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Entropy diminishing finite volume
approximation of a cross-diffusion system

Clément Cancès and Benoı̂t Gaudeul

Abstract We propose a two-point flux approximation finite volume scheme for
the approximation of the solutions of a entropy dissipative cross-diffusion system.
The scheme is shown to preserve several key properties of the continuous system,
among which positivity and decay of the entropy. Numerical experiments illustrate
the behaviour of our scheme.
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1 Finite Volume approximation of a cross diffusion system

The model addressed in this paper is a toy model for the evolution of a material [1]
which can be derived thanks to a jump process following the program of [3]. We are
interested in the evolution of the composition of the material, which is described by
the concentrations c = (c1, . . . ,cI) of I different species. The material is represented
by an open, connected, bounded, and polyhedral subset Ω of Rd , and the evolu-
tion of its composition is prescribed by the following system of partial differential
equations. The mass conservation of each species writes for all i ∈ {1, . . . , I}

∂tci +∇ ·Ji = 0 in R+×Ω , with Ji = ∑
j 6=i

κi j (ci∇c j− c j∇ci) . (1)
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The coefficients κi j are such that κi j = κ ji ≥ 0. The system is complemented
with no-flux boundary conditions Ji · n = 0 on ∂Ω , and an initial condition c0 =(
c0

1, . . . ,c
0
I
)

which satisfies 〈c,1〉= ∑
I
i=1 c0

i = 1 in Ω .
This continuous problem has some key-properties that one wants to preserve after

discretisation. First, the total mass of each specie is conserved, i.e,
∫

Ω
ci(t) =

∫
Ω

c0
i

for all i ∈ {1, . . . , I} and t ≥ 0. This follows directly from the local conservation
property (1) and the no-flux boundary conditions across ∂Ω . Second, the concen-
trations remains non-negative, i.e., ci(x, t)≥ 0. Third, the expression (1) of Ji and the
condition κi j = κ ji yield ∑

I
i=1 Ji = 0, so that ∑

I
i=1 ci(x, t) = 1 for all (x, t)∈Ω×R+.

Therefore, c(t) takes values in the closed convex set

A =

{
c ∈ L1(Ω ;RI

+)

∣∣∣∣ 〈c,1〉= 1 a.e. in Ω and
∫

Ω

ci =
∫

Ω

c0
i

}
.

Finally, the fluxes rewrite Ji =−∑ j 6=i κi jcic j∇(log(ci)− log(c j)) . Therefore, mul-
tiplying (1) by log(ci) and integrating over Ω leads to

d
dt
E(c) =− ∑

{i, j}∈{1,...,I}2

∫
Ω

κi jcic j
∣∣∇(log(ci)− log(c j))

∣∣2 ≤ 0, (2)

where the entropy E is the convex functional on A defined by

E(c) =
I

∑
i=1

∫
Ω

ci log(ci).

Then due to the entropy / entropy dissipation relation (2), t 7→ E(c(t)) is non-
increasing, and even decreasing unless c is constant w.r.t. space.

Under appropriate conditions on the coefficients κi j, the existence of weak solu-
tions to the problem can be established thanks to the so-called entropy method [6, 7].
Strong solutions have been recently investigated in [2].

Our goal is to define a scheme that preserves at the discrete level the above prop-
erties, i.e. such that the approximate solution belongs to A for all time and with a
discrete counterpart of (2). To this end, we still need to remark that if the coefficients
κi j are equal to κ? > 0, then Ji = −κ?∇ci, so that (1) reduces to I decoupled heat
equations. Therefore, choosing κ? > 0 and setting κ̃i j = κi j−κ?, Ji rewrites as

Ji =−∑
j 6=i

κ̃i jcic j∇(log(ci)− log(c j))−κ
?
∇ci, i ∈ {1, . . . , I}. (3)

Our approach consists in approximating the fluxes Ji under their above form (3).
Since it is based on two-point flux approximation (TPFA) finite volumes, it requires
the use of a so-called ∆ -admissible mesh. Let (T ,E ,(xK)K∈T ) be a finite volume
mesh of Ω fulfilling the classical orthogonality condition required for the consis-
tency of TPFA. Since this notion is classical, we remain sloppy here on the defini-
tion and refer to [5, Definition 9.1] or to the companion paper [4] for details. Let us
just mention that T denotes the set of the cells, while only internal edges are con-



Entropy diminishing finite volume approximation of a cross-diffusion system 3

sidered in the set E , i.e. E = {σ = K|L = ∂K∩∂L for K,L∈T }. Given K ∈T , we
denote by EK = {σ ∈ E | σ ⊂ ∂K} and by mK the d-dimensional Lebesgue measure
of K. For σ = K|L, we denote by mσ the (d− 1)-dimensional Lebesgue measure
of σ , by dσ = |xK −xL| the distance between the cell centers, and by aσ = mσ

dσ
the

transmissivity of σ . For the time discretisation, we allow for non-uniform time steps
τn = tn− tn−1, n≥ 1, with t0 = 0. The initial condition is discretised into

c0
i,K =

1
|K|

∫
K

c0
i , ∀K ∈T , i ∈ {1, . . . , I}. (4)

In particular, the corresponding piecewise constant reconstruction c0
T =

(
c0

i,T

)
i
,

defined by c0
i,T (x) = ∑K∈T c0

i,K χK(x), belongs to A provided c0 does. Now, we

assume that
(

cn−1
i,K

)
i,K

is given and is such that the corresponding piecewise constant

reconstruction cn−1
T belongs to A , then we seek

(
cn

i,K

)
i,K

solution of the following

nonlinear system. First, the conservation of mass is locally enforced on each cell K:

cn
i,K− cn−1

i,K

τn
|K|+ ∑

σ∈EK

mσ Jn
i,Kσ = 0, ∀K ∈T , i ∈ {1, . . . , I}. (5)

No flux boundary conditions translate to Jn
i,Kσ

= 0 if σ ⊂ ∂Ω . The discretisation of
the fluxes Jn

i,Kσ
' Ji ·nKσ across the edge σ = K|L relies on the expression (3) and

writes

Jn
i,Kσ = κ

?
cn

i,K− cn
i,L

dσ

+∑
j 6=i

κ̃i j

(
cn

j,σ
cn

i,K− cn
i,L

dσ

− cn
i,σ

cn
j,K− cn

j,L

dσ

)
=−Jn

i,Lσ . (6)

Finally, the edge concentrations cn
i,σ are computed from the cell concentrations cn

i,K
and cn

i,L thanks to the continuous formula

cn
i,σ =


cn

i,K if cn
i,K = cn

i,L,
cn

i,K−cn
i,L

log(cn
i,K)−log(cn

i,L)
if cn

i,K 6= cn
i,L, cn

i,K > 0,cn
i,L > 0,

0 if min(cn
i,K ,c

n
i,L)≤ 0.

(7)

The goal of this paper is to show that the scheme (5)–(7) suitably approximates the
solutions to (1). This encompasses some mathematical properties of the scheme to
be discussed in Section 2 and numerical results presented in Section 3.

Remark 1. Before going further, let us just highlight why the introduction of the
positive parameter κ? is important. Assume for simplicity that I = 2, so that the
problem reduces to two uncoupled heat equations on c1 and c2 = 1− c1. Assume
that the mesh T is made of two cells K and L separated by the unique edge σ ,
and that c0

1,K = 1, c0
2,K = 0, c0

1,L = 0 and c0
2,L = 1. Then formula (7) shows that

c0
1,σ = c0

2,σ = 0. Therefore, if κ? is set to 0, then c0
T is a steady solution to the
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scheme, which is not reasonable for the discretisation of the heat equation. The
introduction of κ? > 0 annihilates this spurious solution.

2 Some pieces of numerical analysis

Our first statement deals with positivity preservation, mass conservation, the preser-
vation of the constraint ∑i ci = 1, and with the existence of a solution to the nonlinear
system (5)–(7).

Proposition 1. Given cn−1
T ∈ A , then there exists (at least) one approximate solu-

tion cn
T to the scheme such that cn

T ∈A .

Proof. In order to carry out the proof, one first needs to replace cn
iσ (and cn

jσ ) by
c̃n

iσ = cn
iσ/max

(
1,∑` cn

`σ

)
in (6). These two quantities will be shown later on to

coincide as ∑` cn
`σ ≤ 1 on all the internal edges σ .

As a first step to prove that cn
T ∈ A , let us prove by contradiction that cn

i,K ≥ 0
for all K ∈T and all i ∈ {1, . . . , I}. Assume that minL cn

i,L < 0 for some i, and let K
be the cell where cn

i,K < 0 is minimum among all cn
i,L, L ∈ T . Then (7) implies that

c̃n
i,σ = 0 for all σ ∈ EK so that we deduce from (5)–(6) that

∑
σ∈EK

aσ

[
κ
?

(
1−

I

∑
j=1

c̃n
j,σ

)(
cn

i,K− cn
i,L
)
+

I

∑
j=1

κi j c̃n
j,σ
(
cn

i,K− cn
i,L
)]

> 0.

Using c̃n
j,σ ≥ 0, ∑ j c̃n

j,σ ≤ 1, and cn
i,K ≤ cn

i,L in previous inequality yields a contradic-
tion, hence cn

i,K ≥ 0 for all i and all K.
The fact that ∑K∈T cn

i,KmK = ∑K∈T cn−1
i,K mK =

∫
Ω

c0
i follows directly from the

conservativity of the fluxes (6). Finally, one readily checks from (6) that

I

∑
i=1

Jn
i,Kσ =

κ?

dσ

I

∑
i=1

(cn
i,K− cn

i,L), ∀σ = K|L ∈ E .

So summing (5) over i shows that sn
K = ∑

I
i=1 cn

i,K satisfies the discrete heat equation

sn
K− sn−1

K
τn

mK +κ
?

∑
σ=K|L∈EK

aσ (sn
K− sn

L) = 0, ∀K ∈T .

Since sn−1
K = 1 for all K ∈ T , so does (sn

K)K . Therefore, cn
T belongs to A . Now,

it follows from a simple convexity argument that the logarithmic mean cn
i,σ of cn

i,K
and cn

i,L is smaller than the arithmetic mean, the sum of which over i is equal to 1.
Therefore, cn

i,σ = c̃n
i,σ . The existence proof then easily follows from a topological

degree argument [8], see our companion paper [4] for details. �

Refining the above proof, one can show that cn
i,K > 0 for all K ∈ T as soon as∫

Ω
c0

i > 0. This property is key for the proof of our next statement, and is rigorously
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established in [4]. Our second statement highlights the energy diminishing character
of the scheme, which should be thought as a discrete counterpart of (2).

Proposition 2. Let cn
T ∈A be a solution to the scheme as in Proposition 1, then

E(cn
T )≤ E(cn−1

T ).

Proof. Without loss of generality, we assume that
∫

Ω
c0

i > 0 for all i (otherwise
cn

i,K = 0 for all K ∈T thanks to Proposition 1). Since cn
i,K > 0, one can multiply (5)

by log(cn
i,K) and to sum over K ∈T and i ∈ {1, . . . , I}, which leads to

A+B :=
I

∑
i=0

∑
K∈T

cn
i,K− cn−1

i,K

τn
log(cn

i,K)mK +
I

∑
i=0

∑
K∈T

∑
σ=K|L∈EK

mσ Jn
i,Kσ log(cn

i,K) = 0.

Thanks to the convexity of c 7→ c logc− c and to mass conservation, one has

A≥ 1
τn

I

∑
i=0

∑
K∈T

(
cn

i,K logcn
i,K− cn−1

i,K logcn−1
i,K

)
mK =

E(cn
T )−E(cn−1

T )

τn
.

The particular choice (7) for cn
i,σ allows us to rewrite

Jn
i,Kσ = κ

?
cn

i,K− cn
i,L

dσ

+∑
j 6=i

κ̃i jcn
i,σ cn

j,σ
(
log(cn

i,K)− log(cn
j,K)− log(cn

i,L)+ log(cn
j,L)
)
.

This implies that

B = κ
?

N

∑
i=1

∑
σ=K|L∈E

aσ (cn
i,K− cn

i,L)
(
log(cn

i,K)− log(cn
i,L)
)

+ ∑
{i, j}

∑
σ=K|L∈E

κ̃i jaσ cn
i,σ cn

j,σ
(
log(cn

i,K)− log(cn
j,K)− log(cn

i,L)+ log(cn
j,L)
)2
.

Since the logarithmic mean cn
i,σ of cn

i,K and cn
i,L is smaller than the arithmetic mean,

there holds ∑i cn
i,σ ≤ 1. As a consequence, one has

N

∑
i=1

∑
σ=K|L∈E

aσ (cn
i,K− cn

i,L)
(
log(cn

i,K)− log(cn
i,L)
)

≥ ∑
{i, j}

∑
σ=K|L∈E

aσ cn
i,σ cn

j,σ
(
log(cn

i,K)− log(cn
j,K)− log(cn

i,L)+ log(cn
j,L)
)2
,

which implies that

B≥ ∑
{i, j}

∑
σ

κi jaσ cn
i,σ cn

j,σ
(
log(cn

i,K)− log(cn
j,K)− log(cn

i,L)+ log(cn
j,L)
)2 ≥ 0.
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This concludes the proof of Proposition 2. �

A more involved study allows to show that under classical assumptions on non-
degeneracy of the mesh regularity, then cT ,τ : (t,x) 7→ ∑n≥1 cn

T (x)ξ(tn−1,tn](t) con-
verges in L1

loc(R+×Ω) towards a weak solution c to (1) provided κi j > 0 for all
i, j. The proof relies on the exploitation of the regularization coming from the dis-
sipation (term B in the proof of Proposition 2). We refer to [4] for the details of the
convergence proof.

3 Numerical results

The numerical scheme has been implemented using MATLAB. The nonlinear sys-
tem corresponding to the scheme is solved thanks to Newton method with stopping
criterion ‖cn,k+1 − cn,k‖∞ ≤ 10−12. The next iterate cn,k+1 is then “projected” on
A by setting cn,k+1 = max(cn,k+1,10−10τ), and then cn,k+1 = cn,k+1/(∑N

i=1 cn,k+1
i ).

For the first time step, we also make use of a continuation method based on the
intermediate diffusion coefficients κλ

i, j = λκi j +(1−λ )κ? with λ ∈ [0,1]. The pa-
rameter λ is originally set to 1. If the Newton’s method does not converge, we let
λ =

(
λ +λprev

)
/2 where λprev is originally set to 0. If the Newton’s method con-

verges, we let λprev = λ and λ = 1.
Our first test case is devoted to the convergence analysis of the scheme in a one-

dimensional setting Ω = (0,1). Two different initial conditions are considered: c0
s

is smooth with coordinates that vanish pointwise at the boundary of Ω , whereas c0
r

is discontinuous with vanish coordinates on intervals of Ω :

c0
1,s(x) =

1
4
+

1
4

cos(πx), c0
2,s(x) =

1
4
+

1
4

cos(πx), c0
3,s(x) =

1
2
− 1

2
cos(πx),

c0
1,r = 1[ 3

8 ,
5
8 ]
, c0

2,r = 1( 1
8 ,

3
8 )
+1( 5

8 ,
7
8 )
, c0

3,r = 1[0, 1
8 ]
+1[ 7

8 ,1]
.

We also consider two diffusion matrices, one called regular with positive off-
diagonal coefficients and an other called singular with a few null off-diagonal coef-
ficients.

Kreg =

 0 0.2 1
0.2 0 0.1
1 0.1 0

 Ksing =

0 0 1
0 0 0.1
1 0.1 0


For the convergence tests, we have let κ? = 0.1 and the meshes are uniform discreti-
sations of [0,1] from 25 cells to 214 cells. Since we do not have an analytical solution
at hand, the approximate solutions are compared to a reference solution computed
on a grid made of 215 cells. The final time is 0.25, and the time discretisation is fixed
with a time step of 2−18. Result are summarised in Figure 1. One notices that our
scheme is second order accurate in the setting presented in this paper (K = Kreg),
but only first order accurate when confronted to non-diffusive discontinuities. The
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origin of this lower order may lie in the difficulty to compute accurately the near
zero concentrations in the neighbourhood of such discontinuities.

Our second test is two-dimensional. We choose Ksing as the diffusion matrix,
κ? = 0.1, Ω = [0,22]× [0,16], τ = 2−3 and a 2D initial condition c0 depicted in
Figure 2. The corresponding steady state and long-time limit c∞ does not depend on
x, i.e., c∞

i (x) =
∮

c0
i (y)dy for all x ∈ Ω . The time evolution of the relative energy

E(c)−E(c∞) is plotted on Figure 3, showing exponential decay to the steady state
even thought the diffusion matrix is singular. Snapshots showing the evolution of
the concentration profiles are presented in Figure 4.
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Fig. 1: Error with respect to the solution computed on the finest mesh for 1D settings
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Fig. 4: Concentrations c1 and c2 at times t = 2 and t = 10 (c3 can be deduced from
the relation c1 + c2 + c3 = 1).
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5. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Ciarlet, P. G. (ed.) et al., in
Handbook of numerical analysis. North-Holland, Amsterdam, pp. 713–1020 (2000)
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