed, Spreeuw| (2006) shows that for most common Archimedean
copulas, the mortality of the surviving spouse as a function of time elapsed since
death of the partner is increasing, which is not underpinned by empirical evidences
[see[Spreeuw and Owadally| (2013) as well as Section 2.2.4 for a relevant discussion].

3.4. Affine intensity model

A simple extension of the bivariate survival model discussed in Section 3.2 is
obtained by introducing an intercept in the basic proportional frailty model [the
so-called Generalized Shared Frailty model developed in lachine| (2004) in a special
case]. The specification becomes :

ar(xy; F) = a1(x1)F 4 bi(21), aa(x2; F) = ag(x2) F + bo(2),
as(z3;z; F) = ag(xs; 2)F 4 bs(xs; 2), as(xy; 2, F) = ag(wy; 2)F + by(24; 2).

This extended version allows for conditional directional measures of association
Y2(y; F) and o1 (y; F) depending on frailty F', and leads to non Archimedean
copulas, when considering the joint distribution of latent lifetimes X; and X5.

The affine specification is likely the most appropriate one for representing the
effect of common lifestyle F' and especially the memory features. After the death
of a spouse, we expect that the effect of common lifestyle will diminish and asymp-
totically vanish. Thus, we expect that the latent intensity as(xs; z) [resp. aq(xy; 2)]
is a decreasing function of x3 (resp. x4) tending to zero at infinity. Then functions
bs and by provide the limiting mortality intensity a long time after the death of
the other spouse. See also Section 2.2.4 for a detailed discussion on the long-term
and short-term effect of losing his/her partner.

Finally, this affine intensity models assumes implicitly no remarriage or new
common law relationship of the surviving spouse. This assumption is rather real-
istic for our purpose, since the insurance policies of interest are generally taken by
rather old couples to profit of tax reductions, or to provide a rent to the surviving
spouse.

4. Pricing contracts on two lives

We will now derive the pricing formulas for insurance contracts written on two
lives such as joint life policies, last survivor policies and policies with reversionary
annuities. By considering extended Freund models (under the risk-neutral proba-
bility), we analyze the effect of jumps in intensity on prices at the contract issuing
as well as on the premium updating during the life of the contract.
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4.1. Prices at the inception of the contracts

The premium computations for the joint policies are based on the joint remain-
ing lifetimes risk-neutral distribution conditional on the ages of the spouses at the
beginning of their common life y7 o, y5,, say, and on the fact that both spouses
are still alive with an age of the life in couple equal to zp, say, at the inception
of the contract. Thus, the joint risk-neutral density of the remaining lifetimes
U; =Y; — 20,7 = 1,2 at the inception of the contract iﬂ :

Jo(71, 92|20)

= dyl%}ifyf;_)() {dyldygp[yl € (h + 20,71 + 20 +dy1), Y2 € (G2 + 20, Y2 + 20 + dyo)
D/l > 207}/2 Z ZanT,Ovy;,O]
= fo(th + 20,2 + 20)/So(20), (3.1)

where the index 0 means that the distribution characteristics of Section 3 can now
depend on the initial ages y7 o, y3 o-

Let us now illustrate the premium computation in a continuous time framework
with instantaneous constant interest rate r. For each insurance product, we have
to analyze the risk-neutral distribution of the discounted cash-flows.

i) Joint life policy

Let us denote by a the premium rate and consider an insurance paying 1%
immediately at the first death of a spouse. The discounted sequence of cash-flows
measured at the inception of the contract is :

(1) min(Y1,Y2)—zo )
Cy'(a,r, 20, Y1,Ys) = a/ exp(—rh)dh — exp[—r(min(Y7, Ys) — z0)]
0

= %{1 — exp[—r(min(Y;, Y2) — 20)|} — exp[—r(min(Y;, Y2) — 20)]}.

There exist different ways for balancing the stochastic positive and negative

10The link between the historical and risk-neutral bivariate distributions of the lifetimes is
discussed in ?7. The insurance literature often prices the insurance contracts by means of the
historical distribution to get the so called fair premium, that is, neglects the correction for risk
[see e.g. |J1 et al| (2011)), Section 5.6].
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cash-flows. In particular the premium rateEr] can be defined by fixing equal expec-
tations to these sequences. We get :

20 (p) = p—Bolexp[=r(min(13,¥5) = 2)||Y > 2, Y5 > 2}

_ ‘ . 3.3
T By fexp|—r(min(Ys, Y) — z0)]|V; > z0,Y2 > 20} (3:3)

ii) Last survivor policy

Let us now assume that the death event written in the policy is the second
death of a spouse. The formulas are the same as for the joint life policy above after
substituting max(Y7, ¥2) to min(Y7,Y5). For instance, the fair premium becomes :

Eo (exp[—r(max(Y1,Y2) — 20)]|Y1 > 20, Y2 > 2)
1 — Eo{exp[—r(max(Y1,Y2) — 20)]|Y1 > 20,Y2 > 20}

aS(Q) (r) = (3.4)

iii) Reversionary annuities

Finally, let us consider a product in which the premium is paid when both
spouses are alive and a unitary annuity is paid to the surviving spouse up to
his/her death. The discounted sequence of cash-flows becomes :

exp(—rh)dh

3 min(Y1,Y2)—z0 max(Y1,Y2)—z0
CO(a,r, 20;Y1,Ys) = a/ exp(—rh)dh —/
0

min(Y7,Y2)—z0
_ %{1 — exp(—r[min(Y7, Y3) — z0)) }
_i{exp[—r(min(yb Y3) — 20)]
— exp[—r(max(Y1,Y3) — 2)]}. (3:5)

The associated premium rate is :

0 ) _ Eolexp(=rmin(i,¥5) — ) — exp(—rlmax(¥i, ¥5) = )Yy > .Y > 2}

1 — Eo{exp(—r[min(Y1,Y2) — 20])[Y1 > 20, Y2 > 20} (36)
3.6
iv) Individual products

The premia for joint products have naturally to be compared with the premia
of a life insurance paying 1$ at the death of a single life.

HThe fair premium rate is obtained by replacing the risk-neutral distribution by the historical
distribution in formula (4.3). Otherwise the premium rate accounts for a risk premium.
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The associated fair premium is :

Eo(exp[—r(Y; — 20)][Y; > 20)

aiq(r)=r , 3.7
00 =TT R (expl (Y, — )Y = 2] 0
if only information on spouse j is taken into account and
- TEo(exp[—7(Y; — 20)]|Y1 > 20, Y2 > 20)
ajo(r) = ; , (3.8)
1 — Eq(exp[—r(Y; — 20)]|Y1 > 20, Y2 > 2)

if the information on the couple is taken into account.
In the limiting case of a zero risk-free rate r = 0, the expressions of the premia
are obtained by a Taylor expansion. We get :

a;(0) = !
’ Eo{[min(Y1, Y2) — 2]|Y1 > 20, Y2 > 2}
X 1

a5 (0)

- Eo{[max (Y1, Y2) — z0]|Y1 > 20, Y2 > 20}

*(3)(0) — ]E(){Hl&X(Yi,Yé) — mlIl(Yl,}/QHYi Z 20,1/2 Z ZO}
0 Eo{min(Y7, Y2)|Y1 > 20, Y2 > 2} 7
1
a* O = s
R ¥ )
k% 1
aj,O(O)

 Eo{Y; — 20|Y1 > 20, Yo > 20}

The pricing of the individual contracts of two spouses cannot be done sepa-
rately. Indeed the survival probabilities of a single life, and then the price of the
individual contract, depend on the life history of the spouse, whether or not he/she
is still alive and, when he/she died if applicable [see e.g. [Youn et al|(2002)].

4.2. Effect of risk dependence on prices

Let us now illustrate the effect on policy prices of risk dependencies: due to
the frailty and to the asymmetric jump in intensities existing in a Freund model.

We consider a model with single proportional frailty (see Section 3.2). The
population of couples is such that the two spouses have the same age 30. The dis-
tribution of the heterogeneity F' at age 30 is assumed to be a gamma distribution.
Note that when there is no jump in latent intensities, the joint distribution of the
lifetimes is associated to a Clayton copula. Due to the mover-stayer phenomenon,
as the population ages, the distribution given that both spouses survive up to age
zp > 30, that is, the heterogeneity distribution that the insurance company applies
to price a contract for a couple with an underwriting age 2z > 30, will depend on

18



age zo. Intensities of the latent duration variables X; (female), X, (male) are of
the following form:

ai(x1) = exp(ayx1 + 51), Vo, > 0,

and
az(xq) = exp(agxs + Fa), Vs > 0.

For illustration purpose, we assume that the death of the spouse has a constant
multiplicative effect v on the mortality intensity of the survivor. Thus, given
z = min(X7, X5), the conditional intensities of X3, X, are of the form:

az(rs, z) = yexp (041(2 + x3) + 51)7 Vs > 0,

and
ay(x4, 2) = yexp (042(2 + x4) + 52>7 Vag > 0,

a3(0,2)
a1(z)

syndrome. Thus the model adopted here is similar to |Denuit and Cornet (1999)
except that frailty is incorporated. For the illustration the jump in mortality
on death of the first life is the same, whether male or female. For numerical
illustrations, parameters «q, s, 31, 32 are chosen to fit the marginal intensities
of American females and males at ages 31,32,...,110, provided by the Human
Mortality Databasd™| Their values are reported below:

a4(0,2z

= (z)) is larger than 1 to reflect the broken-heart

where the constant v =

a; = 0.089, 31 = —7.613, s = 0.081, B = —6.934.

The measure of association 7 is the same in both directions with values v €
{1,3,5}. v = 5 corresponds to a very huge impact of the death of the spouse
on the survivor lifetime and 7 = 1 corresponds to the case of no impact (at the
individual level, indeed, even in this case there is still jump of intensity when
the heterogeneity is integrated out, see e.q.(3.2)). The gamma distribution of the
heterogeneity at age 30 is set to have a shape parameter k and a scale parameter
1/k. Therefore, the average mortality intensity at age 30 is the same for each value
of k, since E(F) = 1/k-k = 1 does not depend on k. The heterogeneity parameter
k will be set to k € {2,5,10}. k = 10 corresponds to a low heterogeneity level and

12The Human Mortality Database (HMD) was created to provide detailed mortality and pop-
ulation data to researchers, students, journalists, policy analysts, and others interested in the
history of human longevity. It is maintained by the University of California, Berkeley, and the
Max Planck Institute for Demographic Research in Rostock, Germany; its official website is
http://www.mortality.org
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k = 2 corresponds to a high one. This specification of the duration distribution is
the risk-neutral distribution, which can be used to price the different life insurance
contracts described in Section 4.1. The risk-free interest rate is set to r = 1%.
We provide in Figure [I] the evolution of the premium rates as a function of the
underwriting age zo € 31,32, ...,80, for different contracts and for v = 5,k = 2.
The contracts include a joint life policy, a last survivor policy, a contract with
reversionary annuities, and the individual insurance products for female with, or
without, the information on the survival of the husband up to z.

Jointlife insurance Last survivor insurance
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Figure 1: Premium rate as a function of the age of the couple at the time of underwriting. In
the lower right panel for individual life insurance policies, the dashed line (respectively solid line)
represents the premium rates when the information on the spouse is (respectively is not) taken
into account.

These premia are not directly comparable, since the premia paid by the insured
people (resp. the payments by the insurance company) do not correspond to a same
period. Nevertheless for each product, the premium rate is increasing with the age
of underwriting of the couple, which is in conformity with the usual premium
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structure without heterogeneity.

In general, in a model with heterogeneity, the average intensity (as well as the
premium) is not necessarily monotone in zy. Indeed, the aging of the population
has a positive impact on the premium when z; increases, while the mover-stayer
phenomenon has a negative impact on the premium since couples with higher risks
die out more quickly; hence the average heterogeneity is improving in time. In this
example, the first effect is more important, which results in an increasing premium.

Besides, the premium rate of an individual insurance contract for a female
is always lower when the insurance company know that her spouse is still alive,
as shown in the lower right panel. The difference is negligible at low ages, but
increases significantly with respect to z;. We also observe that the curves of the
premia are convex, except for reversionary annuities, where the trend is almost
linear.

Let us now illustrate the effect of risk dependencies and heterogeneity for the
different insurance contracts. We first illustrate in Tables [3] and [4] the effect of the
measure of association 7y for two different ages 30 and 50. This parameter has no
effect on the joint insurance policies: indeed, the contract terminates up to the
first death whereas the measure of association impacts only the residual lifetime
beyond the first death event. Therefore, premium rates of the joint insurance are
not reported in the Tables. The two last columns correspond to the individual
insurance contract for a female with and without information on the survival of
her spouse. We get premia, which increase with the v parameter, except for the
reversionary annuities. Indeed, unlike other contracts which concern death benefit,
a reversionary annuity pays survival benefits; therefore its relationship with the
deterioration of mortality is opposite to other products.

Last Reversionary | Individual, female, | Individual, female,
without husband’s with husband’s

survivor annuity information information
v=>5| 0.0194 0.134 0.0212 0.0210
vy=3| 0.0182 0.181 0.0203 0.0202
v=1] 0.0153 0.318 0.0184 0.0183

Table 3: Effect of the broken heart syndrome on premium rates with a fixed heterogeneity
distribution (k = 6), at age 30.
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Last Reversionary | Individual, female, | Individual, female,
with husband’s without husband’s
survivor annuity information information
vy=51] 0.0279 0.166 0.0319 0.0303
v=3| 0.0260 0.225 0.0309 0.0290
v=11] 0.0214 0.404 0.0275 0.0258

Table 4: Effect of the broken heart syndrome on premium rates with a fixed heterogeneity
distribution (k = 6), at age 50.

Then we illustrate in Tables [f] and [6] the effect of heterogeneity, characterized
by parameter k, for two different ages 30 and 50. For instance, for the joint life
contract, the premium increases as the heterogeneity decreased’ However, this
effect is less clear for other products. Indeed, in a more heterogeneous population
(k = 2), there are more couples of extremely high risk, as well as more couples
of extremely low risk. The first couples contribute to an increase in the premium
whereas the latter couples contribute to diminish the premium. For the reversion-
ary annuity, a riskier couple is expected to trigger annuity payment earlier, which
means less premium income, but the payment is also expected to terminate earlier,
which spells less total payment. In our simulation studies, we observe that, for
each product, the premium rate is decreasing in the heterogeneity, both for age
30 and 50. Figure [2| plots, for each k, simulated lifetimes distributions for the last
survivor, respectively for zp = 30 and 50.

13This is expected. Indeed, the unconditional survivor function of the first death is:
1

S*(t) = E[@—(A1(t)+A2(t))F] - )
(L+ 1/k(A () + Ao()"

and the corresponding unconditional intensity function is:

B ay(t) + ax(t)
T 1+ 1/k(AL(6) + As(t))’

A(t)

thus the premia for a joint life contract is higher for k = 10.
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Joint Last Reversionary | Individual, female, | Individual, female,
with husband’s without husband’s
life | survivor annuity information information
k=2 |0.018 | 0.0153 0.129 0.0167 0.0167
k=6 |0.0196 | 0.0161 0.135 0.0176 0.0176
k=101 0.0197 | 0.0162 0.136 0.0177 0.0177
Table 5: Effect of heterogeneity on premium rates with a fixed broken heart syndrome (y = 5),
at age 30.
Joint Last Reversionary | Individual, female, | Individual, female,
with husband’s without husband’s
life | survivor annuity information information
k=2 |0.0334 | 0.0265 0.188 0.0299 0.0293
k=6 |0.0364 | 0.0287 0.199 0.0324 0.0318
k=101 0.0371 | 0.0292 0.203 0.0329 0.0323

Table 6: Effect of heterogeneity on premium rates with a fixed broken heart syndrome (y = 5),

at age 50.
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Figure 2: Probability density functions of the last survivor’s lifetime upon zy, for zg = 30, 50.

Special attention should be paid when comparing premium rates at age 50
for different values of parameter k. Indeed, for each value of k, vy(k,1/k) is the
heterogeneity distribution at age 30, but the heterogeneity distribution conditional
on the survival of both spouses up to age 50 is no longer the same. However, it is
still a gamma distribution y(k, 1/[k 4+ A1(21 — 20) + A2(21 — 20)]), where zo = 30,
z1 = 50 and Ay, Ay are the cumulative intensities (see [Appendix 3). Therefore, the
mean of the heterogeneity is k/[k+ A1 (21 —20) + A2(21 — 20)], and quotient between
the variance at age 50 and that at age 30 is k?/[k + Ay (21 — 20) + A2(21 — 20)]°.
Both quantities are decreasing functions of &, that is, the mean and the variance of
the heterogeneity diminish (in proportion) faster in the population with initially
the highest heterogeneity (k = 2). Figure |3| plots, for each k, the probability
density function of the heterogeneity both at age 30 and at age 50. The gamma
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distribution parameters at age 50 are reported in Table [7]
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Figure 3: Probability density functions of the heterogeneity, at ages 30 and 50.

\/ Variance at age 50

Shape parameter | Scale parameter
pe P P Variance at age 30

k=2 0.4816 2 0.9279
k=6 0.1646 6 0.9750
k=10 0.0992 10 0.9849

Table 7: Gamma distribution parameters at age 50 for different gamma distributions v(k,1/k)
at age 30. The scale parameter is the same as at age 30. The fourth column gives values of
k/lk+ Ai(x)+ Aa(x)], which equals also the mean of the heterogeneity distribution. It measures
the reduction of the heterogeneity due to the mover-stayer phenomenon.
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4.3. Evolution of the price of the contract during the life of the contract

A premium level ay is fixed at the inception of each contract (see Section 4.1).
However, it is important to evaluate regularly the residual value of this contract
during its life, for instance, to include it correctly in the balance sheet, or, if it is
securitized, to evaluate the price of the corresponding component of the Insurance
Linked Security (ILS).

Let us first focus on the joint life policy. The fair value of this contract at a
date where both spouses are still alive and the age of the couple is z1, 21 > zp, is
given by :

Cﬁg(amr? Zla}/h}/Q)
= Eo[Co(”(aom 213 Y1, Y2)[Yi1 > 21, Y5 > 2], (3.9)

M) given in (4.3) when z; = z.

ap is for instance equal to the fair premium ag = a,

The price updating is more complicated for the reversionary annuities product,
since we have to distinguish the two possible regimes existing during the life of
the contract. In the first regime the two spouses are both alive, with an age of
the couple equal to z;. In the second regime, there is just one surviving spouse,
the available information includes the date of the first death and the fact that
the surviving spouse is the husband, or the wife. In both regimes, the residual
value is systematically negative. First, in the second regime the only cash flows
are the payment of the annuity, which are negative. Second, in the first regime,
the premium rate of the reversionary annuity is increasing in 2o (see Figure [1)),
therefore, couples who entered into the contract at age zg < 21 pay, at age 21, less
premium than newly underwritten couples of age z;, while the two groups have
the same heterogeneity distribution, thus the same risk profile.

For illustration, let us calculate the residual value of a reversionary annuity
underwritten at the age of 30. At date ¢ > 30, the residual value of this contract
depends on the survival status of the couple. We use the same model as in the
previous section and Figure {4] displays the evolution of the residual value of the
contract, first when both spouses are still alive at date ¢, then when one of the
spouse died before t. The parameters are v = 5,k = 2,29 = 30. As expected we
observe that in both case, the value of the contract is negative. We observe also
in the second case, that the value of the contract is smaller for widows than for
widowers. Indeed, at the same age and with the same marital status, women have
a smaller mortality intensity than men have.
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Figure 4: Evolution of the residual value of a reversionary annuity. Left panel: both spouses are
still alive. Right panel: one of the spouses died before t.

5. Concluding remarks

The standard insurance literature for analyzing and pricing insurance contracts
written on two lives are pure models. A first category assumes a continuous bi-
variate distribution of the spouses’ lifetimes with a continuous probability density
function. This continuity assumption implies no jump in intensity when a spouse
dies. A second category of models apply a pure Freund model to describe the
broken-heart syndrome. These two effects impact the price of insurance contracts
and of annuity values in different ways, not only the price of contracts written on
two lives, but also the prices of individual contracts written on a single liff™] By
considering appropriate extensions of the Freund model, we have explained how
to account for both individual heterogeneity and potential jumps at the time of a
spouse’s death.

A similar problem arises in the credit risk literature where the death event
is replaced by a default event. The standard credit risk literature prices the de-
fault intensity, not the default event itself, leading to possible mis-pricing of credit
derivatives. The idea of introducing jumps in intensity to correct such a mispric-
ing has been proposed in |Jarrow and Yu (2001) for a credit derivative, written on
two corporationsE] [see also the discussions in [Benzoni et al.| (2012) and Bai et al.

1For the same reason they can impact the price of health insurance or of long-term care
contracts, for instance, since the risk of entering into long-term institutional care after the death
of a spouse can increase |[Nihtild and Martikainen| (2008))].

15which is equivalent to an insurance product written on two lives.
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(2014)]. Recently Gourieroux et al.| (2014)) derived the pricing formulas for credit
derivatives written on a large pool of corporations and taking into account the
jumps arising when corporations in the pool default.

Finally formulas providing the prices of insurance contracts written on two
lives depend on parameters explaining how the exogenous variable impact the bi-
variate lifetime (risk-neutral) distribution. These variables include the individual
characteristics of the couple, in particular the information on their generation.
This generation information for each given age allows for taking into account the
deterministic time dependence of the mortality rate. Moreover, the unobserved ex-
planatory variables can also depend on time in a stochastic way. Thus the longevity
feature can be taken into account either by introducing generation (time) as an ex-
planatory variable, or by introducing unobserved dynamic factor [see [Duffie et al.
(2009) for an example of unobserved dynamic Gaussian factor in credit risk mod-
elling]. The parameters have to be calibrated, especially the parameters measuring
the magnitude of the jumps (or of the association measures), the parameters cap-
turing the frailty and how they depend on generation (i.e. time). We explain in
why all the intensities are nonparametrically identified, in a mixed
proportional hazard model, whenever the generation (cohort) effect is taken into
account. The development of nonparametric, or semi-parametric, estimation meth-
ods is out of the scope of this paper on pricing, but they will clearly require enough
data on coupled lives, disaggregated by generations of spouses and contracts.
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Appendices

Appendix 1. Joint density of lifetimes

Let us assume y; < y5. We have :

fy,2) = PIY1 € (y1,y1 +dy1), Y2 € (42, Y2 + dia)]

lim
dy1,dy2—0 dyy dys

I PIX, < X5, X1 € (g0, 0 + dun), X1 + X4 € (o, 10 + d
dyl,glgzlaOdyldyQ R 2, X1 € (Y1, 41 + dyr), Xq + Xy € (y2,y2 + dyo)]

1
= i — Py < X2, Xy € (y1, d
dy 20 [d% v 2, X1 € (Y1, 41 + dy1)]

1 .
@P[)Q € (Y2 —y1,y2 — y1 + dya) | X1 = min(Xy, Xo) = yy]
2

[ o =55 — e
= 07, Y1, Y1 014 Y2 —Y15Y1)| -

Appendix 2. Link between the historical and risk-neutral distributions

For expository purpose we set the risk-free rate » = 0. Then we have to consider
jointly the historical (or physical) distribution, with characteristics indexed by P,
and the risk-neutral (or adjusted for risk) distribution, with characteristics indexed
by (). Since we are in an incomplete market frameworks, these two distributions
can be specified independently. Let us now discuss the possible effects of the
change of probability.

i) The stochastic discount factor (sdf) is the ratio between the risk-neutral and
historical densities:

fQ<y17y27F)
m(y17y27F) = fP(yl,QQ,F)’

for a model with frailty for instance. A discontinuity of the risk-neutral density
f@ on the 45° line y; = 1, that is, jumps in the risk-neutral intensities, can result
from either jumps in the historical intensities, or jumps in the adjustment for risk
(sdf) when a death occurs.

The standard insurance literature computing the prices from a specification of
the historical distribution and the sdf has omitted the second possibility. This is
typical of the practice of pricing by Esscher transforms [see e.g. |Esscher| (1932)),
Gerber and Shiu| (1994)] written on factor F', that is choosing m(yy,ye, F') =
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exp(a + BF), where o and 3 are such that Ef[exp(a + BF)] = 1 to get the zero
risk-free rate.

Intuitively to reintroduce the effect of death event while using the practice of
Esscher transforms, we may introduce the Esscher transforms on the distributions
of the latent variables, that is,

for the pair (X7, X3) : exp(aqz + S12F), say,
for the pair X3 : exp(as + G3F), say,
for the pair (X4) : exp(ay + B4 F), say.

with parameters linked by the condition of zero risk-free rate.

Appendix 3. Probability distribution function of the heterogeneity given
survival up to time t.

We derive the probability density function of the heterogeneity of the set of
couples such that both spouses survive up to age zyp + x. It is denoted g,, We also
denote by go the heterogeneity distribution at age zo = 30, which equals y(k, 1/k),
therefore:

go(f) o fF1 exp|—kf].

The unconditional survival probability that both survive up to age zg + x is:

S(x) =P(Y1 > z0+2,Ys > 2o+ z|Y] > 20, Y1 > 20)
— [ exp[~[Ai(@) + Ax(@)] flool /),

where A; and A, are cumulative intensities. Then the unconditional mortality
intensity at age zy + z is:

Az) = —(i: log S(z)

Jl1(@) + az(@)]f expl~[As(w) + Ax(2)]) flgo(F)f
[ expl=[Av(@) + Aa(@)]floo( £)f |
Therefore, we deduce that the heterogeneity distribution function is:
() = go(f) exp[—[Ai1(z) + As(2)]/]
[ 90 expl=[As(w) + Ax(@)]f1df
oc f* 7 expl—[k + Ai () + As(@)]f],

which is a gamma distribution with shape parameter k and scale parameter 1/(k+
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Appendix 4. Identification of the model

To illustrate the possibility of nonparametric identification, let us consider a
mixed proportional hazard model, where the latent intensities are of the type:

)\j(ﬂZ,CCj) = (lj(l'j)bj(Z)F} ] = 1, 2, 3, 4, (al)

where z are the observable individual covariates, F; unobserved heterogeneity, a;
baseline intensities. The observed covariates can be the generation'®, as well as
the date of the event min(Y;,Y3) for variables j = 3,4 to allow for semi-Markov
intensities.

We can distinguish different models based on the specification according
to the observed durations:

e The model M, », if we observe (Y7, Y3).

e The model My, if we observe (Y1, Yaly,cy;) = (X1 + Xslx,<x,, Xolx,<x,)-
In this model, the main duration variable of interest is Y7 and Y5 is observed
only if it is smaller than Y;.

e The model M2|1, if we observe (}/2, Y'1]1y2<y1) = (XQ +X4]1X1<X2a X1 1X1<X2)-
In this model, the main duration variable of interest is Y5 and Y5 is observed
only if it is smaller than Y5.

e The model M 9, if we observe (min[Y7, Ya|, 1y,<y; ).

These models are embedded in the following sequence:

Model M;py is commonly called competing risks model [see e.g. |Abbring and
van den Berg| (2003a)] and is used in the analysis of mortality by causes. Model
Mo (resp. Mypy) is called semi-competing risks model [see e.g. Xu et al| (2010)]
in biostatistics or (survival) models with treatment effect in microeconometrics
[see |Abbring and van den Berg (2003b)]. For instance, model M), is a model
for mortality of individual 1 subject to the death of 2 as treatment. Due to the
sequence of embedded models, any function identifiable under Mjao (resp. My,
My1) is also identifiable under Mo and Moy (resp. M ). This allows for applying
Proposition 4 in (Abbring and van den Berg, [2003b)), valid for the identification of

16 As we pointed out earlier in the paper, there are at least three generation effects, that are
respectively the cohort of the husband, the cohort of the wife, and the year of inception of the
contract.
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treatment effects in duration models. Under mild conditiond"} we can, in Model
M)z, identify nonparametrically functionﬁ

ai, ag, bl, bg, as, b3 and the jOiIlt distribution of Fl, FQ, F3.
In Model My, we can identify:
ai, as, bl, bg, ay, b4 and the jOiIlt distribution of Fl, FQ, F4.

Thus under M; o we can identify all functions a;,b;, j = 1,2, 3,4, as well as the
3-dimensional distributions of (F, Fy, F3) and (Fy, F, Fy).

In practice, we often assume that F; = F3, Fy = Fy, where F; and F5 can
be dependent. Under this additional assumption on unobserved heterogeneities,
Model M, 5 is nonparametrically identified.

However, the identification issues have not yet been solved for other types of
intensities, such as the affine intensities of Section 3.4.
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