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ABSTRACT
We investigate a model of solid propellant combustion involving surface pyrolysis
coupled to finite activation energy gas phase combustion. Existence and uniqueness
of a travelling wave solution are established by extending dynamical system tools
classically used for premixed flames, dealing with the additional difficulty arising
from the surface regression and pyrolysis. An efficient shooting method allows to
solve the problem in phase space without resorting to space discretisation nor fixed-
point Newton iterations. The results are compared to solutions from a CFD code
developed at ONERA, assessing the efficiency and potential of the method, and the
impact of the modelling assumptions is evaluated through parametric studies.
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1. Introduction

Solid propellant combustion is a key element in rocket propulsion and has been ex-
tensively studied since the 1950s including at ONERA [1–4]. This particular problem
involves a solid phase and a gas phase, separated by an interface (surface of the solid).
The solid is heated up by thermal conduction and radiation from the gas phase. At its
surface, the solid propellant is decomposed through a pyrolysis process, and the result-
ing pyrolysis products are gasified and injected in the gas phase. All these phenomena
will be gathered under the name “pyrolysis” for simplicity. The interface regresses and
the injected species react and form a flame which heats back the solid, allowing for a
sustained combustion. It is essential to understand the physics of this phenomenon to
allow for clever combustion chamber designs and efficient solid rocket motors. A key
element is the regression speed of the propellant surface, and its dependence on the
combustion chamber conditions.

Many models have been developed, with essentially two levels of description. On the
one side, there exists analytical models, which directly give a formula for the steady
regression speed and allow a qualitative description and global understanding of the
physics at the cost of some restrictive assumptions [5–7]. On the other side, one can



find detailed models, that require high-fidelity numerical resolution with spatial and
temporal discretisations (CFD), giving a very detailed representation of the physics,
both for quasi-steady and unsteady evolutions. The main analytical models in steady
regime are the Denison-Baum-Williams (DBW) model [5], the Beckstead-Derr-Price
(BDP) model [6] and the Ward-Son-Brewster (WSB) model [7]. They mainly give the
regression speed as a function of surface temperature, pressure and initial temperature
of the propellant using a one-dimensional approach. They usually assume the pyrolysis
is concentrated in a narrow region close to the surface and the gas phase only contains
two species: one reactant resulting from the pyrolysis, and one product. There is only
one global reaction which transforms the reactant into the product. The DBW and
BDP models assume that the activation energy Ea of the gas phase reaction is very
high. This allows the splitting of the gas phase into two separate zones: the convection-
diffusion zone and the reaction-diffusion zone, starting at the flame stand-off distance
x f (model-specific). The equations can be solved in each zone separately and linked
at the interface between the two, yielding an explicit or implicit expression for the
burning mass flow rate m. On the opposite, the WSB model assumes that Ea is zero,
which often leads to better agreement with experimental results [8]. Assuming a uni-
tary Lewis number, several equations can be derived, which require simple fixed-point
iterations to determine the regression speed. All these models give relations between
the propellant physical characteristics and the physical state of the propellant and gas
flow (surface temperature, regression speed). They allow for a global understanding
of the phenomenon. In all these models, the equations describing the physics of both
phases can only be solved for a unique value of the regression speed c, also called the
eigenvalue1 of the problem.

At the other end of the spectrum, numerical methods solving a comprehensive set
of equations, e.g. [11–13], use much less restrictive assumptions, but they are compu-
tationally expensive and may encounter convergence difficulties. Parametric studies
are therefore costly.

It would thus be interesting to design an easy-to-use and yet precise analytical or
semi-analytical model, which would not require as many assumptions as the existing
analytical models, in particular for the gas phase reaction activation energy, thus
remaining closer to the physics, amenable to a full theoretical study of existence and
uniqueness, setting the mathematical basis of the model, and which can be resolved
efficiently using a specific numerical method. Such a model already exists for travelling
combustion waves in laminar premixed flames and has been studied for quite some
time, for example in [14]. It is based on a phase-plane representation of a simplified
combustion problem with unitary Lewis number, two species and a single reaction;
the existence and uniqueness of a travelling wave profile can be proved relying on
dynamical system theory. The combustion wave speed is shown to be a key parameter
for which only one value allows the simplified problem to be solved. This value can
be determined numerically through a shooting method, for any value of the activation
energy of the gas phase reaction.

In this paper, we investigate a specific model of solid propellant combustion. It

1The name eigenvalue is adopted here for two reasons. First, it is historically used in the papers on solid
propellant theory as well as in the laminar flame theory, mainly without quotes. Second, we will investigate

a non-linear eigenvalue problem for an elliptic operator with a non-linear source term as well as a non-linear

dependency of the regression rate on the surface temperature, and thus a specific case of a general non-linear
eigenvalue problem on the whole real line. It bears some similarity with the eigenvalue problem of a second order

linear elliptic operator such as the Laplace operator on a compact interval with proper boundary conditions
[9]: we look for both an eigenfunction of space related to a real eigenvalue of the operator. Its extension to the
non-linear case has also been studied in the literature [10].
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involves pyrolysis in an infinitely thin zone at the interface coupled to solid regression
and homogeneous gas phase combustion described by one global reaction with finite
activation energy, heat and molecular diffusion at unitary Lewis number. The first
contribution compared to existing analytical models is the relaxation of the assumption
on activation energy, which is not any more considered to be either zero or very
large. The model is derived from a detailed system of equations that describes the
evolution of the temperature of the solid propellant, the evolution of the gas phase,
and the pyrolysis of the propellant. The model takes into account thermal expansion
and density changes in the gas phase. We study the existence and uniqueness of a
travelling wave solution of this system, that is we look for a temperature profile and
a wave velocity c, the so-called eigenvalue or regression velocity.

In the case of a solid propellant, Verri [15] presented a demonstration of the unique-
ness of the travelling wave solution and its stability using a different approach, without
modelling the gas phase, but only considering the gas heat feedback as a function of
the regression speed with specific mathematical properties. This means the gas heat
feedback was assumed to have a unique value for a given regression speed, which tacitly
means that the gas phase temperature profile was also assumed unique, although this
was not investigated in his paper. His framework was also more restrictive, as only
exothermic surface reactions were considered, or weakly endothermic ones. No nu-
merical method was developed to determine the solution profile and regression speed.
Johnson and Nachbar [16] have also analysed the mathematical behaviour and unique-
ness of the eigenvalue for the burning of a monopropellant, but they assumed that the
surface temperature is a given constant. They showed that for any reasonable value of
this temperature, a single regression speed exists such that the complete problem is
solved. In the present paper however, we aim at proving the existence and uniqueness
of the solution for a variable surface temperature determined from the regression speed
via a pyrolysis law, with proper representation of the gas phase, and a non-trivial cou-
pling condition at the interface. Consequently additional difficulties appear, which are
overcome through a detailed dynamical system study of the associated heteroclinic
orbit in phase space. Our approach is an extension of the one used by Zeldovich [14]
in the study of laminar flames, with the addition of a variable interface temperature.
Interpretation of the behaviour of the system in phase space brings a better under-
standing of the role of the interface and the influence of the different parameters.

The phase space approach also naturally leads to the development of a very efficient
numerical shooting method to iteratively find the speed of the wave and ultimately
its profile with arbitrary precision. Other approaches for example based on the topo-
logical degree theory have been used to establish the existence and uniqueness of the
travelling wave solution for laminar flames [17, 18] and may be applicable to the solid
propellant case with fewer assumptions, however they do not allow for the derivation of
a numerical method to generate solution profiles. We therefore follow the phase space
approach and develop a shooting method to compute the burning rate and solution
profiles. We propose to assess its efficiency and potential by first verifying the proposed
numerical strategy in comparison with a CFD code developed at ONERA with the
same level of modelling and then follow up with a parametric study of the influence
of the activation energy of the chemical reaction in the gaseous phase. Eventually,
the improvement of our approach compared to some of the previously mentioned an-
alytical models is investigated as well as the influence of some assumptions such as
the unitary Lewis number. To the best of our knowledge, no such study has yet been
presented.

The paper is organized as follows: In section 2, we first introduce the generic equa-
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tions describing the gas flow, the solid phase and the coupling conditions. Adding
a series of assumptions, we gradually simplify the system, while still retaining the
most important physical features. We introduce a travelling wave solution and derive
the equations that describe the wave profile. The impact of the wave velocity c is
explained. We derive some general relations to obtain characteristic values for a non-
dimensionalisation of the problem. In section 3, extending Zeldovich’s approach for
laminar flames, we prove the existence and uniqueness of the self-similar temperature
profile and wave speed by a dynamical system approach and focus on how to handle
the specific solid-gas interface flux condition. A physical interpretation of the result is
provided. Section 4 is devoted to the presentation of the multiple algorithms used in
the numerical resolution based on a shooting method, and the comparison for various
levels of modelling assumptions with a CFD code developed at ONERA. A conclusion
and an assessment of the efficiency and potential of the approach is given in section 5.

2. General modelling, proper set of simplifications and travelling wave
formalism

In this section we start by presenting the general assumptions usually made for ad-
vanced models in high-fidelity simulations, as well as the associated set of equations.
We introduce some additional assumptions also used in analytical models such as in [5]
but, as opposed to these models, no assumption is made about the activation energy
of the gas phase. We derive a set of equations that is simple enough to envision an
analytical study of travelling wave solutions. Although this system is much simpler
than the original system, it is expected that the relaxation of the gas phase activation
energy may allow for a more realistic picture of the combustion of a solid propellant,
as compared to existing analytical models.

2.1. Derivation of the model, related assumptions and travelling wave
formulation

Composition and temperature variations in the solid phase decomposition zone and
in the gas flame structure are often important in the direction normal to the burning
propellant surface, so that it is common to adopt a one-dimensional approach which
greatly simplifies the mathematical developments. The phenomenon is studied in the
Galilean reference frame RG and a schematic representation is provided in Figure 1.

The solid and gas phases are separated by a superficial degradation zone, which
is a transition zone where both gas and liquid species are observed. This zone is
usually thin, typically one micron or less [19] for ammonium perchlorate, a few dozen
microns for HMX/RDX [20, 21], and its thickness decreases as pressure increases.
It has therefore been common to represent this zone as an infinitely thin interface,
as in all previously mentioned analytical models. We adopt the same representation,
with σ(t) the position of the interface at time t. The behaviour of this zone is given
by a pyrolysis law. The solid phase (the propellant) is semi-infinite and is located
between −∞ and x = σ(t). The gas phase is also semi-infinite and is located between
x = σ(t) and +∞. The instantaneous regression speed is c(t) = dtσ(t). Most of the solid
propellant numerical models assume the following:

H 1. The solid phase is inert, incompressible and inelastic. No species diffusion takes
place in the solid. Far from the burning surface, the solid phase is at its initial tem-
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Figure 1. One-dimensional model of solid propellant combustion

perature, T(−∞) = T0. All gradients vanish at x = −∞.

H 2. The gas phase is constituted of a mixture of reacting ideal gases in the low-Mach
number limit and the pressure P does not vary with time.

H 3. No species or heat accumulation takes place at the interface. The temperature is
continuous across the interface and its value is denoted Ts(t). The gasification process
is controlled by a pyrolysis reaction concentrated at the interface. The mass flow rate
of gaseous species expelled by the solid phase through the pyrolysis reaction is given
by a pyrolysis law of the form:

m = f (Ts,T0, P) (1)

The mass flow rate is C∞ with respect to Ts and satisfies the property ∂Ts f > 0, i.e.
the mass flow rate increases with increasing surface temperature.

The pyrolysis law used in our numerical applications is m = Ap exp
(
−Tap/Ts

)
. This

simple law can be extended to include a dependence on pressure (typically Pn) and

surface temperature (Tβs with β > 0) in the pre-exponential factor Ap. This law is
frequently used for stationary as well as transient studies of solid propellant com-
bustion, although it ignores some potentially important effects which only appears in
more comprehensive pyrolysis relations, deduced for instance from activation energy
asymptotics with zeroth-order reaction inside the solid [8]. All the conclusions made
in this paper remain valid for any other pyrolysis law m, as long as the mass flow rate
is increasing with Ts. In our study T0 and P are constants, therefore the mass flow rate
will be considered a function of Ts only for clarity.

An additional assumption is proposed on the pyrolysis law for mathematical re-
quirements, without impacting the physics. It is similar to the cold boundary difficulty
resolution [22–24] and will allow for an easier theoretical analysis.

H 4. The propellant will not be consumed at Ts ≤ T0, T0 being in all realistic cases
close to the ambient temperature. That behaviour is usually not depicted exactly by
the pyrolysis laws found in the literature, which usually only tends to 0 as Ts tends to
0. Therefore we introduce a slightly modified pyrolysis law that contains a cut-off so
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that m smoothly goes to 0 as Ts approaches T0:

m = f (Ts,T0, P) φ(Ts − T0) (2)

with φ a smooth function such that φ(y) = 0 for y ≤ 0 and φ(y) quickly reaches a value
of 1 as y becomes greater than 0. The function φ can typically be a sigmoid function.

The smooth cut-off introduced here is solely used in our theoretical analysis, to
facilitate the proof of existence and uniqueness of the travelling wave solution. The
numerical shooting method presented in Section 4 does not require such a cut-off.

To further simplify the problem, we assume:

H 5. Radiative effects are neglected.

This means that no external flux, e.g. laser flux, no radiation from the gas phase and
no radiative heat loss from the solid are considered. Radiative heat losses were shown
to allow for two different travelling wave solutions to be found at a given pressure
[25], with only one being stable. The inclusion of such phenomena in the modelling
and its impact on the results obtained in the present investigation are discussed in the
conclusion.

From the mathematical point of view, we assume a certain regularity of the solution
profiles as stated below.

H 6. All solution components are smooth functions of x in each separate phases, but
may be discontinuous at the interface.

Using the heat equation to model the evolution of the temperature inside the solid,
and the Navier-Stokes equations with reactions and species transport for the gas phase
allows us to describe the evolution of our system. The solid phase is represented by
its temperature T(x, t) and its constant density ρs. The gas phase is described by the
density ρ(x, t), the constant pressure P, the flow speed u(x, t), and the temperature
T(x, t). The reactive aspect of the flow with ne species (symbol Ei, i ∈ n1, neo) is
taken into account with the addition of the transport equations for the species mass
fractions Yi(x, t) and the addition of the volumetric heat release as a source term in the
energy equation. The mass production rate of the i-th species per unit volume is ωi, in
kg.m−3.s−1. We consider nr chemical reactions of the form:

∑ne
i=1 ν

′
i,rEi →

∑ne
i=1 ν

′′
i,rEi.

We introduce νi,r = ν
′′
i,r − ν

′
i,r , the global stoichiometric coefficient. The reaction rate

of the r-th reaction is τr , in mol.m−3.s−1. It is typically a generalized Arrhenius law
dependent on species concentrations, temperature and pressure. We have the relation
ωi = Mi

∑nr
r=1 νi,rτr . The molar enthalpy of the i-th species is hi,mol(T) = h0

i,mol
+

Micp,i(T − Tstd) in J.mol−1 with Mi the molar mass of this species, cp,i its specific
heat, and Tstd the standard temperature at which all standard molar enthalpies h0

i,mol

are defined. The enthalpies and standard enthalpies per unit mass are written hi and h0
i

respectively. The gas and solid phases are coupled at the interface through boundary
conditions obtained by integration of the energy and transport equations around the
interface. Assuming the pyrolysis process is concentrated at the interface, we introduce
the “injection” mass fractions Yi(σ−) for the different gaseous species, which indicates
the mass fractions obtained after pyrolysis directly at the interface, before entering
the gas phase. Our original system of equations is given here in the Galilean reference
frame RG.
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The full model
The solid phase at x < σ(t) is subject to:

ρscs∂tT − ∂x(λs∂xT) = 0 (3)

with the boundary condition for the resting temperature of the solid:

T(−∞) = T0 (4)

The gas phase at x > σ(t) is subject to the following partial differential equations:


∂t ρ + ∂xρu = 0

∂t ρYi + ∂x(ρ(u + Vi)Yi) = ωi

ρcp∂tT + ρcpu∂xT − ∂x
(
λg∂xT

)
+ ρ∂xT

ne∑
i=1

cp,iYiVi = −

ne∑
i=1

hiωi

(5)

(6)

(7)

with the following conditions at x = +∞, ensuring the gas phase reactions are com-
plete: {

∂xT(+∞) = 0

∂xY (+∞) = 0

(8)

(9)

Both phases are coupled at the interface by the following conditions:


Tσ− = Tσ+ = Ts

(λs∂xT)σ− = mQp +
(
λg∂xT

)
σ+

(mYi)σ− = (mYi + Ji)σ+ ∀ i ∈ n1, neo

(10)

(11)

(12)

with the ideal gas law:

ρ =
P

RT
ne∑
i=1

Yi
Mi

(13)

Finally, the pyrolysis mass flow rate m is given by the pyrolysis law (2), and σ is
governed by dtσ = c(t) = −m(Ts(t))/ρs, with initial condition σ(0) = σ0.

This system involves the following variables: R the ideal gas constant, cp the
mixture-averaged specific heat, Vi is the diffusion velocity of the i-th species, Qp the
heat of the pyrolysis reaction per unit mass of solid propellant consumed. Equation
(11) means that the heat conducted from the gas phase into the solid and the heat
generated by the pyrolysis process (if the pyrolysis is exothermic) are used to heat up
the solid propellant and sustain the combustion. Equation (12) is the species balance,
i.e. the flow rate of the i-th species generated by the pyrolysis is equal to the flow rate
of this species leaving the surface in the gas phase, minus the species diffusion flow
rate Ji = ρViYi.

We introduce the following set of additional assumptions, also shared by the classical
analytical models:
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H 7. The specific heat of the solid cs is constant. The solid phase thermal conductivity
λs is constant.

H 8. The gas phase contains two species: the reactant G1 and the product G2, with
mass fractions Y1 and Y2.

There is only one irreversible reaction ν′1G1
(g)
→ ν′′2 G2

(g)
, whose reaction rate τ is

positive or 0.
Both species have the same molar mass M and therefore opposite global stoichio-

metric coefficients.
The species specific heats cp,i are all equal and constant: cp,i = cp ∀i, with cp the

constant gas specific heat.
No binary species diffusion takes place in the gas phase, and the molecular diffusion

is represented by Fick’s law: Ji = ρViYi = −ρDi∂xYi.
The species diffusion coefficients Di are equal, Di = Dg ∀i.
The species G1 is completely consumed at x = +∞. All gradients are zero at x = +∞.

H 9. The pyrolysis reaction transforms the solid propellant P into the species G1.

Using these assumptions, we can simplify the equations. We introduce Dth =

λg/(ρcp) the thermal diffusivity of the gas, Ds = λs/(ρscs) the thermal diffusivity
of the solid propellant, and the stoichiometric coefficient ν = ν1 = −ν2 = −ν

′
1 < 0.

Having only two species, we replace the transport equation for Y2 by the global mass
conservation Y2 = 1 − Y1. We introduce Qmol = M

(
ν′1h0

1 − ν
′′
2 h0

2

)
= M ν(h0

2 − h0
1), the

molar heat of the reaction in the gas phase.
As we aim at studying steady, self-similar combustion waves, we look for a solution

in the form of a travelling wave f (x, t) = f̂ (x − ct) for all the variables, which moves
at a time-independent velocity c in the reference frame RG. This is equivalent to
performing the variable change x̂ = x − ct, as described in [26]. The regression velocity
of the propellant surface is c, it should thus be considered negative in our study. If we
perform this variable change in our equations, the travelling wave we are looking for
becomes a stationary solution. In particular, the interface is at the constant abscissa
x̂ = σ0, which we assume to be zero for clarity. To highlight the fact that the variables
associated with these new equations are different from the previous ones, we use the
notation “ ·̂ ”, and we introduce Ŷ = Ŷ1 for the sake of simplicity. Overall, we obtain
the following system of equations.

The simplified travelling wave model
For x̂ < 0:

− cdx̂T̂ − Dsdx̂ x̂T̂ = 0 (14)

For x̂ > 0:


− cdx̂ ρ̂ + dx̂(ρ̂û) = 0

ρ̂(û − c)dx̂Ŷ − dx̂

(
ρ̂Dgdx̂Ŷ

)
= νM τ̂

ρ̂(û − c)dx̂T̂ − dx̂

(
ρ̂Dthdx̂T̂

)
=
τ̂Qmol

cp

(15)

(16)

(17)
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with the ideal gas law:

ρ̂ =
PM

RT̂
(18)

The boundary conditions are:

T̂(−∞) = T̂0

T̂(0−) = T̂(0+) = Ts(
λsdx̂T̂

)
0−
= mQp +

(
λgdx̂T̂

)
0+(

mŶ
)

0−
=

(
mŶ − ρ̂DgdxŶ

)
0+

dx̂T̂(+∞) = 0

dx̂Ŷ (+∞) = 0

(19)

(20)

(21)

(22)

(23)

(24)

As before, the pyrolysis mass flow rate m is given by the pyrolysis law (2).

Key steps to obtain the set of simplified equations In the full system, the
first two terms of all gas phase transport equations can be simplified by using the
continuity equation, for example:

∂t ρYi + ∂xρuYi = ρ∂tYi + ρu∂xYi

In the gas phase energy equation (7), we can expand the term of heat diffusion
caused by chemical diffusion, using our assumptions that all species specific heats are

equal: ρ∂xT
ne∑
i=1

cp,iYiVi = ρcp∂xT
ne∑
i=1

YiVi = 0, by definition of the diffusion velocities.

The term of heat production due to the single chemical reaction can be simplified
as follows:

−

ne∑
i=1

hiωi = −

ne∑
i=1

ωi

(
h0
i + cp(T − Tstd)

)
= −τ

ne∑
i=1

νiMi

(
h0
i + cp(T − Tstd)

)
Using our assumption that all species molar masses are equal, the term in cp dis-

appears according to mass conservation (
ne∑
i=1

νiMi = 0):

−τ

ne∑
i=1

νiMi

(
h0
i + cp(T − Tstd)

)
= −τM

ne∑
i=1

νih0
i = τQmol

The last step is to perform a variable change, such that the interface remains at
a constant abscissa. Therefore we introduce the new space variable x̂ = x̂(x, t) = x −∫ t

0
c(η)dη, where c(t) is the instantaneous regression velocity of the interface. In the

Galilean reference frame RG, the interface lies at the abscissa σ(t) = σ(0)+
∫ t

0
c(η)dη,

therefore following our variable change, the new interface abscissa is σ̂(t) = σ0, and
we assume, without any loss of generality, that this position is 0.
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If, for a function f (x, t), we introduce f̂ (x̂, t) such that f̂ (x̂(x, t), t) = f (x, t), we can
derive the following relations:

(∂x f )t = (∂x̂ f̂ )t (∂t f )x = −c(t)(∂x̂ f̂ )t + (∂t f̂ )x̂

Using these relations and our steady-state assumption (∂t f̂ )x̂ = 0, we can transform all
our partial differential equations and obtain the simplified system of equations. The
change of space variable results in the introduction of an additional convection term
at uniform speed.

Remark 1. Note that in the unsteady case, the variable change is not equivalent to
a change of reference frame. Indeed the gas flow velocity is still the one observed in
the Galilean reference frame RG. If c varies with time, no inertial body force appears.

Remark 2. The regression velocity c appears in these equations in various manners:
in the convective terms, in the interface boundary conditions, in the mass flow rate
at the interface m = −ρsc, and through Ts, as the mass flow rate is linked to surface
temperature through (2).

For further simplifications, we introduce additional assumptions, which do not alter
our simplified system of equations:

H 10. The specific heats of the solid and gas phases are equal: cp = cs.

H 11. The Lewis number Le = Dth/Dg is 1 in the gas phase, i.e. the heat and species
diffusions are equivalent. We introduce D = Dg = Dth.

Remark 3. Even if questionable, the Assumption H10 is often used in the literature
[8, 11, 27, 28] and the results obtained are still quantitatively correct. The main effect of
this assumption is that Qp is a constant which only depends on the standard enthalpies.

Remark 4. The complete pyrolysis reaction P(s) → G1
(g)

can be decomposed into two

successive reactions:

• P(s) → G1
(s)

, the transformation of the solid propellant P(s) into the pyrolysis

product at solid state G1
(s)

, with the heat of reaction Qs = h0
P(s)
− h0

G1
(s)

+ (cs −

cP
G1
(s)

)(Ts −Tstd), with cP
G1
(s)

the specific heat of the pyrolysis product G1 at solid

state.
• G1

(s)
→ G1

(g)
, the sublimation of the solid pyrolysis product G1

(s)
into G1

(g)
, at

constant temperature Ts, with the latent heat Lv = hG1
(g)
(Ts) − hG1

(s)
(Ts) = (h0

G1
(g)

−

h0
G1
(s)

) + (cp − cP
G1
(s)

)(Ts − Tstd)

This leads to Qp = Qs − Lv = h0
P(s)
− h0

G1
(g)

+ (cs − cp)(Ts − Tstd) which depends linearly

on Ts. On the contrary, the heat of reaction Q for G1
(g)
→ G2

(g)
in the gas phase does

not depend on temperature as both species have the same specific heat.
The assumption cs = cp makes the upcoming theoretical analysis much easier by

removing the dependence of Qp on Ts. However, the numerical method presented
further in this paper does not rely on this assumption.

10



2.2. Conservation properties

Starting from a detailed modelling of the different processes at stake, we have in-
troduced gradual simplifications based on several physical assumptions. We may now
perform simple mathematical manipulations on the simplified travelling wave model
to derive several balance equations. These considerations will allow us to obtain char-
acteristic scales from which dimensionless variables can be formed. In order to avoid
a notation overload, we drop the symbol “ ·̂ ”.

Proposition 2.1. The conservation of the mass flow rate implies for x > 0:

ρ(x)(u(x) − c) = −ρsc = m

Proof. We integrate the continuity equation (15) in the gas phase from 0+ to x. We
obtain:

ρ(x)(u(x) − c) = ρ(0+)(u(0+) − c)

Following Assumption H3, no accumulation takes places at the interface. Hence the
gas mass flow rate must be equal to the rate of propellant mass consumption −ρsc,
which is the proposed result. �

Remark 5. We may now explain why the momentum equation is not considered. In
the low-Mach framework, this equation would, in steady-state, essentially reduce to:
mdxu = dx P̃, with P̃ the hydrodynamic pressure, which is a pressure perturbation of
the order of Ma2, with Ma the Mach number. Due to the one-dimensionality of our
approach, the velocity field is directly related to the spatial evolution of ρ through
the continuity equation. Hence, the momentum equation is not needed to determine
u. We may still use it to determine the hydrodynamic pressure field. In particular, we
would find that the hydrodynamic pressure is increasing with x, and that the overall
pressure variation across the gas phase is ∆P = −m∆u. Typically we obtain −10 Pa,
which is considerably lower than the average pressure (around 1 to 10 MPa). This
legitimates our assumption of uniform P. Had we used a multi-dimensional approach,
we would not have been able to decouple the velocity field from the hydrodynamic
pressure field, and we would have needed to include the momentum equation.

Proposition 2.2. The complete consumption of G1 implies:∫ +∞

0
τ(T(x),Y (x))dx = −

m
M ν

Proof. We integrate the species transport equation (16) in the gas phase from 0+ to
+∞, utilizing the mass flow rate balance result m = ρ(u − c). As all gradients are zero
at +∞, we get:

−mY (0+) + ρ(0+)DdxY (0+) =M ν

∫ +∞

0+
τ(T(x),Y (x))dx

Using equation (22), the left-hand side is equal to −mY (0−). Following H9, we have
Y (0−) = 1, therefore we obtain the proposed result. �
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We introduce Q = −Qmol/(νM ) the heat of reaction in the gas phase per unit mass
of G1

(g)
consumed. As ν < 0, Q and Qmol are both positive.

Proposition 2.3. The burnt gas temperature at x = +∞ is Tf = T0 + (Q +Qp)/cp.

Proof. Integrating the energy equation (17) in the gas phase between 0 and +∞ and
using Proposition 2.2, we obtain:

m
(
Tf − Ts

)
= −

λg

cp
dxT(0+) +

Qmol

cp

∫ +∞

0
τ(T(x),Y (x))dx = −

λg

cp
dxT(0+) +

mQ
cp

Integrating the heat equation in the solid phase (14) between −∞ and 0 and using
Proposition 2.1, we can write:

m(Ts − T0) = +
λs
cs

dxT(0−)

Using the interface boundary condition (20) and Assumption H10, we can combine
both energy balances and obtain the proposed result. �

Remark 6. If we do not assume cs = cp, the balance reads:

Tf =

(
1 −

cs
cp

)
Ts +

cs
cp

T0 +
Q +Qp

cp

This formula appears in many papers, however the dependence in Ts is fictitious and
may be misleading [29]. Indeed it is expected that the complete energy balance does
not depend on the mass flow rate. The dependence is removed when using the standard
enthalpies to express Qp as a function of Ts (see remark 4):

Tf =
cs
cp

T0 +

h0
P(s)
− h0

G2
(g)

cp
+

(
1 −

cs
cp

)
Tstd

This expression can also be directly obtained by performing a simple energy balance
between −∞ and +∞, neglecting the kinetic energy.

Proposition 2.4. Under Assumption H11, we can define a combustion enthalpy which
is constant in the gas phase:

h = −
Qmol

νM
Y + cp(T − T0) = cp(Tf − T0)

Proof. We introduce Y̌ = YQmol/(νM ) and Ť = cp(T − T0). We convert the equations
(16) and (17) to our new variables. Using Assumption H11, introducing β = λg/cp = ρD
which is a constant and h = Ť − Y̌ , we obtain:

mdxh = βdxxh

12



We can integrate this expression between the interface 0+ and x:

h(x) = h(0+) + dxh(0+)
∫ x

0
exp

(
my

β

)
dy

Using the boundary conditions at +∞, we get dxh(+∞) = 0. Alternatively, Y and T
being bounded, h is bounded too. Both considerations lead to dxh(0+) = 0, hence we
get: h(x) = h(+∞) = cp(Tf − T0). �

2.3. Dimensionless equations

Using the equations from the simplified travelling wave model and the results obtained
in the previous subsection, we can now write dimensionless equations for our problem.
We introduce L a constant length scale.

Dimensionless system Introducing x̃ =
x
L

, c̃ =
cL
Ds

, θ̃ =
T(x̃) − T0

Tf − T0
, η =

λs
λg

, using

the notation ·′ = dx̃ · and γ̃(x̃) = θ̃ ′(x̃) we have:


θ̃ ′ = γ̃

c̃γ̃ + γ̃′ = 0 for x̃ < 0

ηc̃γ̃ + γ̃′ = −Ψ̃ for x̃ > 0

(25)

(26)

(27)

with the dimensionless heat source term:

Ψ̃(x̃) =
L2Qmol

λg(Tf − T0)
τ̃(θ̃(x̃)) ≥ 0 (28)

The associated boundary conditions are:


θ̃(−∞) = 0

θ̃(0−) = θ̃(0+) = θ̃s(c̃)

γ̃(0+) − ηγ̃(0−) = S̃(c̃)

θ̃(+∞) = 1

(29)

(30)

(31)

(32)

{
γ̃(−∞) = 0

γ̃(+∞) = 0

(33)

(34)

with the target interface balance:

S̃(c̃) = η
Qp

Qp +Q
c̃ (35)

Key steps to obtain the dimensionless system For the solid phase, we take
equation (14), divide it by (Tf −T0) to let θ appear, and switch the spatial derivatives
from x to x̃ (Ldx = dx̃); we then multiply it by L2/Ds and use the definition of γ to
obtain (26). For the gas phase, Proposition 2.4 allows us to express Y as a function of
T . Therefore the reaction rate τ(T,Y ) can be expressed as a function of temperature

13



only τ̃(θ̃). Equation (27) is then obtained from (17) in a similar fashion as for the
solid phase. Equation (31) can be obtained from equation (21) after the same kind of
process, with S̃(c̃) = cLρsQp(Ts)/(λg(Tf − T0)) = c̃ρsDsQp(Ts)/(λg(Tf − T0)). Recalling
the definitions of η, Ds, we obtain:

S̃(c̃) =
ηQp(Ts)

cs(Tf − T0)
c̃ (36)

Using H10 and the global energy balance from Proposition 2.3, we get (31) and (35).
All the other boundary conditions are directly obtained from the ones of the simplified
travelling wave model.

Remark 7. For a given value of c̃, θ̃s is given by (2). Therefore the first-order ODEs
(25) and (26) can be integrated from x̃ = −∞ to 0, using the boundary conditions (29)
and (30), and the solution profiles for θ̃ and γ̃ are unique. Similarly the first-order
ODEs (25) and (27) may also be integrated from x̃ = +∞ to 0, using the boundary
conditions (32) and (30), and the solution profiles are also unique. Boundary conditions
(33) and (34) are only introduced to emphasise the behaviour of the system at infinity,
however they are not mathematically required. The difficulty arises from the interface
thermal balance (31) which overconstrains our system. For a random value of c̃, it
is likely that this condition will not be satisfied. However the dependence of this
condition on c̃ through γ and the target interface balance S̃ allows us to envision that
some specific values of c̃ might lead to this condition being verified (hence the name
“target” for S̃). Therefore, the dimensionless regression velocity c̃ is a key variable and
can be considered as an “eigenvalue” of the problem.

Remark 8. The dimensionless heat source term Ψ̃ has the same behaviour as the
reaction rate τ̃. It is positive for θ̃ ∈ [0, 1] and vanishes for θ̃ = 1, since all the fuel is
burned, i.e. Ψ̃(1) = 0.

Remark 9. The sign of the temperature gradient jump across the interface [dxT]0
+

0− ,

or equivalently
[
dx̃ θ̃

]0+

0−
, depends on three factors:

• η = λs/λg the ratio of the thermal conductivities in the gas and in the solid
• Qp the reaction heat of the pyrolysis reaction, detailed in Remark 4
• Ts, which is directly related to the regression rate

Let us underline that the presence of the ratio η of thermal conductivities may have
a strong impact on the sign of the jump. As an example, in a configuration where
Qp = 0, we have S̃(c̃) = 0. If η > 1, then dxT(0+) > dxT(0−), but if η < 1, then
dxT(0+) < dxT(0−).

Remark 10. With the reactant mass fraction Y now removed from our set of variables,
the species interface condition (22) is not considered any more. It can actually be
shown that, as long as the thermal interface condition (31) is satisfied, this condition
is automatically fulfilled, even if Le , 1.

3. Existence and uniqueness of a travelling wave solution profile and
velocity

In this section, we will use the previously established dimensionless system to prove
that there exists at least one value of the regression velocity c such that all boundary
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conditions can be satisfied and the complete travelling wave problem can be solved. We
then proceed to show that there is only one such value of c. For the sake of simplicity,
we drop the “ ·̃ ” notation.

3.1. Monotonicity of the temperature profile

A first step in our proof of existence is to show that the temperature profile is increasing
in the gas phase.

Proposition 3.1. The temperature T is an increasing function of x on R. There exists
a bijection g : R→ [0, 1] such that g(x) = θ.

Proof. This proposition is established by considering the behaviour of the tempera-
ture in the two phases successively.

Solid phase Let x0 ∈ (−∞, 0) the position of a local extremum for θ: γ(x0) = 0.
From equation (26) we get γ′(x0) = 0. If we integrate equation (25) from −∞ to x0, we
get θ(x0) = 0. Therefore no local extremum can be lower than 0. If a local maximum
exists at x0, θ(x0) = 0. As θ(−∞) = 0, there would then exist a local minimum x1 < x0,
and we must have θ(x1) < 0, which contradicts our previous finding. Therefore no local
extremum exists for θ in the solid phase. As c < 0 implies θ(0) = θs > 0 (see equation
(2)), we can conclude that θ is increasing in this phase.

Gas phase We want to prove that the temperature profile is monotonous and
increasing in the gas phase. Using a reductio ad absurdum, let us suppose that
∃ x0 / γ(x0) = 0, local extremum or inflection point for θ. The energy equation (27)
then reads: θ ′′(x0) = γ′(x0) = −Ψ(θ(x0)) < 0, which means that x0 can only be a
local maximum. Consequently there exists a local minimum at x1 ∈ (x0,+∞) such that
γ(x1) = 0 and γ(x) < 0 ∀ x ∈ (x0, x1). We obviously have θ(x1) < θ(x0). Integrating
equation (27) from x0 to x1 yields: ηc[θ(x1) − θ(x0)] = −

∫ x1

x0
Ψ(θ(x))dx. The left-hand

side is strictly positive, but the right-hand side is strictly negative, consequently there
exists no local maximum x0. Overall, θ does not have any local extremum in the gas
phase, and as θ(+∞) > θ(0+), we can conclude that θ is monotonous and increasing in
the gas phase. This proof is the consequence of a much more general principle in the
study of second order elliptic equations called the maximum principle [30].

Overall Monotonicity The boundary condition θ(0+) = θ(0−) = θs and the re-
quirement θs > 0 allow us to prove that θ is increasing and strictly monotonous across
both phases. Therefore, we can build a bijection g : R → [0, 1] such that g(x) = θ.
This proof is valid even if the regression velocity c is such that the interface thermal
balance (31) is not satisfied. �

We now make use of the monotonicity of θ to switch from a spatial point of view
to a phase space one. The bijection between θ and x allows for a variable change from
x to θ in our equations. Therefore, γ may be considered a function of θ. We also have
the relation dxγ = dθγdxθ = γdθγ. We can transform the dimensionless system into
the following one, which we will use to determine the orbit of our system in the phase
plane (θ, γ).

Reduced dynamical system for orbit evaluation The dimensionless system is
equivalent to the following set of first-order ODEs and boundary conditions:
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{
cγ(θ) + γ(θ)dθγ(θ) = 0 ∀ θ ∈ [0, θs(c)]
ηcγ(θ) + γ(θ)dθγ(θ) = −Ψ(θ) ∀ θ ∈ [θs(c), 1]

(37)

(38)


γ(0) = 0

γ(1) = 0

γ(θ+s ) − ηγ(θ
−
s ) = S(c)

(39)

(40)

(41)

Remark 11. This set of equations is similar to the one obtained by Zeldovich et al.
[14] for a homogeneous gaseous laminar flame. In this reference, the phase portrait of
the temperature profile is also split in two parts. The first one represents the part of the
profile where the temperature is lower than an artificial cut-off temperature θignition,
below which the reaction rate Ψ is forced to zero. This allows the “cold boundary”
problem [22–24] to be overcome. The zone where θ < θignition is purely a convection-
diffusion zone. The second part of the laminar flame phase portrait is the same as ours:
the gas phase undergoes a reaction which creates a steep increase in temperature before
reaching the adiabatic combustion temperature behind the combustion wave. This is
a convection-diffusion-reaction zone. The two zones are joined using the continuity of
the temperature profile and its gradient, as no reaction or heat accumulation takes
place at the interface. In our case, the first part of the phase portrait is not associated
with a cut-off of the gas phase reaction rate, but with the fact that the solid phase is
inert, therefore it only heats up through thermal diffusion. Our problem thus differs
in two ways from the laminar flame one. First, the pyrolysis process is concentrated at
the interface and causes a discontinuity of the temperature gradient, which depends on
the wave velocity c. Secondly, the position θs of the interface in the phase portrait also
varies with c, whereas θignition is an arbitrary constant. We can artificially make our
problem equivalent to the laminar flame’s one by forcing Qp = 0, η = 1, θs = θignition
(no pyrolysis law), Ds = Dg (and cs = cp as assumed in H10).

The rest of the study will be based on the analysis of the phase portrait of the
system, i.e. the plot of γ versus θ. Such a phase portrait is represented in Figure 2.

3.2. Existence of a solution

We will now show that there exists at least one wave velocity c < 0 such that the
travelling wave problem previously stated has a solution for fixed values of P and T0.
We introduce ∆γ(c) = γ

[
θ+s (c)

]
−ηγ

[
θ−s (c)

]
, the effective interface balance obtained for

the regression velocity c and ξ(c) = ∆γ(c)−S(c), which we will call the interface balance
mismatch. We introduce another assumption, non-restrictive for any real application:

H 12. The heat of the pyrolysis reaction Qp is such that Qp > −Q.

Proposition 3.2. Under Assumptions H4 and H12, there exists at least one wave
velocity c such that the problem stated in the reduced system can be solved. All solutions
for the wave velocity c reside in the interval (cmax, 0), with cmax the dimensionless wave
velocity such that θs(cmax) = 1.

Proof. The global phase portrait in the gas and solid phases is schematically rep-
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θ

γ

γ(θs-)
γ(θs+)

1θs0
Figure 2. Schematic phase portrait
in both phases

Figure 3. Evolution of the phase
portrait with m. Each curve corre-
sponds to the solution curve for one
value of m.

resented in Figure 2. There is a jump of γ at θs, as explained in Remark 7. More
precisely, the thermal boundary condition (41) may be reformulated as:

∆γ(c) = S(c) ⇔ ξ(c) = 0

with ∆γ the effective interface balance, i.e. the dimensionless interface heat fluxes bal-
ance we obtain for a given value of c by integrating equations (37) and (38) separately,
with boundary conditions (39) and (40) respectively. The interface balance mismatch
ξ is non-zero when the interface thermal balance condition (41) is not satisfied. A
complete solution to the reduced system may only be found if there exists a regression
velocity c such that ξ(c) = 0.

To prove the existence of such a value of c, we focus on the behaviour of ξ. We first
aim at proving that ξ is a continuous function of c. To do so, we add c as a variable
in our reduced system, subject to dθc = 0 with the boundary condition c(0) = c0

determined from the pyrolysis law (2). The reduced system in the solid phase can be
recast to the following form:

d
dθ

(
γ
c

)
= f

(
γ
c

)
, with f

(
γ
c

)
=

(
−c
0

)
and initial conditions

(
γ(0)
c(0)

)
=

(
γ0

c0

)
=

(
0

−m/ρs

)
.

The associated flow is φ : (θ; γ0, c0) → (γ(θ), c(θ)). The theory of dynamical systems
shows that, f being here a C∞ function, the flow is also C∞ with respect to the
initial conditions. In particular, the solution profile for γ in the solid phase depends
continuously on c0 = −m/ρs. As we also assume (Assumption H3) that the surface
temperature θs is a C∞ function of c, γ

[
θ−s (c)

]
is C∞ with respect to c. The same

reasoning can be applied to the gas phase for γ
[
θ+s (c)

]
, so that ∆γ is C∞. S is also

trivially a C∞ function of c. As ξ is a sum of C∞ functions of c, we conclude that ξ is
C∞ with respect to c.

Inspired by this property, we aim at finding two values of the wave velocity c1 and
c2 such that ξ(c1) and ξ(c2) have opposite signs, implying that there is at least one
value of c ∈ (c1, c2) such that ξ(c) = 0. We exhibit two limit cases for the wave velocity
c, which naturally yield a different sign for ξ:

• Case c = 0: In this case m = 0, i.e. the solid propellant remains inert. Using
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Assumption H4, this equates to θs = 0. The temperature is uniform inside the
solid phase. Note that we are still satisfying the monotonicity property of θ
shown in Proposition 3.1 (the monotonicity is strict in the solid phase only if
θs > 0). With c = 0, Proposition 2.1 yields u = 0. Equations (35), (37) and (38)

lead to: γ(θ−s (0)) = 0, γ(θ+s (0)) = (2
∫ 1

0
Ψ(y)dy)1/2 = (2I0)1/2 and S(0) = 0. Conse-

quently ∆γ(0) = (2I0)1/2 > S(0), and therefore ξ(0) > 0.
• Case c = cmax: The solution we are looking for is monotonous and thus re-

quires θs ≤ 1. Based on the pyrolysis law (2), the case θs = 1 corresponds
to a certain value cmax < 0 of the wave velocity. We can then directly in-
tegrate the reduced system equations (37) and (38) to obtain: γ(θ−s ) = −cmax,
γ(θ+s ) = 0 and S(c) = η cmax Qp/(Qp +Q). Thus, ξ(cmax) = ∆γ(cmax) − S(cmax) =

ηcmax

(
1 −Qp/(Qp +Q)

)
= η cmax Q/(Qp + Q). Assuming H12, we obtain

ξ(cmax) < 0.

In realistic cases for Qp, we have shown that ξ(0) > 0 and ξ(cmax) < 0. Therefore, as
ξ is a continuous function of c, there exists at least one value of c ∈ (cmax, 0) such that
ξ(c) = 0. Potential solutions with c > 0 or c < cmax are physically meaningless and
are not further considered. The existence of a solution for the reduced system implies
that a solution also exists for the dimensionless system and the simplified travelling
wave system. �

3.3. Uniqueness of the solution

Having proved that there exists at least one value of c such that the travelling wave
problem can be solved, we now proceed to show that there is only one such value.
There are two cases, depending on the sign of Qp.

Proposition 3.3. If Qp < 0, there exists a unique value of the wave velocity c such
that the reduced system has a solution.

Proof. Studying the existence of a solution in Proposition 3.2, we have introduced
the interface balance mismatch ξ(c) = ∆γ(c) − S(c). A solution to the reduced system
with regression velocity c only exists if ξ(c) = 0. We have shown that ξ undergoes a
change of sign between c = 0 and c = cmax. This implies that there exists at least one
value of c such that ξ(c) = 0. As we aim at proving that there is only one such value
of c, we need to show that ξ is a monotonous function of c. To do so, we will study
separately the evolution of the two terms appearing in the definition of ξ: ∆γ and S.
For improved readability, we introduce γ− = γ(θ−s , c) and γ+ = γ(θ+s , c).

Evolution of ∆γ We have ∆γ = γ+ − ηγ−. To study the evolution ∆γ, we will first
analyse the behaviour of γ− and γ+.

In the solid phase, we have seen that we may solve equation (37) analytically and
find γ− = −cθs(c). Deriving with respect to c, we obtain:

dcγ− = −θs(c) − c∂cθs(c)

The Assumption H3 on the pyrolysis law (2) implies dTs m > 0, hence dmTs > 0
and consequently dcθs < 0. Therefore ∂cγ

− < 0, i.e. that is the more c diminishes (m
increases), the more thermal power is needed to maintain the solid phase temperature
profile, as we would expect.
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We now focus on the evolution of γ+. In the gas phase, the dimensionless tempera-
ture gradient at the interface is given by integrating equation (38):

γ+ =

∫ θs (c)

1
dθγ dθ =

∫ θs (c)

1

(
−Ψ(θ)

γ(θ)
− ηc

)
dθ

Deriving this expression with respect to c yields:

dcγ+ =
∫ θs (c)

1
dc(dθγ)dθ︸                 ︷︷                 ︸

A=
©­«
∂γ+

∂c
ª®¬θs (θs,c)

+

(
−Ψ(θs)

γ+
− ηc

)
dcθs︸                    ︷︷                    ︸

B=
©­«
∂γ+

∂c
ª®¬c (θs,c)

Let us study the sign of A and B. The term A is the derivative of γ+ with re-
spect to c at constant θs. Its sign may be found by following the same reason-
ing as Zeldovich in his work on laminar flames [14], which we reproduce hereafter
for the sake of completeness. Deriving equation (38) with respect to c, we obtain:
∂c(∂θγ) = −η + (∂cγ/γ

2)Ψ(θ). Introducing y = −γ/η and Π(θ) = Ψ(θ)/η2 yields
∂c(∂θ y) = 1 + (∂cy/y

2)Π(θ). Zeldovich has shown ([14], page 256) that the solution to

this equation is: ∂cy(θ) = − exp(χ(θ))
∫ 1

θ
exp(−χ(z))dz, with χ =

∫
Π/y2. Therefore

dcy(θ) < 0, ∀θ ∈ [0, 1] and consequently A = −η∂cy(θs) > 0.
Let us now determine the sign of B. Based on Assumption H8, we have Ψ ≥ 0.

The monotonicity of the temperature profile in the gas phase implies γ+ > 0, and
Assumption H3 leads to dcθs < 0. Therefore B is positive only if Ψ(θs)/γ

+ > −ηc,
which may not always be true, thus we cannot directly conclude on the sign of dcγ+.

However, if we combine the derivatives of γ+ and γ− to express the derivative of ∆γ,
the terms containing ηc cancel out:

dc∆γ = dcγ+ − ηdcγ− = A +
(
−Ψ(θs)

γ+
− ηc

)
dcθs − η(−θs − cdcθs)

⇒ dc∆γ = A + ηθs −
Ψ(θs)

γ+
dcθs

Overall, the three remaining terms are positive, hence dc∆γ > 0.

Evolution of S Deriving equation (35), we get: ∂cS = ηQp/(Qp +Q). Following
Assumption H12 (Qp > −Q), we conclude that ∂cS has the same sign as Qp. In this
proposition, we assume Qp ∈ (−Q, 0], therefore we obtain ∂cS < 0.

Evolution of ξ We now have determined the signs of each term appearing in the
derivative of the interface balance mismatch ξ with respect to c. Using the previously
established relations, we can write:

∂cξ = ∂c∆γ − ∂cS > 0
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We conclude that ξ is a monotonous function of c. We have shown in the proof of
Proposition 3.2 that ξ(cmax) < 0 and ξ(0) > 0, i.e. that there exists at least one
solution wave velocity c such that the reduced system is solved. The monotonicity of
ξ we just established is the additional property needed to prove that there is only one
such solution. Physical interpretations of the behaviour of ξ, ∆γ and S are given in
3.5. �

Proposition 3.4. If Qp > 0, there exists a unique value of the wave velocity c such
that the problem stated in the reduced system can be solved. This solution c belongs to
the interval (cmax, cmin) with cmin such that θs(cmin) = Qp/(Q +Qp).

Proof. This result is obtained in a manner almost identical to the previous one. The
difference lies in the behaviour of S. With Qp > 0, we have ∂cS > 0, as is ∂c∆γ, therefore
we cannot directly conclude on the sign of ∂cξ for c ∈ (cmax, 0). To circumvent this
difficulty, we will show that there exists a value cmin such that we always have c < cmin,
which verifies ξ(cmin) > 0, and such that ξ is monotonous on the interval (cmax, cmin).
Starting from the relations established in the proof of Proposition 3.3, we can express
dcξ:

dcξ = dc∆γ − dcS = A −
Ψ(θs)

γ+
dcθs︸             ︷︷             ︸

>0

+η

(
θs −

Qp

Q +Qp

)

Consequently, to ensure dcξ > 0, it is sufficient that the last term is positive:

θs > θs,min =
Qp

Qp +Q
=

Qp

cp(Tf − T0)
⇔ Ts > Ts,min = T0 +

Qp

cp

Here we can give a physical interpretation of Ts,min. It is the temperature that would
be achieved at the interface without any heat feedback from the gas phase. Indeed if
dxT(0+) = 0, we can integrate equation (14) from −∞ to 0 and find Ts = T0 + Qp/cs.
Following Assumption 10 (cp = cs), we recover our previous expression of Ts,min.

Now we need to show that all acceptable solutions have the property Ts > Ts,min.
The monotonicity of the temperature in the gas phase, established in Proposition 3.1,
associated with the condition Ts < Tf shows that dxT > 0 in the gas phase. This
means that γ is always positive in the gas phase: heat is always conducted from the
gas phase into the solid phase. As a consequence, Ts > Ts,min is always satisfied in our
problem. That is also what we would expect from a physical point of view, as we know
the gas phase will actually heat up the solid, not cool it down. Moreover, using the
constant combustion enthalpy property from Proposition 2.4 and the global energy
balance from Proposition 2.3, we find that Ts > Ts,min is also the required condition to
ensure Y (0+) < 1.

Overall, we are now assured that the surface temperature θs will always be higher
than θs,min. Via the pyrolysis law (2), the minimum surface temperature θs,min cor-
responds to a regression velocity cmin < 0. Therefore we conclude that c will always
be lower than to cmin. We remind the reader that c < 0, therefore c < cmin yields
|c | > |cmin | (faster regression).
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Let us now compute the value of ξ for this value of c:

ξ(cmin) = γ(θ
+
s,min, cmin) − ηγ(θ

−
s,min, cmin) − ηcmin/(1 + k) = γ(θ+s,min, cmin)

The strict monotonicity of θ implies that γ is always positive. As a consequence,
ξ(cmin) > 0. We have shown in the proof of Proposition 3.2 that ξ(cmax) < 0, therefore
there exists a solution wave velocity c in the interval (cmax, cmin), such that ξ(c) = 0.

On this interval, we have established that dcξ > 0, whence we conclude that the
solution is unique within this interval. Let us underline again that solutions outside
of this interval are not physical and would lead to a violation of the monotonicity of
the temperature profile. Physical interpretations of the behaviour of ξ, ∆γ and S are
presented in 3.5. �

At this point, we have proved that there exists a unique solution to the reduced
system, therefore also for the dimensionless one and for the simplified travelling wave
problem which were presented in 2.1. There exists only one steady travelling combus-
tion wave solution for the burning of a homogeneous solid propellant with simplified
kinetics and a pyrolysis concentrated at the surface, with the surface temperature
being linked to the mass flow rate by a pyrolysis law such that the mass flow rate
monotonously increases with the surface temperature. The proof is valid for a very
wide range of values for the heat of reaction of the pyrolysis process, and for any value
of the gas phase activation energy.

Remark 12. The Assumption H10 (cs = cp) made the proof of uniqueness much
easier. If we had not used it, the target interface balance S would have a more complex
variation with respect to c and no easy conclusion on uniqueness would be possible.
However the assumption can easily be relaxed in the numerical method presented
further in this paper, as it only changes the definition of S, Qp and Tf (see Section
4.3.4). It is likely that the solution may remain unique on a certain range of values
for the ratio cp/cs, and this was indeed observed in our test case for a wide variety of
values for this ratio.

Remark 13. Johnson and Nachbar [16] proved the uniqueness of c for any fixed
value of Ts. This study case can also be treated with the approach we have presented,
however a few adjustments are necessary, which is why we expose the main steps in
appendix A.

Remark 14. The study presented in this paper also encompasses the laminar flame
study by Zeldovich [14]. In this case, θs = θignition is a constant, and S = 0 as no
chemical reactions takes place at the interface, therefore the existence and uniqueness
is proved directly from Proposition 3.3.

3.4. Heteroclinic orbit and critical points

The points x = −∞ and x = +∞ are critical points for the dimensionless system, i.e.
all derivatives are zero. These points correspond to (θ = 0, γ = 0) and (θ = 1, γ = 0).
The dynamics of the dimensionless system in phase space is a heteroclinic orbit that
joins these two points. This orbit and the associated treatment of the critical points
is very similar to the bistable planar waves studied in [31]. The first critical point
(0, 0) is more difficult to analyse, as it is not a hyperbolic point, however we can easily
integrate (37) and find that the solution is γ = −cθ. The other critical point (1, 0), in
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the gas phase, is a hyperbolic point, therefore the solution curve (orbit) will depart
from the associated stable manifold. We can then determine the slope dθγ(1) by means
of a linearisation. We use the approximations γ(θ) = α(θ − 1) and Ψ(θ) = β(θ − 1), with
α = dθγ(1) and β = dθΨ(1). Following remark 8, we know that β < 0. Injecting these
linearised expressions into (38), we get: α2 + αm̃ + β = 0. This second order equation
has two real solutions of opposite signs. As we require α = dθγ(1) < 0 so that our
solution remains in the half-plane γ ≥ 0, we find:

α =
m̃
2

(
1 −

√
1 −

4β

m̃2

)
(42)

The behaviour around the two critical points will be used in the numerical strategy
based on a shooting method to integrate the dynamics of the orbit.

3.5. Physical interpretation and discussion

It will be easier to interpret the behaviour of our system by considering its variations
with respect to the mass flow rate m. Let us remind the reader that the pyrolysis
mass flow rate m = −ρsc is positive, whereas c is negative. Consequently and for any
variable q:

∂cq < 0⇔ ∂mq > 0

In the present paper, we have introduced ∆γ, which the dimensionless thermal power
excess that is available to power the pyrolysis process, i.e. gas heat feedback minus
the thermal power used to heat up the solid, and S, the dimensionless thermal power
that is required for the pyrolysis process to be sustained at the given value of m. We
have shown that dm∆γ < 0, therefore increasing m will decrease the thermal power
available for the pyrolysis. The sign of dmS indicates how the required thermal power
evolves with the pyrolysis mass flow rate m.

case Qp < 0 In the case Qp < 0, the pyrolysis process is endothermic, i.e. it absorbs
heat from the gas and solid phases. This can be the case if the sublimation of G1

(s)
into

G1
(g)

is very demanding in terms of energy, which corresponds to Lv > Qs in remark

4. We showed that in this case, dmS > 0. If, for an arbitrarily chosen value of m, we
have ∆γ < S, it means that the heat feedback from the gas phase is too low compared
to the heat that would be absorbed by the solid phase and the pyrolysis reaction in
a stationary state. The fact that dm∆γ < 0 and dmS > 0 shows that as we lower the
mass flow rate, the thermal power excess transmitted by the gas phase to the interface
increases whereas the thermal power needed for the pyrolysis decreases. As we have
seen that in the limit m → 0, ∆γ > S, we know that we will find one value of m such
that both powers cancel out. Conversely if we start with m such that ∆γ > S, we need
to increase the value of m. The limit case m = m(Ts = Tf ) yields ∆γ < S, therefore we
are also ensured that we will find one solution for m.

case Qp > 0 The same reasoning can be applied. In this case the pyrolysis is
exothermic, thus it also contributes to the heating of the solid phase. We showed that
dmS < 0, i.e. the thermal power required by the pyrolysis decreases as the mass flow
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rate increases, in the sense that it is actually negative and increasing in magnitude.
This is physically coherent with the fact that the pyrolysis is exothermic. We have
established that in the interval (cmax, cmin), dcξ > 0, i.e. dmξ < 0 for m ∈ (0,m(Tf )). It
shows that as we increase the mass flow rate m, the thermal power excess transmitted
by the gas phase to the interface will decrease more rapidly than the thermal power
needed for the pyrolysis. Therefore, starting from a value of m such that the heat
feedback is too strong (ξ > 0), lowering m will only worsen the interface thermal
balance. We actually need to increase m, up until the point where the thermal power
S required by the pyrolysis catches up with the thermal power excess ∆γ.

The gradient jump [dxθ]
0+

0− is the same as [γ]θs (c)
+

θs (c)−
. Using (31), we can rewrite this as

[γ]
θs (c)

+

θs (c)−
= S(c) + (η − 1)γ (θs(c)−). In the particular case where η = 1, i.e. both phases

have the same thermal conductivity, this reduces to S(c), thus the gradient jump has
the sign of S. If we have η , 1, the sign of the gradient jump will depend on the
gradient in the solid phase at the interface. For example, if η > 1, the temperature
gradient jump at the interface will be positive only if S(c) > (1 − η)γ(θs(c)−).

This theoretical study brings in two aspects. First, it allows to describe a greater
variety of physical scenarios, compared to the ones represented by the existing ana-
lytical models. Second, and this is the purpose of the next section, it allows for an
efficient numerical resolution.

4. Numerical method and verification against a CFD code

We now explain how the previous analysis is used to construct a numerical shooting
method to iteratively determine the solution, i.e. the correct wave velocity (eigenvalue)
and temperature profile (eigenfunction). We also present a one-dimensional CFD code
developed at ONERA for the study of solid propellant combustion. This CFD code
can be adapted to use the same level of modelling as the shooting method. Our first
objective is therefore to compare the results of both methods to cross-verify these
tools within the framework defined by our modelling assumptions (Sections 4.3.1 and
4.3.3). Our second objective is to show how the shooting method may be extended to
relax some of these assumptions and what limitations may be encountered (Sections
4.3.4 and 4.3.5). For this purpose, the CFD code will serve as a reference, as it allows
for a straightforward relaxation of several assumptions.

4.1. Shooting method

4.1.1. Determination of the phase portrait for a given c

For a given value of c, we can integrate the dimensionless equations (37) and (38)
from the reduced system, which are first-order ODEs for the variable γ as a function
of θ. In the solid phase, the integration is analytical, as we directly obtain γ(θ) = −cθ.
This gives us the value of γ for θ ∈ [0, θs(c)]. In the gas phase, equation (38) can be
written as: dθγ = −ηc−(Ψ/γ). We need to integrate this equation from θ = 1 to θ = θs.
As explained in subsection 3.4, the starting point (θ = 1, γ = 0) is a critical point for
our system, therefore starting a numerical integration from this point is impossible. To
overcome this problem, we simply use the linearised solution slope α given in (42), and
start the integration from (1 − ∆θ,−α∆θ), avoiding the critical point. We typically use
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∆θ = 10−6. To maximise the accuracy, the integration of the gas phase equation (38)
is performed using the Radau5 algorithm [32], featuring an adaptive step size, with
very tight tolerances (≈ 10−14). Once the profile of γ is computed, we can go back to

the spatial representation by using the definition γ = dxθ to compute x(θ) =
∫ θ
θs

z
γ(z)dz.

This formula also ensures that x(θs) = 0.

4.1.2. Determination of c through a dichotomy process

Based on our analysis of ξ, we know that ξ(0) > 0 and ξ(cmax) < 0. In the case Qp < 0,
we start a dichotomy from the two initial points 0 and cmax, the latter being computed
beforehand from the global energy balance and the pyrolysis law. If Qp > 0, we replace
the starting value 0 with cmin. In both cases, ξ is monotonous between the two initial
points and undergoes a change of sign, therefore convergence of the dichotomy process
is ensured. For each new guess of c, we integrate the reduced system as explained
previously, and obtain the value of ∆γ(c). We compare it to the value of S(c) to
compute ξ(c). Based on the sign of ξ(c), we can shrink the interval where ξ changes
sign, until the change in c between each iteration becomes small enough.

We could also perform a constrained optimisation on the variable c, minimising the
objective function f (c) = [S(c) − ∆γ(c)]2, with the constraint c ∈ [cmax, cmin]. Practi-
cally, the optimisation method is quicker to find the approximate solution, but fails at
determining c as precisely as the dichotomy process, even when using tight tolerances.
However the dichotomy requires many iterations, therefore the more advanced Brent
root-finding method [33] was used. In our test cases, the solution was usually found
within 10 iterations.

Remark 15. This semi-analytical method is bound to be more accurate than the
analytical models discussed in the introduction, as these models basically use the same
assumptions, but also assume that the activation energy of the gas phase reaction is
either very high or zero. Our method does not need this information and will better
reproduce the gas flow. This comes at the cost of having to iterate on the value of
c, each time integrating numerically the reduced system. However, this cost will be
rather low, as each iteration only requires the integration of the simple ODE (38). This
method is consequently especially useful to perform extensive parametric studies.

4.1.3. Error of the method

The numerical shooting method contains 3 sources of error:
• error in the estimation of dθγ(1), used to avoid the critical point in the gas phase;
• error in the numerical integration of the gas phase temperature profile;
• convergence precision achieved by the shooting method on the value of c.

Let us address the different items in this list. First, a simple parametric study on the
value of ∆θ has shown that dθγ is a constant in the neighbourhood of the critical point.
Different values of ∆θ have been tested and the converged regression velocities are
exactly identical for all ∆θ lower than 10−3. Consequently the linearisation around the
critical point is a reasonable approach and the error it produces is zero up to machine
precision. The numerical integration of the gas phase with the Radau5 algorithm with
very tight tolerances is also close to machine-precision, as the algorithm is of order 5
and the step size is dynamically adapted to maximise accuracy. A convergence study
has been performed by varying the integration tolerance from 10−3 to 10−15, each time
determining the solution c via the dichotomy process (Brent method). It has been
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found that the solution wave velocity obtained for a tolerance of 10−14 is converged
with a relative error of 10−14. Finally, the dichotomy process usually is able to converge
the solution c with a relative error of the order of 10−15. Overall the only practical
limitation to the precision of this numerical shooting method is the machine accuracy
chosen for implementation. All our numerical computations have been performed with
double precision.

4.2. Reference CFD code

We wish to compare our semi-analytical model with a proven CFD code in a less
restrictive framework. The aim is to verify the shooting method results and validate
our assumptions. The CFD tool developed at ONERA is a Fortran90 code based on a
finite-volume approach for the one-dimensional problem, inspired from [34]. The model
has also been adapted for the combustion of aluminium particles [35]. The molecular
diffusion fluxes are approximated using a second-order central difference scheme. The
convective fluxes are approximated either by a first-order upwind scheme, a second-
order hybrid scheme weighted by the local Péclet number, or a second-order centred
scheme. The equations are written in their steady form in the travelling combustion
wave reference frame. These equations are discretised in space and, together with the
boundary conditions, they represent a system of coupled non-linear equations. A mod-
ified Newton method with damping is used to determine the solution, as described in
[34]. The Jacobian matrix is computed numerically by finite differences. The conver-
gence strongly depends on the initial state. If convergence is poor, temporal evolution
terms can be added to the equations to approach the steady-state solution through a
number of transient iterations. This code also contains an automatic grid-refinement
algorithm that ensures the mesh is fine enough in the regions where the gradient or the
curvature of the solution variables are high. The refinement is performed after each
successful convergence to a steady solution, until all refinement criteria are satisfied.
The code can handle detailed chemistry by accessing reaction and thermodynamic
data through an interface with CHEMKIN-II [36]. Detailed molecular transport with
binary species diffusion is also possible with the use of the EGlib library [37]. However
for the comparison with the numerical shooting method, these additional capabilities
are not used. This CFD code yields solutions which are subject to different sources of
errors: the quality of the discretisation (grid refinement), the tolerance for the Newton
method, and the fluxes approximations. All CFD results presented further on were
computed with automatic mesh refinement criteria such that any additional refine-
ment does not change the solution. The tolerance on the norm of the Newton step is
10−8, and it was verified that lowering this tolerance did not change the results.

4.3. Numerical verification and parametric studies

4.3.1. Reference case with unitary Lewis

The reference case we will use throughout the rest of the article is the combustion
of a one-dimensional equivalent of the AP-HTPB-Al propellant. The values for the
different properties are adapted from [3]. The reaction rate is τ = A[G1]T exp(−Ta/T)
with [G1] = ρY/M the molar concentration of the species G1. The activation energy
for the gas-phase reaction is Ea = 58.7 kJ.mol−1, which corresponds to an activation
temperature Ta = Ea/R = 7216 K. The specific heats are cs = cp = 1.2× 103J.kg−1K−1.
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Figure 4. Plot of θ and Y of the semi-
analytical solution (dots) with the nu-
merical simulation (dashed lines)

Figure 5. Convergence of the CFD solu-
tion towards the semi-analytical solution
with an adapted mesh

The pressure is set to 5 MPa. The heat of reactions are Qp = 1.8 × 105 J.kg−1, and
Q = 3.9×106 J.kg−1. For the CFD code, the diffusion coefficient Dg for both species is
taken as a linear function of T , such that the Lewis number Le = (λg/(ρ(T)cp))/Dg(T)
is 1 across the gas phase. Figure 4 shows a graphical comparison of the dimensionless
temperature θ and mass fraction Y profiles. The agreement is very good, and has
been verified for several other values of the pressure P (e.g. 0.5 MPa). The relative
error between the regression speed obtained from the semi-analytical tool and the one
obtained with the CFD code with mesh adaptation is around 10−7. This allows us to
conclude on the verification of our numerical strategy and model implementation.

4.3.2. Spatial convergence of the CFD solution

It is interesting to study the convergence in space of the steady-state CFD solution. We
perform multiple simulations on increasingly refined grids. The meshes are generated as
follows: knowing the temperature profile from the semi-analytical solution and starting
from an initial grid point at x = 0 (interface), the other grid points are placed such
that the difference in interpolated temperature between two successive grid points is
below a certain threshold. By varying this threshold (from 0.05K to 50K), grids with
varying level of refinement are obtained, whose point distribution is relatively well
adapted to the problem. The finite volume mesh is then generated by taking these
grid points as the positions of the cell faces. In this reference case, the thermal layer in
the solid phase and the flame in the gas phase both have a thickness close to 10−4m.
The generated meshes are extended by adding cells with gradually increasing sizes so
that the abscissa of the outer cells are ten times greater than this thickness in order
to minimise the influence of the Neumann boundary conditions. It has been verified
that extending the mesh further does not improve the relative error.

We show in Figure 5 the convergence of the CFD result towards the semi-analytical
solution for the reference case. We see that second-order accuracy is reached, and that
the relative errors reach 10−8 on Ts (10−7 on c and similar results are obtained on
temperature profiles) at around 4000 adapted mesh cells. For a given level of relative
error, it was determined that a uniform mesh would require approximately ten times
more points when using the smallest cell size of the corresponding adapted mesh. This
shows that the CFD code is definitely more computationally intensive, and requires
an adapted mesh to produce accurate results. Achieving a relative error lower than
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10−8 on Ts is difficult as this level of error is very close to the tolerance on the Newton
step, i.e. the relative precision of the CFD solution obtained by the Newton solver.

Overall, the error is sufficiently small so that we can consider that the CFD solution
is converged in terms of spatial mesh and Newton iterations. The automatic mesh
refinement available in the CFD tool yields similar level of errors, therefore it will be
used for the rest of the comparison. The resolution of the travelling wave problem is
coherent between the two tools thus bringing out a useful cross-verification of both
approaches.

4.3.3. Parametric study with variable gas phase activation energy

We know that for the simplified chemical mechanism used, the activation energy Ea

of the gas phase reaction will be of paramount importance. Indeed, if Ea is low, the
reaction will be very fast at lower temperatures in a narrow zone just above the surface,
which will lead to a strong heat feedback and a high regression rate. On the opposite,
if it is very large and every other parameter is unchanged, the reaction will be slower
and more spread out spatially, thus diminishing the heat feedback from the gas phase
onto the solid propellant, resulting in a slower regression rate.

To highlight the effect of Ea, we compute with both methods the temperature profile
for three values of Ta = Ea/R (activation temperature), representative of low, mid and
high activation energies. The pressure remains at 5 MPa. The Lewis number is 1
for both methods. All the other parameters are not modified, therefore neither the
regression velocity, the surface temperature, nor the heat feedback from the flame will
be the same for all three cases.

Figure 6 shows the spatial temperature profiles. We see that as Ta decreases, the
profile becomes sharper and the flame gets closer to the surface of the propellant.
Figure 7 shows the phase portraits of these three simulations. The ordinate dxT is
scaled for each simulation separately, so that the maximum is 1, otherwise the high
values of dxT encountered in the case Ta = 0 would make it difficult to compare
the curves. As Ta increases, the abscissa Ts, i.e. the propellant surface temperature,
increases and so does the height of the gradient jump between the two phases. As
the activation energy is lowered, the flame becomes thinner and the heat feedback on
the solid grows due to the stronger temperature gradient near the surface. The higher
surface temperature results in a greater regression rate through the pyrolysis law (2),
which in turn increases the thermal effect of the pyrolysis, i.e. the size of the gradient
jump at the surface.

The fact that the gas phase portrait for Ta = 0 is a straight line can be surprising.
This is actually related to the Arrhenius law used. As stated before, the reaction rate
is of the form τ ∝ [G1]T exp(−Ta/T). Using the constant enthalpy from Proposition 2.4,
the ideal gas law and expressing the concentration [G1] as ρY/M in equation (17),
one may easily verify that a linear function of the form γ = α(1 − θ) is a solution.

A more thorough parametric study has been performed to obtain Figure 8. The
agreement of both methods for the prediction of the regression speed is very good
across the whole range of activation temperatures, with a relative error of approxi-
mately 10−7 on c. An important remark is that the CFD solution often fails to converge
when the initial mesh is not suited, and when the initial solution is not sufficiently
good. For example, the case Ta = 0 involves very strong temperature gradients, which
required adding many more mesh points close the surface for the initial solution. On
the opposite, the case Ta = 15000 K gives a very smooth and slowly evolving tem-
perature profile, but this translates to a very spread out flame, requiring additional
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Figure 6. Temperature profiles, CFD
results (full lines) compared to semi-
analytical results (circles)

Figure 7. Normalised phase portraits,
CFD results (full lines) compared to
semi-analytical results (circles)

mesh points far from the surface so that the combustion process is fully represented.
Rather than remedying these problems manually by using a single extended mesh and
performing transient iterations to facilitate convergence, we use the semi-analytical
method to generate the initial solution, and define an initial mesh as explained in Sec-
tion 4.3.2 with a sufficient extension so that the gas phase reaction is completed within
the computational domain. With this approach, the CFD code converges very quickly
and can further refine the mesh if needed. This highlights some of the main advantages
of the semi-analytical method, which are that the solution always converges, and that
no manual mesh adjustments are needed.

Figure 8 also shows the results of the analytical models WSB and DBW. Their
pre-exponential factors Ap and A were adjusted so that both models predict the same
regression velocity at Ta = 7216K as the CFD model. The WSB model assumes Ta = 0,
therefore the regression velocity does not vary with Ta. We see that the tendencies
are reasonable, even if not in perfect agreement (we use a log scale), between the
semi-analytical model and the DBW model for high activation energies. However the
DBW model, which assumes high gas phase activation energy, falls apart when Ta is
decreased. Overall, the semi-analytical model is a more generic model that produces
quantitatively good results, without any assumption on Ta.

4.3.4. Parametric study on the ratio cp/cs

We now wish to extend the numerical method beyond its theoretical ground, by re-
laxing Assumption H10. Simulations are performed with the CFD code and our semi-
analytical tool, by varying the gas specific heat cp at constant cs = 1.2×103J.kg−1K−1.
The species diffusion coefficient Dg is taken as a linear function of T , such that the
Lewis number remains equal to unity. Therefore it varies with cp. In our semi-analytical
tool, we account for cp , cs by using the equation (36) instead of (35) for S, and Tf

and Qp are computed as in remarks 6 and 10. The ODE (38) changes slightly as the
ratio cs/cp appears as an additional factor for the term in ηc, which also affects the
slope (42) of the solution near the critical point. The results are shown in Figure 9 for
a wide range of ratios cp/cs (0.5 to 3), which encompasses all physically relevant solid
propellant configurations. We see that the CFD code and the semi-analytical model
are again in very close agreement. The relative error between both tools is around 10−8

on the surface temperature (10−7 on c).
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Figure 8. Regression speed as a func-
tion of activation temperature, CFD re-
sults compared to semi-analytical and
analytical results

Figure 9. Evolution of the regression
speed with cp/cs obtained with the semi-
analytical and CFD methods

As we do not have a theoretical proof of existence and uniqueness when cp , cs,
we have performed a more extensive study to observe the behaviour of ξ when we
vary the ratio cp/cs, even if it is outside of the physically relevant interval. The curve
of ξ(c) is plotted for various ratios cp/cs in Figure 10a. Each curve is normalized
by ξ(0), the limit of ξ when c tends to 0. We see that ξ remains monotonous and
only has one zero-crossing. Figure 10b shows how the solution wave speed csol is
located between the bounds cmax and cmin as the ratio cp/cs changes. We observe that
the solution remains within these bounds, and tends to cmax for high values of the
ratio cp/cs. When this ratio is low, both the solution and cmin tend to cmax. Overall,
this numerical investigation shows that the semi-analytical model can still be reliable
beyond the simplified level of modelling adopted for the theoretical analysis.

(a) Evolution of ξ with c for different ratios of
cp/cs

(b) Evolution of the solution regression speed
csol (blue dashes) and lower bound cmin

(orange line) compared to cmax

Figure 10. Effects of the ratio cp/cs on ξ and on the solution regression speed

4.3.5. Parametric study on the Lewis number

The unitary Lewis number assumption H11 allows to simplify the system by only
having to consider the temperature and its gradient as variables. This can be relaxed
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Figure 11. Temperature profiles, CFD
results (full lines) compared to semi-
analytical results (dots) for different val-
ues of the Lewis number

Figure 12. Relative error on the predic-
tion of c by the semi-analytical method
compared to the CFD method, as a func-
tion of the Lewis number

numerically, however it would make the shooting method more complex, requiring the
addition of the mass fraction Y and its gradient as variables in the dynamical system
equations. It may also affect the existence and uniqueness of the solution. Zeldovich
has reported that uniqueness can indeed be lost for laminar flames [14] when Le > 1.
To show the limits of the semi-analytical model, we conduct a study on the effect of
a constant Lewis number, but with a value different than 1. To do so, just as before,
the CFD code uses species diffusion coefficients that are linear with T , such that Le is
constant in the gas phase.

If Le is high, heat diffuses faster than species, therefore we expect a stronger thermal
feedback from the gas phase, resulting in a faster regression speed. When the Lewis
number is decreased below 1, we expect the opposite effect. This is confirmed in Figure
11 which shows the temperature profiles for three different values of Le. Figure 12 shows
the relative error of the semi-analytical model for the estimation of c, compared to the
CFD result, for Lewis numbers within the realistic range from 0.5 to 3. As expected,
the minimum error is reached at Le = 1. For Le > 1, the semi-analytical model
underestimates c as it underestimates the temperature gradients near the surface. For
Le < 1, c is overestimated. Still, the relative error on c lies within 20%. The relative
error on Ts is much smaller (≈ 1%). The exponential term in the pyrolysis law with
the high pyrolysis activation temperature Tap is the root of this difference, as a small
relative error in the evaluation of Ts translates into a greater one for c. Overall, this
parametric study shows that the unitary Lewis number assumption still allows for a
quantitatively reasonable solution.

5. Conclusion

We have presented a new method for the determination of travelling wave solutions
for a simplified combustion model of a homogeneous solid propellant. The main as-
sumptions are that the gas phase only contains one reactant and one product, the
reactant being transformed into the product by a single irreversible reaction, and that
the Lewis number is 1. Considering solutions of this nonlinear eigenvalue problem in
the form of a travelling wave profile as well as a regression velocity c, we have derived
a reduced system which can be used in a numerical shooting method to determine the
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correct regression velocity. We have proven that the travelling wave solution profile
and velocity exist and are unique under conditions which are not restrictive in view of
the physical properties encountered in real solid propellants.

A numerical comparison has been conducted with a CFD code developed at
ONERA, and the agreement is very good for a broad range of parameter values,
at least for a unitary Lewis. The shooting method is simpler to implement, more ef-
ficient and reliable than the CFD code. We have shown that the relative error on c
grows as the Lewis number changes, but the semi-analytical solution remains quanti-
tatively correct for realistic values of this parameter. A comparison has also been made
with some of the main analytical models, and we have shown that our semi-analytical
model produces better results overall. Practically, the semi-analytical method is free
of any space discretisation error. The remaining sources of error are well controlled.
This method can thus be a useful verification tool for CFD codes with simplified test
cases. Besides, the method always converges, hence it can be used to generate initial
solutions for more detailed methods that would otherwise struggle to converge.

This method can be employed to determine the various coefficients needed to com-
pute the linear response function to pressure fluctuations, by performing multiple
simulations with slight variations of one parameter.

The proof of existence and uniqueness may be extended to include the effect of a
constant external heat flux absorbed both at the surface and inside the solid. Care
must be taken, as the burnt gas temperature Tf will depend on the mass flow rate.
Also, as in [16], a reverse reaction may be included in the gas phase, allowing for a
non-trivial equilibrium far away from the surface. These effects were not included in
the present paper for readability reasons.

A few evolutions can be envisioned for the numerical shooting method. More ad-
vanced pyrolysis laws can be used, as in [38]. Radiation penetration and absorption,
as well as heat loss by thermal radiation and potential heat loss to the surroundings
may be easily integrated into the numerical tool. This will require a numerical resolu-
tion of the solid phase temperature profile, as already done for the gas phase, instead
of the simple analytical solution that we have been able to use in this paper. The
shooting method may also be adapted to take into account a temperature dependent
Lewis number. Although not detailed in this paper, we have conducted a numerical
experiment on the inclusion of non-linear surface phenomena. For example, following
the work of Johnson and Nachbar [25], a radiative heat loss on the propellant surface
can be included. This heat loss is accounted for in S and also brings a new dependence
of Tf on c. It is observed that ξ is not a monotonous function any more: depending
on the surface emissivity, there can be one solution, two, or none. When there are two
solutions, only one is thought to be stable, but the shooting method is still able to find
the potentially unstable one. This shows some potential for the semi-analytical tool.
When the shooting method is extended to account for such phenomena, the existence
and uniqueness of the solution might not be guaranteed any more, and the bounds on
the regression velocity may need to be redefined. Finally, the dichotomy process may
need to be performed on multiple separate intervals for the regression velocity to allow
the determination of all solutions.

We believe that the approach presented in this paper also sets the proper framework
for the stability analysis of the stationary wave profile; this is out of the scope of the
present paper but is the subject of future work.
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Appendix A. Analysis with constant surface temperature

Johnson and Nachbar [16] proved the uniqueness of c for any fixed value of Ts. Using the
same approach as in Propositions 3.2, 3.3, 3.4, one may prove this result by following
the steps listed below.

• We replace the pyrolysis law (2) by the trivial relation Ts = Ts,0. As a conse-
quence, and even without Assumption H10 (cp = cs), Qp is a constant, whence,
from equation (36), S is a linear function of c, as it is the case in our previous
study.
• Before proving the existence of a solution, it is actually useful to show that the

gas heat feedback γ+ is a monotonous function of c. Similarly to what is done
in the proof of Proposition 3.3, we can write dcγ+ = A > 0. The term B which
appeared in the proof of Proposition 3.3 is strictly 0 as dcθs = 0. Consequently,
γ+ is a monotonous function of c: as c increases (m decreases), the gas heat
feedback increases. The monotonicity of γ+ will be helpful when discussing the
existence of a solution.
• Let us express the interface balance mismatch:

ξ(c) = ∆γ(c) − S(c) = γ+(c) − ηγ−(c) − S(c)

The analytical solution of the solid phase temperature profile gives γ−(c) = −cθs.
Using the definition of S in equation 36, we can reformulate ξ as:

ξ(c) = γ+ + ηc
(
θs −

Qp

cs(Tf − T0)

)
︸                  ︷︷                  ︸

K

(A1)

Note that K > 0, as we still retain the property Ts ≥ Ts,min (see proof of
Proposition 3.4).
• To establish the existence of a solution wave velocity c such that ξ(c) = 0, we

rely on two limit cases, c = 0 and c = cmax, as we did in the proof of Proposition
3.2:

◦ The first limit case is c = 0, and we easily obtain ξ(0) = ∆γ(0) =(
2
∫ 1

θs
Ψ(y)dy

)1/2
> 0 as in the proof Proposition 3.2.

◦ The second limit case is c = cmax. In our previous study, cmax was a value
obtained via the pyrolysis law for Ts = Tf . In the study of Johnson and
Nachbar, Ts does not depend on c any more, therefore we use cmax = −∞.
The monotonicity of γ+ we have just established before leads to γ+(−∞) <
γ+(0). Moreover, the monotonicity of the temperature profile also yields
γ+(−∞) ≥ 0. As K > 0, we deduce from (A1) that ξ(−∞) = −∞.

Overall, we have ξ(0) > 0 and ξ(−∞) = −∞, therefore we conclude that a solution
wave velocity c exists, such that ξ(c) = 0.
• To prove the uniqueness of the solution, we derive ξ with respect to c:

dcξ = dcγ+ + ηK

We have shown that all the terms are positive, hence dcξ > 0. We conclude that
the solution is unique.
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