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ABSTRACT
This paper proposes a Bayesian non-parametric mortality model for a small
population, when a benchmark mortality table is also available and serves
as part of the prior information. In particular, we extend the Poisson-gamma
model of Hardy and Panjer to incorporate correlated and age-specific
mortality coefficients. These coefficients, which measure the difference in
mortality levels between the small and the benchmark population, follow
an age-indexed autoregressive gamma process, and can be stochastically
extrapolated to ageswhere the small population has no historical exposure.
Our model substantially improves the computation efficiency of existing
two-population Bayesian mortality models by allowing for closed form
posteriormeanandvarianceof the futurenumberofdeaths, andanefficient
sampling algorithm for the entire posterior distribution. We illustrate the
proposed model with a life insurance portfolio from a French insurance
company.
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1. Introduction

Projecting mortality is of great concern for many disciplines, such as demographic analysis, social
planning, policy-making, and actuarial practices. In recent decades, various methodologies for
mortality modeling and projections have been proposed in the literature, such as the Lee–Carter
model (1992), the Cairns–Blake–Dowd (2006) model, and their various extensions (see e.g. Booth
and Tickle 2008, Cairns et al. 2011a). Moreover, government agencies and societies of actuaries
publish national or industry-level regulatory mortality tables on a regular basis. However, in many
situations, the population of interest, such as the portfolios of pension funds or insurance companies,
have limited size and/or short observation window. For such portfolios, the observed mortality
experience is typically erratic, with hard-to-identify, or even unreliable longevity trend.

However, such small populations are often sub-populations of a larger population, such as a
national population or a larger collective portfolio. The mortality pattern of the latter is usually much
more regular, and easier to forecast. In this case, mortality table of the larger population may serve
as a benchmark when modeling and forecasting mortality experience of the small population.

To this end, different solutions have been proposed in the literature. The first branch of literature
is based on deterministic approaches, such as relational models (see e.g. Himes et al. 1994, Brouhns
et al. 2002, Tomas and Planchet 2015), as well as methods based on the distortion of probability
distributions (see e.g. Denuit et al. 2007, Bienvenüe and Rullière 2012). These models specify a
deterministic, linear, or non-linear functional relationship between the mortality curves of the
two populations. Their drawbacks are that, first, the functional relationship typically involves a
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small number of parameters,1 which limits the flexibility of the model; second, and more im-
portantly, the deterministic relationship does not capture the impact of parameter uncertainty on
pricing/reserving/capital requirement calculation, which could be substantial for small populations.

The second class ofmodels areBayesian (see e.g.Dowd et al. 2011,Cairns et al. 2011b,Antonio et al.
2015, van Berkum et al. 2017). While they are flexible, and account for parameter uncertainty in a
natural way, these models are currently rather computationally intensive. While credibility theory
has been proposed to simplify such models (see e.g. Hardy and Panjer 1998, Olivieri and Pitacco
2012, Salhi et al. 2015), the computational gain usually relies on strong parametric restrictions.

This paper proposes a Bayesian non-parametric model for the mortality of a small population,
when mortality table of a larger population is exogenously given as the benchmark. The proposed
model has a flexible structure, while at the same time being less computationally intensive than the
existing Bayesian multi-population models. In the proposed model, the small population is assumed
to follow the same longevity trend as the benchmark population, but has different, age-specific
mortality levels. These levels are captured by a set of correlated and age-specific coefficients. A priori,
the mortality level of the small population is the same as the benchmark population for all ages,
and its forecasts depend solely on that of the latter. As mortality data accumulate, the estimation of
the mortality coefficients are updated by the Bayesian rule, and the small population has increasing
weights when forecasting its own mortality.

From the computational side, the model gives closed form expressions of the posterior moments,
such as mean and variance, of the next period’s total death count of the small population. Moreover,
in an insurance context, where the observations are claims with heterogeneous payments, closed
form expressions are available for moments of the total claim amount as well. These closed form
expressions significantly reduce the computational requirement of our model compared to existing
Bayesianmodels. Therefore, we are able to investigate, with limited computational cost, the impact of
the prior distribution on the expected future death counts and claim amount and the corresponding
uncertainty. These parameters include, among others, the size of the population of interest, the
length of the observation window, and the choice of the prior distribution. From the flexibility
side, our approach is non-parametric, in the sense that the mortality coefficients, which measure the
difference ofmortality level, are age-specific.Moreover, themortality coefficients are correlated across
different ages, with stronger correlation when two ages are closer. Such correlation leads to smoother
projected mortality curves. Compared to conventional non-parametric models such as Olivieri and
Pitacco (2012), the Bayesian aspect of the model allows us to conduct stochastic extrapolation of the
mortality coefficients to ages with no historical risk exposure.

The proposed model has also implications for regulation and risk management. Firstly, the
closed form expressions allow us to conveniently decompose the total variance into two parts:
the diversifiable part due to sampling variation, and the non-diversifiable part due to parameter
uncertainty. In the empirical analysis, it is shown that, for a mildly large life insurance portfolio with
around 15,000 policyholders and a fairly long observation period (11 years), the contribution of the
parameter uncertainty to the total variance can still be rather substantial (about 12%). This result
illustrates the danger of under-estimating the risk if a deterministic relationalmodel is used. Secondly,
our model may be suitable for building an internal model under the new insurance regulations, such
as Solvency II. These regulations encourage the use of proprietary mortality tables that better reflect
company-specific risks. Nevertheless, their implementation has to be monitored carefully, in order
to prevent insurers from regulatory arbitrage. When a regulatory life table (often built with some risk
margin on top of the ‘best estimate’) serves as the benchmark, our model leads to projections that are
closer to the insurer’s own mortality experience when its mortality experience is more reliable (e.g. a
larger portfolio size with a longer observation window).

In a numerical illustration, we apply the non-parametric Bayesianmodel to a French life insurance
portfolio. In particular, we compute the one-year-ahead predictive expectation and variance of the

1See however, Tomas and Planchet (2013), Cadena and Denuit (2016) for recent advances in flexible relational models.



3

total death counts, and illustrate the impact of the portfolio size and the choice of prior distributions
on the risk management of the portfolio. We illustrate, for a given prior distribution of the mortality
coefficients, how a larger portfolio gainsmoreweight on its ownmortality experiencewhen projecting
future mortality, whereas a smaller portfolio relies more heavily on the benchmark mortality table.
Besides, we also discuss the joint impact of the portfolio size and the prior distribution, which
measures the degree of belief on the benchmark mortality table.

The paper is organized as follows. Section 2 reviews the Poisson-gamma model of Hardy and
Panjer (1998). Section 3 discusses the drawbacks of this benchmark approach, and introduces the
Bayesian non-parametric model. Section 4 provides the Bayesian updating formula for the mortality
forecasts, in particular the closed form expression of the conditional expectation and variance of the
total death count (claim amount). Section 5 illustrates the model with a real life insurance portfolio.
Section 6 concludes. Technical proofs are gathered in Appendices.

2. The benchmark Poisson-gammamodel

The Poisson-gamma credibilitymodel of Hardy and Panjer (1998) is based on the conjugacy property
of the gamma distribution with respect to the Poisson likelihood function, inspired by studies of non-
life insurance portolios (see e.g. Dionne and Vanasse 1989). Assume that an insurance portfolio (the
small population) contains mortality experience of I ages and T years. Ages are indexed by 1, 2, …,
I , with indices ‘1’ and ‘I ’ referring to the smallest and the largest ages in the portfolio, rather than
the biological age 1 and I . The number of death at each age x and year t is conditionally Poisson
distributed (see e.g. Czado et al. 2005):

dx,t ∼ P(θxμ0,x,t ex,t), ∀x = 1, . . . , I , t = 1, . . . ,T , (2.1)

where

• ex,t is the exposure of the portfolio at age x and year t.
• μ0,x,t is the force of mortality of a benchmark population at the same age and year. This can
be, for instance, mortality of the corresponding national population, a collective portfolio, or
a regulatory mortality table. In general, mortality of this population can be stochastic with a
longevity trend, i.e. mortality rates at each age are non-stationary, and decrease over time. μ0,x,t
can be estimated from mortality data of the benchmark population, or exogenously given, e.g.
by regulators.
• the age-specific mortality coefficient, θ = (θ1, . . . , θI)′, are time-invariant. They capture the
relative risk of the portfolio with respect to the benchmark population. For instance, if θx is
smaller than 1, then the insurance portfolio has lower expected mortality at age x than the
benchmark. The mortality coefficients are unobserved and stochastic, inducing uncertainty on
the portfolio’s mortality.

The assumption that θ is constant means that the mortality ratios between the two populations
are stable. In other words, the small population shares the same longevity trend with the benchmark
population. This assumption is also used in the subsequent literature (see e.g. Olivieri and Pitacco
2012, Salhi et al. 2015, van Berkum et al. 2017). This assumption is motivated by the following
arguments:

• It allows the mortality improvements in these two populations to be coherent in the long-run,
which is an important criterion for modeling mortality of closely related populations.2
• When the small population has a reduced observation window, which is often the case in
insurance application, it is extremely difficult to reliably derive the mortality trend of the small

2Coherence assumption is typically imposed when the modeled populations have similar socioeconomic characteristics (Li and Lee
2005), or when one population is a sub-population of another (Dowd et al. 2011).
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population based on its own data. Therefore, it is more reasonable to assume that the two
populations share the same mortality trends.

Let us now specify the prior distribution of θ . Model (2.1) is first proposed by Hardy and Panjer
(1998), who assume that θx is common for all ages. Specifically, θx = θ for all x’s, where θ has the
prior distribution γ (ν, ν). In this way, the prior mean of θ equals to 1, and thus E[dx,t] = μ0,x,t ex,t .
In other words, the portfolio is expected to have a priori the same mortality experience as the
benchmark population. As is shown by Salhi et al. (2015), this condition is often not satisfied in
practice. In particular, the common θ assumption may lead to over-estimation of dx,t at certain ages,
and under-estimation at some others.

As an alternative to the common θ assumption, Olivieri and Pitacco (2012) and van Berkum et al.
(2017) assume that θ is a vector of i.i.d. random variables, each with the prior distribution γ (ν, ν).
This assumption isBayesian non-parametric, in the sense that the number of parameters vary with the
number of ages included in the analysis. In the sequel, we refer to the model with i.i.d. θ assumption
as the benchmark Poisson-gamma model.

As observations accumulate over time, the conditional distribution of each θx is regularly updated
using Bayes’ rule. For each T , denote by Dx = (dx,1, . . . , dx,T , ex,1, . . . , ex,T ,μ0,x,1, . . . ,μ0,x,T ) the set
of death counts and exposure of the portfolio and the force of mortality of the benchmark population
at age x, the conditional density of Dx given θx is:

l(Dx|θx) =
T∏
t=1

l(dx,t |θx) =
T∏
t=1

(θxex,tμ0,x,t)
dx,t exp (− θxex,tμ0,x,t)

�(dx,t + 1)

∝ θ

∑T
t=1 dx,t

x exp
(
− θx

T∑
t=1

ex,tμ0,x,t

)
. (2.2)

The following closed form expression of the posterior distribution is the key contribution to the pop-
ularity of the benchmark Poisson-gamma model. Using Equation (2.2), the conditional distribution
of θx given the death counts is:

l(θx | Dx) ∝ θ
ν−1+∑T

t=1 dx,t
x exp

(
− θx

(
ν +

T∑
t=1

ex,tμ0,x,t

))
. (2.3)

That is, l(θx | Dx) follows the gamma distribution γ (ν +∑T
t=1 dx,t , ν +

∑T
t=1 μ0,x,t ex,t). Thus, the

predicted mean of next year’s death count is:

E[dx,T+1|Dx] = μ0,x,T+1ex,T+1
ν +∑T

t=1 dx,t
ν +∑T

t=1 μ0,x,t ex,t

= ex,T+1μ0,x,T+1
(

ν

ν +∑T
t=1 μ0,x,t ex,t

+
∑T

t=1 μ0,x,t ex,t
ν +∑T

t=1 μ0,x,t ex,t

∑T
t=1 dx,t∑T

t=1 μ0,x,t ex,t

)
.

(2.4)

Therefore, the posterior expected number of deaths can be interpreted as the prior expected number,
ex,T+1μ0,x,T+1, multiplied by an average of 1 and the ratio between the observed and the expected
number of deaths,

∑T
t=1 dx,t∑T

t=1 μ0,x,t ex,t
.

In this model, parameter ν captures the belief of the benchmarkmortality table: if ν is much larger
than the cumulative sum,

∑T
t=1 μ0,x,t ex,t , then we have:

E[dx,T+1|Dx] ≈ ex,T+1μ0,x,T+1.
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In other words, we have strong belief that mortality of the small population would be close to that of
the benchmark population. Contrarily, if ν is small, we have:

E[dx,T+1|Dx] ≈ ex,T+1
∑T

t=1 dx,t∑T
t=1

μ0,x,t
μ0,x,T+1 ex,t

= ex,T+1μ0,x,T+1
∑T

t=1 dx,t∑T
t=1 μ0,x,t ex,t

.

In this case, the posterior expected death count depends on the prior expectation, ex,T+1μ0,x,T+1,
multiplied by an adjustment factor,

∑T
t=1 dx,t∑T

t=1 μ0,x,t ex,t
, which reflects the difference between the observed

and the expected number of deaths. In other words, predictive death counts in the small population
are heavily driven by its own historical pattern.

Let us now compare the variance of the posterior distribution with that of the prior distribution.
We have:

V[θx|Dx] = ν +∑T
t=1 dx,t

(ν +∑T
t=1 μ0,x,t ex,t)2

, V[θx] = 1
ν
. (2.5)

Therefore, we have V[θx] > V[θx|Dx] if and only if:

ν

( T∑
t=1

dx,t − 2
T∑
t=1

μ0,x,t ex,t

)
<

( T∑
t=1

μ0,x,t ex,t

)2

.

A sufficient condition of this latter inequality is:

T∑
t=1

dx,t < 2
T∑
t=1

μ0,x,t ex,t . (2.6)

When the mortality of the small population is lower, or close to that of the benchmark population,
Equation (2.6) holds with a large probability. Hence, the posterior variance V[θx|Dx] is generically
smaller than the prior variance V[θx]. In other words, information updating lowers the uncertainty
of the conditional distribution of l(θx|Dx).

Let us now discuss the difference of the Poisson-gammamodel with the relational models, such as
the Brassmodel (see e.g. Brouhns et al. 2002). The lattermodel assumes that the force ofmortality of a
population of interest,μ1, is related to that of a benchmark population,μ2, via an affine relationship:

f (μ1(x, t)) = θ1f (μ2(x, t))+ θ2,

where f is some link function, and θ1 and θ2 are typically deterministic and constant across different
ages. The Poisson-gamma model can be viewed as having a similar spirit, in the sense that f (x) = x,
θ2 = 0. However, θx is age-specific and stochastic, rather than deterministic and common across
ages.

3. The autoregressive gamma-Poissonmodel

The benchmark Poisson-gamma model assumes independence between the mortality coefficients θ .
As a consequence, the posterior distribution of θx depends only on the small population’s mortality
experience at age x, and the resulting curve of E[θx|Dx] can be rather erratic. In particular, at ages
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with small (or no) exposure, E[θx|Dx] is close to the prior mean, 1; whereas at ages with a large
exposure, E[θx|Dx] could be rather different than 1.

In this paper, we relax the independence assumption on the mortality coefficients by introducing
the autoregressive gamma (ARG) process. This allows the posterior distribution of each θx to depend
not only on mortality experience at age x, but the whole sample. Moreover, the ARG process leads
to stochastic and smooth extrapolation of the portfolio mortality table to ages with no historical
experience, rather than a point estimate given by the deterministic extrapolation methods (see e.g.
Salhi et al. 2015).

The ARG process is the exact time discretization of the continuous time Cox–Ingersoll–Ross
process (see Nieto-Barajas and Walker 2002, Gouriéroux and Jasiak 2006). It has gamma marginal
distribution, and nests the benchmark Poisson-gamma credibility model. To define the ARG process,
we can start from either end of the age group, i.e. θ1 or θI , and construct the process iteratively with
an auxiliary counting process N = (N1, . . . ,NI)

′. For example, the construction procedure starting
from θ1 is as follows:

• θ1 follows a gamma distribution, γ (ν, ν).
• Given θ1, introduce a latent count variable,N1, which follows a Poisson conditional distribution
with parameter βθ1. Given (N1, θ1), θ2 then follows the conditional gamma distribution γ (ν +
N1,β + ν).
• The next latent count variable, N2, follows the conditional Poisson distribution P(βθ2), and θ3
follows γ (ν + N2, ν + β), etc.

To summarize, we have the following causal chain:

θ1→ N1→ θ2→ N2→ θ3 · · · (3.1)

This is a Markov chain, in the sense that the conditional distribution of each variable given variables
on its left hand side depends only on its nearest left neighbour. For instance,

l(N2|θ2,N1, θ1) = l(N2|θ2), l(θ2|N1, θ1) = l(θ2|N1).

Moreover, N and θ are both Markov processes with respect to their own history. For instance, the
conditional distribution of N3 given N1,N2 only depends on N2.

Alternatively, we can define the joint distribution of θ from the oldest age x = I , and construct
the process in the reverse direction:

· · · , θI−2← NI−2← θI−1← NI−1← θI ,

where NI−1 follows P(βθI), and θI−1 follows γ (ν + NI−1, ν + β), etc. It will become clear in
Proposition 1 that process θ has the time reversibility property. Intuitively, this property means that
these two methods of construction lead to the same joint distribution of θ , and hence the definition
of its dynamics does not depend on the choice of the direction.

This specification has a similar spirit to the lognormal autoregressive specification proposed by
van Berkum et al. (2017), in the sense that both models allow correlation between different θx ’s.
However, under the log-normal model, moments of the posterior distribution need to be computed
using simulations.

It is also worth mentioning that the counting variablesNx ’s are latent and have no direct link with
the observed mortality counts dx,t ’s. They can be interpreted as (age-dependent) regimes, since the
larger Nx , the larger θx in expectation. Although the ARG process can also be introduced without
these count variables (see e.g. Lu Forthcoming) for an introduction via the conditional Laplace
transform], they are crucial to the closed form posterior moment expressions. Now we summarize
some properties of the ARG process that are useful for our application.
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Proposition 1 (see Gouriéroux and Jasiak 2006):

(1) (Marginal distribution) For each age x, variable θx is marginally γ (ν, ν) distributed.
(2) (Serial correlation) For each h, we have:

E[θx+h|θx] = 1− ρh + ρhθx , (3.2)

V[θx+h|θx] = (1− ρh)2

ν
+ 2

ρh(1− ρh)

ν
θx. (3.3)

As a consequence, we have

corr[θx , θx+h] = ρh,

where ρ := β
β+ν

. When β is equal to zero, θ1, θ2,…,θx are independent, and we get the
benchmark Poisson-gamma model in Section 2 as a special case.

(3) (Reversibility) The dynamics of the process θ is reversible, that is, in the reverse direction, the
process θI , θI−1, …, θ1 has the same Markov, ARG dynamics. As a consequence, we have also:

E[θx−h|θx] = 1− ρh + ρhθx , ∀h ∈ N. (3.4)

The proof of these properties can be found in Gouriéroux and Jasiak (2006), and is thus omitted.
The first property on marginal distribution is due to the fact that the gamma distribution is a
conjugate prior to the Poisson likelihood function. This conjugacy property greatly simplifies the
updating formula and explains why gamma distribution is the invariant distribution of the process.
It also implies that the proposed model is a direct generalization of the benchmark model. Indeed, if
we condition only on the death counts at age x, we still have the linear prediction formula:

E[dx,T+1|Dx] = ex,T+1μ0,x,T+1
ν +∑T

t=1 dx,t
ν +∑T

t=1 μ0,x,t ex,t
.

The second property shows that the auto-correlation of the process θ is the same as an AR(1) process.
This explains the terminology ARG. The larger ρ, the smoother the (prior) trajectory of θ , and as a
consequence, the smoother its posterior trajectory. Moreover, the dependence structure between the
different risk parameters θx ’s is spatial, in the sense that the closer the two ages x1 and x2, the stronger
the correlation between θx1 and θx2 .

The conditional expectation formula (3.2) allows us to extrapolate themortality table to ages older
than I . Indeed, the expected value of θI+h given observations at all ages is:

E[θI+h|DI ] = E

[
E[θI+h|θI ,DI ] | DI

]
= E

[
E[θI+h|θI ] | DI

]
= 1− ρh + ρh

E[θI |DI ], (3.5)

where Dx = (D1,D2, . . . ,Dx). In particular, DI is the whole dataset of death counts and exposure of
the portfolio, and the corresponding death probabilities of the benchmark population.

The extrapolation method introduced above is smooth, while being able to take into account
uncertainties in θx . First, for a fixed h, if ρ is close to 0, then the RHS of Equation (3.5) is close to
1, i.e. the projected mortality at the advanced ages are nearly not affected by observed mortality of
the portfolio. On the other hand, if ρ is close to 1, then this term is close to E[θI |DI ]. Therefore,
with appropriate choice of ρ, the correlation structure of θ ensures that the projected mortality in
each year vary smoothly across ages, rather than having a jump at age I + 1. Second, compared to
existing deterministic extrapolation methods, this method takes into account the uncertainty of the
extrapolated mortality coefficients. For instance, by Equation (3.3), the variance of the extrapolation
at age I + h is:
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Figure 1. The age-indexed state-space model.

V[θI+h|DI ] = V

[
E[θI+h|θI ]|DI

]
+ E

[
V[θI+h|θI ]|DI

]
= ρ2h

V[θI |DI ] + (1− ρh)2

ν
+ 2

ρh(1− ρh)

ν
E[θI |DI ]. (3.6)

Hence, when h = 0, the RHS in Equation (3.6) is equal to V[θI |DI ]; whereas when the extrapolation
horizon h is large, the RHS converges to 1

ν
= V[θI ]. Finally, the reversibility property of the ARG

process allows us to extrapolate the mortality of the portfolio to lower ages without historical data.

4. The Bayesian updating algorithm

After specifying the prior distribution of θ , it remains to compute their joint posterior distribution
given all historical data, l(θ |DI). The introduction of the serial correlation between θx ’smakes this task
more difficult than the benchmark case. In particular, the posterior distribution is no longer gamma
for each x, as opposed to Equation (2.3). This problem is usually tackled using computationally
intensive MCMC techniques (see e.g. Pitt and Shephard 1999, Czado et al. 2005, Pedroza 2006,
Antonio et al. 2015, Koopman et al. 2015). In the rest of this section, we formulate our model in a
state-space form, and derive closed form expressions of the posterior predictive mean and variance
using the chain structure of the ARG process (Equation (3.1)). A simple sampling algorithm for the
joint distribution l(θ |DI) is also proposed.

4.1. The state-space representation

A state-space model is a time series model in which there is a latent process in parallel to the
observed processes. In our application, this ‘time series’ refers to the age dimension, and the latent
state variables are the mortality coefficients, θ , whereas the observed variables are the observed death
counts dx,1, . . . , dx,T . The system has the following state-space representation3:

In Figure 1, the vectors (dx,1, . . . , dx,T )’s are i.i.d. across x conditional on the benchmark force
of mortality, (μ0,x,t)x,t , the portfolio exposure (ex,t)x,t , and θ . The arrow between θx and dx,t , t =
1, . . . ,T indicates that each dx,t depends on θx via Equation (2.1).

3The state space based on the reverse order, i.e. from θI to θ1, can be constructed in the similar manner.
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In this state-space representation, transition density of each θx can be derived by conditioning on
the counting variable:

l(θx|θx−1) =
∞∑
n=0

P[Nx−1 = n]l(θx|n, θx−1)

=
∞∑
n=0

e−βθx−1(βθx−1)n

�(n+ 1)
(β + ν)ν+n

�(ν + n)
e−(β+ν)θxθν+n−1

x ,

for x = 2, . . . , I . This expansion has infinitely many terms, but can be approximated by the sum of
the K + 1 first terms. In other words, we neglect the possibility of the count variable Nx−1 taking a
value larger than K . Thus we get:

l(θx|θx−1) =
∞∑
n=0

P[Nx−1 = n]l(θx|n, θx−1)

=
∞∑
n=0

e−βθx−1(βθx−1)n

�(n+ 1)
(β + ν)ν+n

�(ν + n)
e−(β+ν)θxθν+n−1

x

≈
K∑

n=0

e−βθx−1(βθx−1)n

�(n+ 1)
(β + ν)ν+n

�(ν + n)
e−(β+ν)θxθν+n−1

x

≡ F ′(θx−1)G(θx), (4.1)

where F and G are both (K + 1) dimensional vectors given by

F(x) =
(
e−βθx−1(βθx−1)0

�(0+ 1)
, . . . ,

e−βθx−1(βθx−1)K

�(K + 1)

)′
,

G(x) =
(

(β + ν)ν+0

�(ν + 0)
e−(β+ν)θxθν+0−1

x , . . . ,
(β + ν)ν+K

�(ν + K)
e−(β+ν)θxθν+K−1

x

)′
.

Clearly, when K goes to infinity, the approximation formula becomes exact. In practice, the value
of K is fixed to be mildly large to ensure a good quality of approximation. The choice of K will be
discussed in Appendix 3. Given a fixed K , the conditional distribution, l(θx|DI), can be computed
using an algorithm similar to the standardHamilton filter forMarkov switchingmodel. The posterior
densities are summarized in the following proposition.
Proposition 2:

l(θx|DI) = P′(I − 1)l(DI |θx)G(θx)

P′(I − 1)Q(I)
, if x = I , (4.2)

and
l(θx|DI) = P′(x − 1)G(θx)F ′(θx)l(Dx|θx)Q(x + 1)

P′(I − 1)Q(I)
, if x < I , (4.3)

where:

• P′(0) is the row vector of the marginal distribution of Nx, i.e. a negative binomial distribution
truncated at K.

Pj(0) ∝ Cj+ν−1
j pν(1− p)j, j = 0, . . . ,K , (4.4)

where p = 1− ρ.
• The subsequent value of P′(x) is obtained recursively and forward by:

P′(x) = P′(x − 1)Mx ,



10 H. LI AND Y. LU

• The sequence Q(x) is obtained recursively and backward by:

Q(I) =
∫ ∞
0

l(DI |θI)G(θI)dθI

Q(x − 1) = MxQ(x).

• the age-indexed matrix Mx is given by:

Mx =
∫ ∞
0

G(θx)F ′(θx)l(Dx|θx)dθx. (4.5)

This approach has recently been suggested by Creal (2017). For the sake of completeness, we
provide the proof of this proposition in Appendix 1. The interpretation of this result is that given
DI , the process N is still a (time-inhomogeneous) Markov chain, with transition matrix from Nx−1
to Nx given by, up to a multiple constant, the matrix Mx . Moreover, the vectors P(x) and Q(x)
are, up to appropriate normalization, the vector of probabilities of Nx given Dx = D1, . . . ,Dx and
Dx = Dx ,Dx+1, . . . ,DI , respectively.

Thus, based on Proposition 2, the computation of the smoothing density necessitates only the
computation of the matricesMx , whose (i, j)th entry has the following explicit expression:

Mx(i, j) =
∫ ∞
0

(β + ν)ν+i

�(ν + i)
e−(β+ν)θxθν+i−1

x
e−βθx (βθx)

j

�(j + 1)
θ

∑T
t=1 dx,t

x exp
(
− θx

T∑
t=1

ex,tμ0,x,t

)
dθx

= (β + ν)ν+iβ j

�(ν + i)�(j + 1)
�(ν + i + j +∑T

t=1 dx,t)(
β + ν + β +∑T

t=1 ex,tμ0,x,t

)ν+i+j+∑T
t=1 dx,t

, ∀i, j = 0, . . . ,K .

(4.6)

We can also remark that the smoothing density l(θx|DI) is a linear combination of gamma densities
γ (δ + k), where k varies between 0 and 2K . As a consequence, the lth moment of this smoothing
density E[θx|DI ] is:

E[θ lx|DI ] = P′(x − 1)Ml,xQ(x + 1)
P′(I − 1)Q(I)

, with Ml,x =
∫ ∞
0

θ lxG(θx)F ′(θx)l(Dx|θx)dθx. (4.7)

4.2. Predictivemean and variance of the one-year-ahead death count

From Equation (4.7), we obtain the posterior prediction of the one-year-ahead total death count:

E

[∑
x

dx,T+1|DI

]
=
∑
x

μ0,x,T+1ex,T+1E
[
θx|DI

]
. (4.8)

For the conditional variance, we first decompose it into the sum of the conditional variance of
individual dx,T+1’s and the covariance of dx,T+1 for different x:

V

[∑
x

dx,T+1|DI

]
=
∑
x

V[dx,T+1|DI ] + 2
∑
x<x′

CoV[dx,T+1, dx′,T+1|DI ]. (4.9)
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By the law of total variance, the variance term V[dx,T+1|DI ] can be further decomposed into:

V

[
dx,T+1|DI

]
= E

[
V(dx,T+1|θx ,DI)|DI

]
+ V

[
E(dx,T+1|θx ,DI)|DI

]
= E

[
μ0,x,T+1ex,T+1θx|DI

]
+ V[μ0,x,T+1ex,T+1θx|DI ]. (4.10)

The first term on the RHS is the contribution of the idiosyncratic variation, and can be derived from
(4.7), whereas the second term is the contribution of the uncertainty around the unobservedmortality
coefficient θx , and is equal to:

V[μ0,x,T+1ex,T+1θx|DI ] = μ0,x,T+12e2x,T+1
(

E[θx|DI ]2 − E[θ2x |DI ]
)

.

Note that this formula has been derived under the implicit assumption that the future value of
μ0,x,T+1 is deterministically given. This can be motivated, for instance, when μ0,x,T+1 is given by the
regulator,whichusually does not provide uncertainties around themortality table. Inmany situations,
however, uncertainties in longevity improvements of the benchmark population should be taken into
account when forecasting death counts in the insurance portfolio. Accounting for uncertainties of
the benchmark mortality rates is straightforward, under the assumption thatμ0,x,T+1 is independent
of θx for each x. In this case, we have:

V[μ0,x,T+1ex,T+1θx|DI ,FT ] = e2x,T+1
(

E[μ0,x,T+1|FT ]2E[θx|dI ]2 − E[μ0,x,T+12|FT ]E[θ2x |Dx]
)
,

(4.11)

where FT denotes the mortality history of the benchmark population, i.e. (μ0,x,t)x=1,...,I ,t=1,...,T .The
independence assumption between each μ0,x,T+1 and θx indicates that differences in mortality level
between the two populations are stable, regardless the mortality improvement in the benchmark
population. In other words, the insurance portfolio has the same mortality trend as the benchmark
population, i.e. mortality trends in the two populations are coherent (Li and Lee 2005). Under the
independence assumption, computing the variance of the total death counts in the portfolio amounts
to computing the first two conditional moments of μ0,x,T+1 for all x. This can be conducted by
simulation when a stochastic mortality model, such as the Lee and Carter (1992) model, is specified
for the benchmark population.

Similarly, the covariance term in (4.9) is given by:

Cov[dx,T+1, dx′,T+1|dI ] = μ0,x,T+1ex,T+1μ0,x′,T+1ex′,T+1Cov[θx , θx′ |DI ]
= μ0,x,T+1ex,T+1μ0,x′,T+1ex′,T+1

(
E[θxθx′ |DI ] − E[θx|dI ]E[θx′ |DI ]

)
.

(4.12)

Thus, the computation of the covariance term involves solving for E[θxθx′ |DI ], which is given in the
following proposition.
Proposition 3: For two ages x < x′, E[θxθx′ |DI ] is given by:

E[θxθx′ |DI ] =
P′(0)

[
M1 · · ·Mx−1

]
M1,x

[
Mx+1 · · ·Mx′−1

]
M1,x′

[
Mx′+1 · · ·MI−1

][ ∫∞
0 l(dI |θI )G(θI )dθI

]
P′(0)

[
M1 · · ·MI−1

][ ∫∞
0 l(dI |θI )G(θI )dθI

] ,

with Mx and M1,x given in Equations (4.5) and (4.7), respectively.

8 
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Proof: See Appendix 2.

Finally, when uncertainties of μ0,x,T+1 are incorporated, the covariance term becomes:

Cov[dx,T+1, dx′,T+1|dI ] = ex,T+1ex′,T+1E[μ0,x,T+1μ0,x′,T+1|FT ]E[θxθx′ |DI ]
− ex,T+1ex′,T+1E[μ0,x,T+1|FT ]E[μ0,x′,T+1|FT ]E[θx|DI ]E[θx′ |DI ].

(4.13)

4.3. Accounting for heterogeneous policy face values

Besides the number of death, we can also calculate the posterior moments of the total claim amount.
For illustration, we consider a portfolio of policies only with death benefits. In the simplest scenario
where all policies have the same face value, multiplying the forecast of the total death count by this
face value (resp. the squared face value) yields the next year’s expected total claim amount (resp. the
variance of the claim).

In practice, however, insurance policies have different face values. Suppose that there are ex,t
policies with age x at year t. Their face values are chosen independently by their policyholders, and
we denote by Vx,t the set of these ex,t observed face values. Then the sum of the face values of the dx,t
death events at age x and time t, Ax,t , has the compound Poisson representation:

Ax,t =
dx,t∑
i=1

zi,x,t , (4.14)

where zi,x,t are mutually exclusive draws from the set of face values Vx,t . When ex,t is large, these
draws can be approximately regarded as i.i.d., and the mean (resp. variance) of each zi,x,t is well
approximated by the empirical mean mx,t (resp. empirical variance σ 2

x,t) of these observed face
values, which are easily computable. Thus, we have:

E[Ax,t+1|DI ] = mx,tE[dx,t+1|DI ]

and

V[Ax,t+1|DI ] = V

[
E[Ax,t+1|dx,t+1,DI ]|DI

]
+ E

[
V[Ax,t+1|dx,t+1,DI ]|DI

]
= m2

x,tV[dx,t+1|DI ] + σ 2
x,tE[dx,t+1|DI ].

Similarly, the covariance is given by:

Cov[Ax,t+1,Ax′,t+1|DI ] = mx,tmx′,tCov[dx,t+1, dx′,t+1|DI ].

In practice,mx,t and σ 2
x,t are unknown, but can be estimated from historical claim experience.

Finally, the third and fourth conditional moments of
∑I

x=1 Ax,t given DI can also be obtained in
a similar manner, using the law of total cumulance. These computations involve the third and fourth
order (co-)moments of dx ’s (and hence those of θx ’s), which have closed form expressions as well
(see Section 4.2). They can be used to approximate the conditional distribution of the total claim
amount using the moment matching technique (see e.g. Ghysels and Wang 2014). Besides, one can
also obtain the posterior distribution of the total claim amount via simulation, which is discussed in
the next subsection.
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4.4. Simulating trajectories of θ

Our previous closed form predictive formulae concern themean and variance of the next year’s death
count. However, other risk metrics, such as Value-at-Risk (VaR) and Conditional-Tail-Expectation
(CTE), may also be interesting in solvency calculation. These risk metrics can be calculated using
simulation. This can be done by first simulating trajectories from the posterior distributions of θ ,
then, for each simulated θ , simulating the number of death for each age. Furthermore, the simulation
exercise is useful when the forecast horizon is longer than one year, which is particularly relevant for
annuity or pension businesses.

Simulation of the posterior trajectory in standard state space models is based on computationally
intensive particle filter, or MCMC (see e.g. Pedroza 2006). In our model, the auxiliary counting
variable can be used to simplify the sampling procedure (see Nieto-Barajas and Walker 2002, Creal
2017). The basic idea is that, in order to simulate trajectories of θ , we first simulate a trajectory of N
from its posterior distribution. Simulating trajectories of N is simpler, since each Nx is discrete and
has an (approximated) finite state space {0, . . . ,K}. Then, in the second step, we simulate each θx
conditional on dx , Nx , and Nx+1. The detailed sampling algorithm is provided in Appendix 4.

5. Application

In this section, we fit the ARGmodel to a portfolio of endowment policies (that is, policies with death
benefits) from an anonymous French life insurance company. The data contain about 15,000 male
policyholders over an observation window of 11 years (1997–2007). The portfolio is not closed, that
is, new policyholders can enter the portfolio after the inception date, while existing policyholders can
choose to lapse their contract and leave the portfolio at any time during the observation period. In
this paper, the French national male mortality data during the same period is used as the benchmark
mortality table. The benchmarkmortality data are downloaded from theHumanMortalityDatabase.4
For illustration purpose, mortality development of the benchmark population is assumed to be
deterministic.

5.1. Data

Figure 2(a) displays the age-specific exposure of the portfolio in year 1997. The exposure is adjusted
for lapsation.5 Policyholders’ ages range between 10 and 102, and has a two-modal distribution.
We see that the majority of policyholders are active lives. However, the second peak at around 70
indicates that recently retired people tend to buy endowment policies as well, possibly because of
heritage motive. In particular, the proportion of policyholders above age 65 in the portfolio is around
27% in year 1997, while the analogous number is 11% in the French male population. Therefore,
uncertainties regarding the total number of deaths in the portfolio is likely to be substantial, due to
the higher elderly proportion. Figure 2(b) displays the age-specific mortality rates of the portfolio
from year 1997 to 2007. Due to higher longevity risks, the mortality rates are more erratic at older
ages. Moreover, the small exposures at these ages could also contribute to the uncertainties. Finally,
no clear mortality improvement is observed in the insurance portfolio, probably due to the short
observation window. This motivates the use of a benchmark population with reliable mortality trend.

5.2. Impact of the age dependence

Since θ are correlated, the posterior distribution of each θx depends not only onDx , but also on other
ages. To illustrate the impact of the auto-correlation coefficient ρ, we plot in Figure 3 the posterior
mean of the process (θx)x=1,...,110 for ρ = 0.1, 0.9, and ν = 10. For comparison, the posterior means

4See: http://www.mortality.org/. The application of the ARG model is not restricted to the national mortality table. Regulatory or
industrial aggregate mortality tables can also be used as the benchmark mortality table.

5For example, if a policyholder lapses his/her policy at sometime between 1 January and 31 December in year t, the year t exposure
only counts the time elapsed between 1 January and the time of lapse, but not one entire year.

http://www.mortality.org/


14 H. LI AND Y. LU

20 40 60 80 100
Age

0

100

200

300

400

500
Ex

po
su

re

1998 2000 2002 2004 2006
Year

0

0.05

0.1

0.15

0.2

0.25

D
ea

th
 R

at
e

60
70
80
90

Mo
no
for
pr
int

co
lou
r o
nli
ne

Figure 2. The exposure and mortality rates of the portfolio at different ages and different years.
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Figure 3. Posterior mean of θx with age dependence (full line, corresponding to ρ �= 0) and without age dependence (dashed line,
that is, ρ = 0) with ν = 10.

of θx under the standard Poisson-gamma model (ρ = 0) are shown in each panel as well. We let
K = 200 for the truncation of the Poisson distribution, as we find that in bothmodels, the probability
of Nx taking values larger than 200 is negligible (see Appendix 3).

Several observations can be made from Figure 3. First, the posterior means of θx are smaller than
1 for most ages and all three model specifications. This is reasonable, since mortality rates of life
insurance policyholders are in general lower than those of the national average. Second, the posterior
mean of θx converges to 1 when x reaches either the minimal age, 1, or the maximal age, 110. This is
due to the fact that exposure in the portfolio decreases drastically when approaching these limiting
ages, and thus the posterior means of θx ’s are converging to their prior means (see Equation (3.5)).
Third, the convergence speed is the fastest in the independent case, and the slowest with ρ = 0.9.
The reason is that the correlation structure of θ leads to a smoothing effect on their posterior means.
Moreover, this effect is more substantial at ages with a small exposure and when ρ is larger. In
particular, for ρ = 0.9, the spikes on the independent trajectory (dashed line) near age 30 and 105
have almost been eliminated.
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Table 1. The posterior predictive mean, variance, and 99.5% value-at-risk of the total number of deaths next year in the portfolio
using different values of ρ and ν. The predictive mean (row 1) and variance (row 2) are obtained from closed-form expressions
derived in Section 4, while the VaR (row 3) is based on simulation.

ν 1 5 10

ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

E

[∑
x dx ,T+1|DI

]
237.69 237.60 237.01 243.52 240.31 237.61 249.13 243.32 237.95

V

[∑
x dx ,T+1|DI

]
266.27 266.57 266.95 270.84 268.35 265.99 275.18 270.54 265.91

VaR 285 283 282 288 287 286 296 295 293

5.3. Projected total number of deaths

After forecasting θ , we forecast the one-year-ahead total death count. InTable 1,we show, for different
values of ρ and ν, the posterior mean, variance, and 95% VaR of next year’s total number of deaths.
The first two are calculated using the closed form formulae in Sections 4.1 and 4.2. The 95% VaR is
obtained by 100,000 simulated trajectories of θ based on the sampling algorithm in Section 4.4.

Generically speaking, when ρ is fixed, the predictive mean and variance are increasing in ν. The
reason is that ν is a belief parameter and measures the weight assigned to the benchmark mortality,
which has in general higher age-specific mortality rates (see Equation (2.4)). Therefore, the larger ν,
the larger the weight of the benchmark mortality, and so are the forecasted θ . Moreover, with fixed
ν, we see that the predictive mean and variance are decreasing in ρ. Indeed, larger ρ implies stronger
correlation between θx ’s, and thus lower posterior means for the θx ’s with small exposure. As a result,
the projected mortality rates in the insurance portfolio become smaller when ρ increases.

5.3.1. Variance decomposition of the total death count
Besides projecting the mean and variance of the insurance portfolio’s death count in the next period,
the ARG model allows us to evaluate the extent to which parameter uncertainty on θ affects the
projection. Specifically, the conditional variance of the total number of deaths is given by:

V

[∑
x

dx,T+1|DI

]
= E

[∑
x

dx,T+1|DI

]
+
(

V

[∑
x

dx,T+1|DI

]
− E

[∑
x

dx,T+1|DI

])
. (5.1)

The first part on the right hand side of Equation (5.1) corresponds to the (diversifiable) contribution
from the sampling variation, whereas the second part is the (non-diversifiable) contribution from
the uncertainty on θx , i.e. the parameter uncertainty. By law of large numbers, the diversifiable part
is decreasing (relative to the conditional mean) in the size of the portfolio. As for the second, non-
diversifiable part, when the portfolio size and/or the observation window increases, this uncertainty
of the underlying mortality rates becomes smaller as well.6

Table 1 shows that, although the sampling variation is larger, the contribution of the uncertainty
on θx accounts for, roughly speaking, 12% of the estimated number of death, E

[∑
x dx,T+1|DI

]
.

This number is far from negligible, even when the data covers an observation window of 11 years,
which is relatively long for one insurance product. Therefore, by the arguments of Section 2 (see
e.g. Equation (2.3)), we can expect even larger contribution from the uncertainty of θx when the
observation window is shorter.

To further illustrate the realized economy due to the decrease of the parameter uncertainty, we
estimate the model using different observation windows, and compare the results. In particular,

6A similar conclusion has been reached in Hardy and Panjer (1998), who report that a large company (say, with 1 million policies)
can release up to 50 % of the regulatory capital compared to a small company (say, with 50,000 policies). See also equation (2.5)
for a discussion.
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Figure 4. Posterior mean of θx for different lengths of observation window: T = 1 in full line, T = 5 in dashed line, and T = 11 in
dot-dash line.

for different T ’s smaller than the maximal possible value Tmax = 11, we use the first T years of
observations to estimate E[θx|DI ], then compute the predictive mean and variance of the total death
count at year T + 1.

Figure 4 displays the posterior mean of θ with T = 1, 5, and 11. We see that the posterior mean
of θ becomes smaller when T increases. This result is intuitive, since as the observation accumulates,
portfolio’s own mortality rate, which is lower than the benchmark population, has larger impact on
the estimation of θ .

Let us now examine how the predictive mean and variance of the total number of deaths evolves
when the observation window increases from T = 1 to T = 11. Figure 5 shows the predictive mean
and variance of next year’s death count as a function of T . First, we observe a hump shape for both
the mean and the variance. This is the result of two opposite effects. On the one hand, total exposure
in the portfolio decreased by around 15% over the 11 years, which would reduce the projected death
count. On the other hand, the average age of policyholders had been increasing over time, which lead
to higher average mortality rates. More importantly, we see that increasing the observation window
clearly reduces the predictive variance relative to the predictive mean, especially when T is small. In
other words, the contribution of parameter uncertainty to the variance of total death count becomes
less substantial as observation accumulates.

Finally, we illustrate the simulation of the trajectories of θ . Figure 6 displays 100 simulated
trajectories of θ drawn from the posterior distribution l(θ |DI), with ν = 10 and ρ = 0.5.We observe
that the average of these trajectories correspond roughly to Figure 3(b), i.e. E[θx|DI ]. Moreover, as
expected, the trajectories are more erratic at lower and higher ages, due to the lack of exposure.

5.4. Implications on regulation and reinsurance pricing

Let us now discuss the implications of the ARG model on regulations and pricing, as well as how to
determine the values of ν and ρ. In this paper, we assume that ν and ρ are exogenously given. In
a frequentist framework, however, it is possible to estimate ν and ρ from the insurance portfolio.
Roughly speaking, at age x, θx is approximately the ratio between the historical death counts of the
insurance portfolio and the benchmark population. Therefore, a reasonable proxy of θx would be∑

t dx,t∑
t μx,t ex,t

. Using this approximation, we can calibrate the values of ν and ρ.
Nevertheless, from the regulatory point of view, this frequentist approach is not recommended.

Indeed, the benchmark mortality table for life insurance policies (resp. life annuities ) is often a
‘conservative’ table which overestimates (resp. underestimates) the mortality rates of the portfolio.
Thus if the previous estimation approach is directly applied, we would get raw estimate of θx which
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Figure 5. Predictive mean (in full line) and variance (in dashed line) of total death count in the next year, for different lengths of
observation window.
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Figure 6. 100 simulated trajectories of θ with ν = 10 and ρ = 0.9.

are usually smaller than 1 for a life insurance portfolio. This is contrary to our prior assumption that
E[θx] = 1.

So why do we make, at the beginning, this unitary mean assumption? Indeed the possibility for
the insurer to set its own proprietary life table has to be monitored very carefully by the regulator,
in order to prevent them from regulatory arbitrage. Without the prior assumption E[θx] = 1, it
would be very tempting for insurers to apply the ARG model, or other similar models, to obtain a
proprietary life table, so long as the portfolio mortality level seems to be lower than that implied
by the regulatory table. regardless of the reliability of such a conclusion. Using such proprietary life
tables is very risky if the observed mortality difference does not hold in the future. In fact, the use of
proprietary table should only be allowed when there is strong evidence that the risks of the insurer’s
portfolio is significantly lower than implied by the benchmark life table. This strong evidence might
be the fact that the portfolio is sufficiently large, or that a lower mortality level has been observed
over a sufficiently long period.

The Bayesian approach proposed in this paper is more adapted, as it allows to automatically
evaluate the reliability of a portfolio’s own mortality experience. In our approach, the prior mean,
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Figure 7. The age-specific exposure in the small portfolio in year 1997.
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Figure 8. Posterior mean of θ from the whole portfolio (full line) and the small portfolio (dashed line) for different values of ν with
ρ = 0.5.
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E[θx], is fixed rather than estimated. As a result, even when the portfolio’s mortality rates seem to be
lower, we would still get the posterior means of θx ’s close to 1 if i) the portfolio size is not sufficiently
large; ii) or the observation window is not long enough. Contrarily, the predicted mortality would
be close to the insurer’s own mortality experience when the portfolio size is large, or when the
observation window is long. In other words, under the Bayesian approach, the more reliable the
proprietary mortality experience, to a larger extent the insurer can take it into account when building
the internal model.

Therefore, to ensure coherence, the values of ρ and ν, which characterize the prior distribution of
θ , should be fixed by the regulator at the industry level, rather than be estimated for each portfolio,
and their values will reflect the regulator’s risk aversion (via parameter ν), as well as its emphasis on
smoothmortality forecasts (via parameter ρ). This approach is also in line with the existing literature
(see e.g. Olivieri and Pitacco 2012, van Berkum et al. 2017).

Besides solvency calculation, our model is also useful for reinsurance pricing, in which case the
role of the regulator is replaced by the reinsurer, and the regulatory mortality table is replaced by the
reference pricing table of the reinsurer. In this case, the values of ρ and ν could be estimated by the
reinsurer, as it has access to a wide range of insurance portfolios. This is the approach adopted by
Hardy and Panjer (1998) and Salhi et al. (2015). As a result, the Bayesian approach allows to derive
reinsurance quotes that take into account both the portfolio’s own mortality risk and the industry
experience.

In the context of a reinsurance quote, thewillingness of the reinsurer to price the contract using the
insurer’s own mortality experience depends on its knowledge of the latter. If the insurer’s portfolio
is small, then the reinsurer will put more credibility on a conservative reference mortality table.
When the size of the insurer’s portfolio becomes larger, the degree of the asymmetric information
becomes smaller, and the reinsurer becomes more willing to take into account the insurer’s own
mortality experience. Note, also, that when an industry-level data is used, the conditions E[θx] = 1
for each x ensures that this pricing approach is fair for the reinsurer. That is to say, when the reinsurer
underwrites lots of portfolios, it can expect that the average cost across all the portfolios is equal to
that predicted by the benchmark mortality table.

To conclude this section, we provide an example to illustrate the impact of parameter ν and
the portfolio size on the credibility of its own mortality experience. Specifically, we create a small
portfolio by randomly drawing policyholders from the whole portfolio. The small portfolio consists
of around 2,800 policyholders in year 1997, thus its size is about 20% of the whole portfolio. The age
composition of the small portfolio is similar to the whole portfolio, and is given in Figure 7.

Figure 8 displays the posterior means of θ for the whole portfolio and the small portfolio with
different values of ν and ρ = 0.5.7 First, we see that the posterior means from both portfolios are
more volatile with a smaller ν. The reason is that, when the prior belief is weaker (with a smaller
ν), the portfolio’s own mortality experience has heavier influence on the posterior distribution of θ .
Second, with ν = 5 and 10, i.e. when the posterior means are less volatile, the whole portfolio has in
general lower posterior means of θx . Therefore, given a fixed set of ρ and ν, a larger portfolio could
gain more credibility on its own mortality experience in mortality forecasting.

6. Conclusion

This paper proposes a Bayesian non-parametric mortality model for a small population, where
mortality of a larger population is exogenously given as the benchmark. The proposedmodel captures
differences in mortality level between the small and the benchmark population by an autoregressive-
gamma (ARG) process. Compared with existing deterministic models, the proposed model is more
flexible whereas at the same time ensures smoothness of themortality projection across different ages.
Moreover, the model is associated with closed form expressions of the (posterior) moments, and a

7The comparison is qualitatively similar for different values of ρ.
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computationally efficient sampling algorithm of the whole posterior predictive distribution, of future
death counts of the small population. This makes the ARG model more accessible to practitioners.

In a numerical application, we apply the ARG model on a French life insurance portfolio. In
particular, we examine how the portfolio size and the length of observation window would affect
the weight assigned to the portfolio’s own mortality experience in mortality forecasting. Further, we
discuss the impact of the prior distribution, which measures the degree of belief on the benchmark
mortality table, on the risk management of the insurance portfolio.

Finally, while the primary application in this paper relates to mortality forecasting of a small
population, the proposed model can also be used as building block of a two-population Bayesian
mortality model (see e.g. Antonio et al. 2015). Indeed, the estimation of Bayesian mortality models
typically require substantial computational efforts (see also Czado et al. 2005), and the computational
costs are even higher in the two-population case. The ARG model provides a tractable distribution
for the conditional mortality rate of one population, when the mortality of the other population is
assumed to be exogenously given. This could substantially reduce computational costs resulting from
simultaneously modeling of two populations.
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Appendix 1. Proof of Proposition 2
The derivation of the smooth distribution is provided in Section 3.3 in Gouriéroux and Jasiak (2001) for a general class
of models with finite dimensional dependence. For the sake of completeness, we provide in this appendix a simplified
proof using the latent switching interpretation of the ARG process. The proof is decomposed into two parts. We first
derive the filtering formula of θ in Appendix A.1, then derive the smoothing formula in Appendix A.2.

A.1. The filtering formula

Let us compute recursively the filtering distribution l(θx |Dx), i.e. the conditional distribution of θx given deaths
occurred at ages non larger than x. As discussed in the paper, it is easier to work with the discrete state variable Nx in
the derivation. Therefore, we introduce the filtering distribution of Nx given death count observations up to age x:

P(Dx) := (P[Nx = 0|Dx], . . . ,P[Nx = K |Dx]). (A1)

Then we can remark that the link between the filtering distribution of Nx and that of θx is the following:

l(θx |Dx) =
P′(Dx−1)G(θx)l(Dx |θx)

P′(Dx−1)
[ ∫∞

0 G(θx)l(Dx |θx)dθx

] . (A2)

This formula is a direct consequence of the Bayes formula and thus its proof is omitted.
Hence, in order to obtain the filtering density, it suffices to obtain the vector of probabilities P(Dx). Let us start by

providing its initial valueP(0), when the conditioning set is degenerated. That is to say,P(0) is the stationary distribution
of Nx (truncated by upper bound K). Since θx has a gamma γ (ν, ν) marginal distribution and Nx is conditionally
PoissonP(βθx), the marginal distribution ofNx is Negative Binomial with size parameter ν and probability of success
p = 1− ρ. Hence we have formula (4.4).

Let us now provide a simple recursive updating formula to update P(Dx). We have the following property:
Lemma 1: The recursive updating formula of the sequence (P′(Dx)) is given by:

P′(Dx) ∝ P′(Dx−1)
∫ ∞
0

G(θx)F ′(θx)l(Dx |θx)dθx︸ ︷︷ ︸
:=Mx

, (A3)
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where the normalization constant to divide is to ensure that the components of P′(Dx) sum up to unity.
In other words, P′(Dx) is equal to, up to a multiplication constant, the vector P′(x) introduced in Proposition 2:

P′(x) ∝ P′(Dx), ∀x.

Equation (A3) is just a matrix formulation of the following elementary identity, obtained via the Bayes’ rule:

P[Nx = j|Dx] =
K∑
i=0

P[Nx = j|Nx−1 = i,Dx]P[Nx−1 = i|Dx−1]

∝
K∑
i=0

[∫
Gi(θx)Fj(θx)l(Dx |θx)dx

]
P

[
Nx−1 = i|Dx−1

]
.

It is then easily checked that this formula leads to the filtering formula (4.2).

A.2. The smoothing formula (4.2)

Let us consider the joint distribution:

l(DI , θI ,DI−1, θI−1, . . .Dx+1, θx+1, θx |Dx)

= l(θx |Dx)l(θx+1|θx)l(Dx+1|θx+1) · · · l(DI−1|θI−1)l(θI |θI−1)l(DI |θI )
= l(θx |Dx)F ′(θx)G(θx+1)l(Dx+1|θx+1)F ′(θx+1)G(θx+2)l(Dx+2|θx+2) · · · F ′(θI−1)G(θI )l(DI |θI ) (A4)

By integrating out θx+1, . . . , θI , we obtain:

l(DI ,DI−1, . . . ,Dx+1, θx |Dx)

=
[
l(θx |Dx)F ′(θx)

][ ∫ ∞
0

G(θx+1)l(dx+1|θx+1)F ′(θx+1)dθx+1
]
× · · ·[ ∫ ∞

0
G(θI−1)F ′(θI−1)l(dI−1|θI−1)dθI−1

][ ∫ ∞
0

l(DI |θI )G(θI )dθI

]
, (A5)

where the term in the first pair of brackets is a row matrix, the term in the last pair of brackets is a column matrix, and
all the intermediate terms are square matrices that have already been computed during the filtering stage.

Finally, by Bayes’ formula, the smoothing density is equal to:

l(θx |DI ) =
l(DI ,DI−1, . . . ,Dx+1, θx |Dx)

l(DI ,DI−1, . . . ,Dx+1|Dx)
,

that is the ratio between the RHS of Equation (A5) and its integral with respect to θx .

Appendix 2. Proof of Proposition 3
It suffices to show that the joint smoothing distribution l(θx , θx′ |dI ) is equal to:

l(θx , θx′ |DI ) ∝ P′(0)
[
M1 · · ·Mx−1

]
G(θx)F ′(θx)l(dx |θx)

[
Mx+1 · · ·Mx′−1

]
× G(θx′ )F ′(θx′ )l(Dx′ |θx′ )

[
Mx′+1 · · ·MI−1

][ ∫ ∞
0

l(DI |θI )G(θI )dθI

]
, (B1)

where the normalization constant is equal to P′(0)
[
M1 · · ·MI−1

][ ∫∞
0 l(DI |θI )G(θI )dθI

]
.

The proof is similar as Proposition 2. Indeed, from Equation (A4), we integrate out θx+1, · · · , θx′−1, θx′+1, · · · , θI ,
to obtain the counterpart of Equation (A5). Then by Bayes’ formula we have:

l(θx , θx′ |DI ) =
l(DI ,DI−1, . . . ,Dx+1, θx , θx′ |Dx)

l(DI ,DI−1, . . . ,Dx+1|Dx)
.
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Appendix 3. The choice of K
In this paper, we let K , the truncated upper bound of the stationary distribution of Nx , to be 200 for each x. Figure C1
displays the stationary distribution of Nx with ν = 1, 5, 10, and ρ = 0.9. We see that K = 200 seems sufficient, as
probability of Nx exceeding 200 is negligible for all ν’s. From the relation β = νρ

1−ρ
and Equation (4.4), we have that

the prior distribution of Nx has a smaller mean and variance when either ρ or ν decreases. Therefore, K = 200 would
be sufficient for the prior distribution of Nx with any pair of (ρ, ν) ≤ (0.9, 10).
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Figure C1. The stationary distribution of Nx with ν = 1, 5, 10 and ρ = 0.9.

Figure C2 displays the posterior distribution ofNx for both the whole portfolio and the small portfolio with ρ = 0.9
and ν = 10. We see that the posterior distribution of Nx becomes more concentrated for ages with nonzero observed
number of deaths. For the rest of the choice of ρ and ν in the paper, the posterior distributions have smaller means
and variances. Therefore k = 200 is also sufficient for the posterior distribution of Nx in our analysis.
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Figure C2. Posterior distribution of Nx for the whole portfolio and the small portfolio with ρ = 0.9 and ν = 10.

Appendix 4. Sampling of θ

In order to simulate trajectories of θ from the posterior distribution θ |DI , let us first simulate trajectories of N . This is
conducted backwardly as follows.
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Algorithm 1 (see Creal 2017, Section 3.3):

• Draw NI−1 using the vector of elementary probabilities

pj ∝ Pj(I − 1)Qj(I), ∀j = 0, . . . ,K ,

where vectors P and Q are introduced in Section 4.2. In other words, NI−1 is drawn from the distribution of
NI−1|DI .
• For each x ∈ [1, I − 2] and given Nx+1, . . . ,NI , draw Nx using the vector of elementary probabilities:

pj ∝ Pj(x)
∫

l(Dx+1|θx+1)Gj(θx+1)dθx+1

×
∫

l(Dx+1|θx+1)Gj(θx+1)FNx+1 (θx+1)dθx+1, j = 0, . . . ,K .

In this equation, the term Pj(x)
∫
l(Dx+1|θx+1)Gj(θx+1)dθx+1 is, up to normalization constant, the probability

P[Nx = j|Dx+1], whereas the second integral

∫
l(Dx+1|θx+1)Gj(θx+1)FNx+1 (θx+1)dθx+1

is the (Nx+1, j)th element of matrix Mx+1, that is (up to normalization constant), the transition probability of Nx+1
given Nx and Dx+1.

Once we have a trajectory of N , we can simulate a trajectories of θ from the distribution θ |NI ,DI . Using the
Markov chain structure, we can remark that θx depends on NI and DI only via its left and right neighbours, Nx and
Nx+1 (except for the initial and the final value), as well as the death countsDx . In particular, the sampling algorithm of
θ is summarized as follows.
Algorithm 2:

• θI is sampled from the distribution:

l(θI |NI ,DI ) ∝ GNI−1 (θI )l(DI |θI )

∝ exp
(
− (β + ν)θI − θI

T∑
t=1

eI ,tμ0,I ,t

)
θ

ν+NI−1+∑T
t=1 dI ,t

I ,

that is θI depends only on DI and NI−1, and has the gamma conditional distribution with shape parameter
ν + NI−1 +∑T

t=1 dI ,t and rate parameter β + ν +∑T
t=1 eI ,tμ0,I ,t .

• for x = 2, . . . , I − 1, θx is sampled from the distribution:

l(θx |NI ,DI ) ∝ FNx−1 (θx)GNx (θx)l(Dx |θx)

∝ exp
(
− (2β + ν)θx − θx

T∑
t=1

ex,tμ0,x,t

)
θ
Nx+Nx−1+ν+∑T

t=1 dx,t
x ,

that is the gamma distribution with shape parameter Nx + Nx−1 + ν +∑T
t=1 dx,t and rate parameter 2β + ν +∑T

t=1 ex,tμ0,x,t .
• θ1 is sampled from the distribution:

l(θ1|NI ,DI ) ∝ FN1 (θ1)l(D1|θ1) ∝ exp

(
−βθ1 − θ1

T∑
t=1

e1,tμ0,1,t

)
θ
N1+∑T

t=1 d1,t
1 ,

that is the gamma distribution with shape parameter N1 +∑T
t=1 d1,t and rate parameter β +∑T

t=1 e1,tμ0,1,t .

In terms of complexity, the sampling of a trajectory of θ involves only the simulation of 2I variables, all of which
have closed form (approximated) density functions. Thismeans that the complexity is significantly lower than standard
MCMC methods, which rely on the (often slow) convergence of some auxiliary Markov chains to sample variables
with untractable distributions.
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