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Abstract

 The use of renewable sources for electricity supply of islands is faced with technical and economic constraints. 

To ensure that demand is fully met in the event of low generated power, batteries and gensets are often used and 

these can be expensive due to fuel import and battery costs. To provide more degrees of freedom for these 

offgrid networks, a multi-level algorithm based on several Demand Side Management strategies is proposed in 

this paper. The simulated case study concerns an island supplied by a multi-source system including solar, wind, 

tidal, wave energies and a battery storage solution. To limit the inconvenience for users, a hierarchical 

application of the proposed strategies is studied, according to a day-ahead forecast. Strategies based on 

anticipation are firstly applied for electric room heaters and water heaters in order to use the excess of generated 

power. For the most critical situations, strategies based on load shifting and load shedding are studied. In these 

cases, the best solution is found using a genetic algorithm. The application of the proposed Demand Side 

Management algorithm was found to help reduce the unmet load demand rate and adapt load demand according 

to the power generated. 
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1. Introduction 

 In recent years, a lot of research and industrial developments have been carried out in the field of renewable 

energy use in isolated maritime areas [1] to increase the penetration of renewable energy and replace diesel 

generators [2]. More and more studies support obtaining 100% of electric power generation from renewable 

sources. For example, the use of wind and solar energies was studied for Ometepe Island (Nicaragua) in [3] and 

the Island of Korcula (Croatia) [4]. Islands often present high potential for harnessing renewable energy but the 

electricity supply of islands faces more severe constraints than that in continental areas. To ensure that demand is 

fully met, gensets are mainly used as is the case on some French islands for example [5]. However, some 

drawbacks exist such as the pollution generated. Moreover, fuel import is also highlighted to be an important 

issue according to the logistical constraints and the resulting costs for the case of using gensets [6]. Otherwise, 

the use of storage solutions is increasingly considered on islands thanks to the recent development of several 

technologies [7]. Batteries are one of the most promising solutions in island areas as they represent a good 

compromise between capacity, cost and technical maturity [8]. Thus, they represent more than half of the 

installed storage capacity on islands worldwide [7]. While storage technologies have been significantly improved 

in recent years, they remain expensive [8]. Also the recent development of marine renewable energies, such as 

wind, tidal or wave energies, has opened up new perspectives for electricity supply on islands [9]. However, the 

use of renewable energies suffers from constraints linked to intermittency and variability although the 

diversification of sources helps non-production hours to be reduced [10]. Thus, the Energy Management System 

(EMS) of an island network needs a degree of freedom to avoid both large storage capacity requirements which 

increase costs and also black-out situations caused by low generated power and low battery charge levels.  

 Among the possible solutions, a mix of storage solutions, several examples of which are reviewed in [11], and 

Demand Side Management (DSM) are the solutions given the most consideration in the literature [12]. This 

paper discusses the application of DSM strategies. Demand Side Management consists of modifying the shape of 

the load profile according to the available power to achieve goals related to reliability and costs [13] and it can 

be broadly divided into Demand Response (DR) strategies and energy efficiency measures [14]. Several kinds of 

strategies are defined in the literature: peak clipping, valley filling, load shifting, strategic load conservation, 

strategic load growth and flexible load shape [13]. These strategies are based on different time and amplitude 

modulation principles with or without initial demanded energy conservation. According to several surveys 

explaining DSM concepts and schemes [15–17], DSM programs are applied thanks to the variable prices or 

incentives offered to the consumer. A lot of benefits deriving from the application of DSM programs have been 
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observed. There are economic impacts for customers (electricity bill reductions) and operators (electricity 

production costs) [14]. Moreover, many technical benefits have been observed such as improved reliability 

[14,18], increased degrees of freedom [14], reduced battery ageing [19], etc. There are a lot of papers dealing 

with DSM strategies for smart grids but only a few papers seem to deal with DSM for remote areas supplied by 

renewable sources. For example, D. Friedrich and G. Lavidas observed in [20] the positive effects of DSM 

application on a solar-wind-wave-genset system as it allows the reduction of sizing costs and pollution. Savings 

in sizing costs due to DSM application is also discussed in [21]. In [22], G. Zizzo et al. proposed a feasibility 

study of the implementation of DSM on Lampedusa island. According to [23], the application of DSM programs 

in islands could help reduce investments and favour the integration of renewable energies. The state of the art 

shows that few papers deal with DSM applied to an offgrid system only based on the use of renewable energies 

without connection to a mainland network and Diesel generators. Thus, given academics' and industrials' strong 

interest in the development of 100% renewable energy systems on islands, the necessity to enhance the 

flexibility of such systems by managing demand seems to be a key step. 

 To manage load demand efficiently in isolated maritime areas, a DSM algorithm is proposed in this paper for 

an offgrid multi-source system based on the use of solar, wind, tidal and wave energies, without mainland 

network connection and Diesel generators. This algorithm consists of applying DR strategies based on load 

shifting and/or load shedding according to the evaluation of the batteries state of charge in the coming hours on 

the basis of a day-ahead scheduling. A hierarchical approach is proposed in order to use the energy produced by 

the renewable sources as effectively as possible and to avoid load shedding which would be a source of some 

discomfort for consumers. For this purpose, the island load profile was split into three parts: water heaters, 

electric room heaters and other loads which cannot be shifted. The performances of the proposed algorithm were 

validated by simulation. In addition, a sensitivity analysis was carried out to assess the impact of the algorithm 

parameters. 

 The paper is organized as follows. Section 2 presents the considered multi-source system and the loads used 

for DSM application. Section 3 explains the designed DSM strategies and the multi-level algorithm. Simulation 

results and a sensitivity analysis are presented in Section 4. Conclusions and ideas for future work are given in 

Section 5. 
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2. Multi-source system modelling 

 A multi-source system using solar, wind, tidal and wave energies is considered in this study. As generated 

power can be weak in the event of low levels of available resources, a battery storage solution is also used to 

supply the load demand. An overview of the considered multi-source system is given in Fig. 1. A detailed 

description of the sources, the loads and the batteries is given in the following sections. 

 

Fig. 1. Overview of the considered multi-source system 

2.1. Sources models 

 The models used for the calculation of the power generated by each source are detailed in [19] and consist of 

the evaluation of generated power according to the harnessed resources. At each time sample ��, the total 

generated power ���� is defined by: 

�������� = �
����� + ������ + ������� + ��� ����, �������� ≤ ���� ������� (1) 

where ��� is the power generated by all the photovoltaic panels [W], �� the generated power by all the wind 

turbines [W], ��� the power generated by all the tidal turbines [W], ���  the power generated by all the wave 

energy converters [W] and ���� ��� the maximum power which could be generated by all the energy sources 

according to the natural resources available. The relationship between ���� and ���� ��� will be given by the 

energy management algorithm described in section 2.3. 

2.2. Load model 

 The load power considered in this article concerns the hourly load profile for Ouessant Island located on the 

west coast of France. This island's electricity demand mostly involves domestic usage. To apply DSM strategies 

to different kinds of loads, the island load profile based on the data available in [24] was separated into three 
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load profiles, namely water heaters, electric room heaters and non-shiftable loads according to the hypotheses 

detailed in [19]. At each time sample ��, the total requested power ����  is defined as: 

�������� =  �!���� + �!����� + �"#���� (2) 

where �!  is the power related to the total water heater demand [W], �!�  the power related to the total electric 

room heater demand [W] and �"# the power related to the total non-shiftable demand [W]. These powers are 

considered to be positive. The modified total load demand �����  resulting from DSM strategies application will

be defined as: 

����� ���� =  �!� ���� + �!�� ���� + �"#� ���� (3) 

where �!� , �!��  and �"#�  are the powers allocated to water heaters, electric room heaters and the non-shiftable

loads for the whole island after DSM strategies application [W]. The power ������  in Fig. 1 represents the load

power observed on the microgrid which allows the power balance to be met. This power can be different from 

�����  if the batteries and the sources are not able to supply the load demand (see the section 2.3).

2.3. Battery model 

 A storage system based on batteries is considered to supply the load in the event of a low level of generated 

power. The state of charge ��� of the batteries is calculated at each time sample by [25]: 

������� =
$%&
%'������� � ( �1 * +�∆�-. + �������� � ( ∆� ( /������� 0�1 if �������� 4 0 �Charge�

������� � ( �1 * +�∆�-. + �������� � ( ∆�/��� ( ���� 0�1 if �������� < 0 �Discharge� (4) 

where ���� 0�1 is the total capacity of the batteries [Wh], ����  the operating power of the batteries [W] which is 

considered as positive during charge (when ���� > ������ ) and negative during discharge (when ���� < ������ ),

∆� the time step [h], + the daily self-discharge rate and /��� the batteries efficiency. 

 According to Fig. 1 and the energy management rules presented in [26], the batteries must operate at a power 

����  allowing the power balance to be ensured at each time sample ��: 

�������� = ������ ���� + �������� (5)

However, the limits related to the state of charge and the batteries power must also be taken into account: 

��@ABC ��� ≤ �������� ≤ �BC ���  (6)

����@� ≤ ������� ≤ ������  (7)
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where �BC ��� is the maximum power in charge [W], ��@ABC ��� the maximum power in discharge [W], ������  

the maximum state of charge and ����@� the minimum state of charge. The operating power ����  of the 

batteries, the generated power ����  and the load power ������  are calculated according to the energy management 

algorithm proposed in Fig. 2, in which different cases are distinguished according to the power and the state of 

charge limits. So as to ensure the power balance, a power curtailment is considered for the load in the cases 1 

and 2 (������ < ����� ) and for the sources in the cases 4 and 5 (���� < ���� ���). 

 
Fig. 2: Flowchart of the energy management algorithm considered for the calculation of the powers ���� , ���� 
and ������  

2.4. House thermal model 

 To evaluate the possible loss of comfort caused by DSM strategies, a house thermal model using convectors 

was studied. Based on the first order model described in [27], the room air temperature D@� is evaluated at each 

time sample �� by: 

D@����� = ED@����� � + �1 * E�FG� ( �!�,C���� � + DHI����� �J (8) 

E = K� ∆LMN(ON  (9) 

where �� is the house equivalent thermal mass [Wh/°C], �!�,C the electric room heaters total power for one 

house [W], G� the house equivalent thermal resistance [°C/W], D@� the room air temperature [°C], DHI�  the 

outside air temperature [°C] and ∆� the time step [h]. The following values were considered in this paper: 

�� = 2200 Wh/°C and G� = 0.01°C/W. A set point temperature of 20°C is considered in normal conditions 

(without DSM application). 
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3. Proposed Demand-Side Management strategies

 Different kinds of DSM strategies are proposed in this article. To use any excess of generated power which 

may occur, DSM strategies based on load shifting by anticipation are studied first. For the most critical 

situations, DSM strategies based on load shifting and load shedding are studied. To modify the power of the 

electric room heaters, it is assumed that the room air temperature setpoint could be sent to the consumer 

remotely. Moreover, it is assumed that the water heaters could also be turned on and off remotely using a control 

system connected to the network. The DSM strategies proposed in this section are evaluated according to the 

timeline given in Fig. 3. A scheduling period of Q hours is considered corresponding to a day-ahead evaluation, 

such as: 

R ≤  S < R + Q, S, R, Q ∈ ℕ (10) 

where R is the starting sample of DSM strategy evaluation corresponding to time �� and S the sample during the 

scheduling period corresponding to time �V. The DSM algorithm is computed at time ��� , so that the results can 

be applied at time ��. The proposed strategies will be evaluated over a simulation period of W time samples and 

an hourly time step ∆� = 1 h. To take into account the need for DSM in the forthcoming hours without 

lengthening the simulation time, an update time step of X hours is considered and defined as: 

0 <  X ≤ Q, X ∈ ℕ (11) 

Fig. 3. Timeline of the simulation with rolling horizon for day-ahead scheduling 

3.1. Evaluation without Demand-Side Management 

 The normal EMS operating mode is to charge the batteries when the generated power ���� ��� is greater than 

the load power ����  and discharge the batteries in the opposite case according to the state of charge and power 
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constraints described in Section 2.3. The total load power is shed if at time �V the batteries state of charge is at its 

minimum level or if the power requested from the batteries is lower than ��@ABC ���. This load shedding is 

carried out without distinction between the three kinds of loads, according to: 

����� F�VJ = $&
'���� ���F�VJ if ���F�VJ = ����@�  and ���� ������� < �������� ���� ���F�VJ * ��@ABC ��� if ���� ������� * �������� < ��@ABC �������F�VJ otherwise  (12) 

 Thus, the corresponding unmet load power �ab  could be defined as: 

�abF�VJ = ����F�VJ * ����� F�VJ (13) 

 This load shedding would lead to a cut in the power supply to a part of the island. To avoid such a situation 

where the demand is not fully met, different DSM strategies are proposed in the following sections. These 

strategies allow some loads to be shifted (electric room heaters and water heaters) and enabled to distinguish 

which loads needed to be shed. 

3.2. Demand-Side Management strategies based on load anticipation 

 Firstly, to limit the load profile modification, DSM strategies based on time shifts are proposed according to 

the rule-based strategies described in [19]. The anticipation of the demand from water heaters and electric room 

heaters initially planned over the coming hours is considered if at time �V the batteries state of charge is at its 

maximum level and if the excess of power ���B , defined as: 

���BF�VJ = c���� ���F�VJ * ����F�VJ if ���� ���F�VJ 4 ����F�VJ and ���F�VJ = ������0 otherwise  (14) 

is strictly positive. This excess of power ���B  is used to supply these two shiftable loads initially planned for the 

forthcoming hours according to the proposed rule-based strategies described in the following sections. No 

postponement consumption is considered for these kinds of DSM strategies. 

3.2.1. Water heaters 

 The next operating occurrence initially planned at �VZd is shifted at �V whatever the power balance expected at 

�VZd. A duration of 10 hours is the basis for this calculation (1 ≤ e ≤ 10). The initial operating cycle of water 

heaters starts at 9 p.m. and the greatest consumption of hot water occurs in the morning which means that the 

water does not need to be heated before 11 a.m. The amount of shifted water heater consumption is defined 

according to the amount of excess power at �V, resulting in two cases: 
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• Case WH1: if ���BF�VJ P �fgF�S+eJ, all the water heater demand is shifted from �VZd to �V. Thus, the 

modified demand becomes: 

�!� F�VJ = �!F�VJ + �!F�VZdJ (15) 

�!� F�VZdJ = 0 (16) 

• Case WH2: if ���BF�VJ < �fgF�S+eJ, a partial load shifting is applied, constrained by the available 

excess power (not all the water heaters are concerned by this shift): 

�!� F�VJ = �!F�VJ + ���BF�VJ (17) 

�!� F�VZdJ = �!F�VZdJ * ���BF�VJ (18) 

3.2.2. Electric room heaters 

 The demand from electric room heater is shifted from �VZh to �V only if a lack of power ���1 is expected at 

�VZh, defined by: 

���1F�VZhJ = c����F�VZhJ * ���� ���F�VZhJ if ���� ���F�VZhJ < ����F�VZhJ0 otherwise  (19) 

 The time duration is limited to two hours (B = 1 or 2) to limit temperature fluctuations. The amount of shifted 

consumption depends on the excess of power ���B  at �V and the lack of power ���1  at �VZh, according to one of 

the four cases described in Fig. 4.  
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�!�� �V = min �!� �V + ���1 �VZh , �!� ����!�� �VZh = �!� �VZh * �!�� �V * �!� �V
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Fig. 1. Flowchart of the anticipation based DSM strategy for electric room heaters demand 
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 The modified power is constrained by an upper limit �!� ��� corresponding to the power of all the electric 

room heaters of the island operating at maximum power. If the lack of power at �VZh is greater than the electric 

room heaters demand, this consumption is shifted as much as possible and only constrained by the excess of 

power at �V : in case HT1, the demand is totally shifted whereas in case HT2, only a partial shift is carried out. 

When the lack of power at �VZh is found to be lower than the electric room heaters demand, the shifted demand is 

defined according to the lack of power at �VZh and the power available at �V (cases HT3 and HT4). 

3.3. Demand-Side Management strategies for critical situations 

 If a lack of available power is expected during the Q forthcoming hours (i.e. due to a low batteries state of 

charge and a low generated power), a new load scheduling must be proposed to consumers to avoid a power 

system black-out. Anticipation-based strategies are sometimes not sufficient to avoid this kind of situation which 

means a new DSM scheme including load shifting and load shedding is required. To limit consumer discomfort 

caused by the application of DSM strategies during critical situations, a weighted objective function is proposed 

allowing the DSM actions on each load to be distinguished and prioritized. For the scheduled period, load 

shifting based strategies for demand from water heaters and electric room heaters are preferred and load 

shedding is limited as much as possible, being penalized by the objective function's weighting coefficients.  

3.3.1. Decision variables 

 The DSM strategies considered for the three load profiles are defined according to the following equations and 

variable decisions: 

• Water heaters 

 A strategy based on load shifting and load shedding is proposed. A binary decision variable m allows the water 

heaters to be turned on or not at each time sample �V:  

�!� F�VJ = �!,[ ( mF�VJ, m��V� ∈ n0,1o (20) 

e =  p m���� m���Z � ⋯  m��V� ⋯  m���Z[� �r (21) 

where e is the vector of decision variables related to the modified water heaters demand for a scheduling period 

of Q hours. The island’s water heaters are all scheduled to be turned on and off at the same times. �!,[  is the 

power related to water heaters demand expected during the scheduled period [W], defined as: 
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�!,[  = 1Q! @�@� s �!F�VJ�Z[� 
Vt�  (22) 

where Q! @�@� is the number of operating hours of the water heaters included in the scheduled period. 

• Electric room heaters 

 A load power modulation is included in the electric room heaters DSM strategy. At each time sample �V, the 

modified power is related to the maximum power demand of the electric room heaters �!� ��� according to a 

real valued decision variable u: 

�!�� F�VJ = �!� ��� ( uF�VJ, 0 ≤ uF�VJ ≤ 1, u��V� ∈ v (23) 

j =  p u���� u���Z � ⋯  u��V� ⋯  u���Z[� �r (24) 

where j is the vector of decision variables related to the electric room heaters demand for the scheduled period. 

If uF�VJ is set to zero, all the electric room heaters are turned off and if uF�VJ = 1, all the electric room heaters 

are considered to work at their maximum power level. This load power modulation involves changing the 

temperature setpoint for each home. 

• Other loads (Non-shiftable loads) 

 The DSM strategy proposed for the rest of load profile only involves load shedding as some loads such as 

lighting cannot be shifted. Thus, a real valued decision variable w is included for each time sample, leading to the 

vector of decision variables �: 

�"#� F�VJ = �"#F�VJ ( wF�VJ, 0 ≤ wF�VJ ≤ 1, w��V� ∈ v (25) 

� =  pw���� w���Z � ⋯ w��V� ⋯ w���Z[� �r (26) 

3.3.2. Constraints 

 A set of inequality constraints is defined. These constraints have to be negative or zero for the solution to be 

admissible. To avoid water heaters’ over-consumption, x , defined as 

x �e� = y s mF�VJ�Z[� 
Vt� z * Q! @�@�  (27) 

is constrained to be negative or zero. In the same way, x-, defined as 
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x-�j� = s {uF�VJ ( �!� ��� * �!�F�VJ|�Z[� 
Vt�  (28) 

is constrained to be negative or zero to avoid electric room heaters’ over-consumption. Finally, a third inequality 

constraint related to the power balance is defined. The sources and the batteries have to be able to satisfy the 

modified load power at each time. Thus, x}, defined as 

x}�e, j, �� = max �� V��Z[ {����� F�VJ * ����F�VJ + ����F�VJ| (29) 

is constrained to be negative or zero. 

3.3.3. Objective function 

 The objective function � of the scheduling optimization problem is defined to minimize the initial demand 

modification. Each load modification is normalized and penalized according to a weighting factor �@  (�@ P 0,
�@ ∈ v) which meant a hierarchy of DSM actions could be defined. The objective function � is defined as: 

��e, j, �� =  ∑ �@ ( �@�@t ∑ �@�@t  (30) 

where �  represents the term related to the load shedding of water heaters: 

� �e�  =  1 * � �!� ��V��Z[� Vt�� �!��V��Z[� Vt�
 (31) 

The variable �- represents the term related to the load shifting of electric room heaters: 

�-�j�  =  1Q s ��!�� F�VJ * �!�F�VJ�max {�!� ��� * �!�F�VJ, �!�F�VJ|
�Z[� 
Vt�  (32) 

The variable �} represents the term related to the load shedding of electric room heaters: 

�}�j�  =  1 * � �!�� ��V��Z[� Vt�� �!���V��Z[� Vt�
 (33) 

The variable �. represents the term related to the shedding of the other loads: 

�.���  =  1 * � �"#� ��V��Z[� Vt�� �"#��V��Z[� Vt�
 (34) 

The last term �� is related to the energy provided by the batteries:  
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���e, j, ��  =  s {����F�VJ * ����F�V� J|-�Z[� 
Vt�

s {���F�VJ * ���F�V� J|-�Z[� 
Vt�

 (35) 

where ��� is the batteries state of charge obtained with DSM (Mode 4) and ���� the batteries state of charge 

obtained without DSM (Mode 1). This term is introduced to allow the discharge of batteries to be slowed down 

and the largest state of charge diminutions to be penalized more than the smallest variations. Through this term, 

load shifting is favoured. 

 The least desirable load modification has to be penalized by a weighting factor �@  with a high value whereas 

the best accepted strategy has to be penalized by a small weighting factor �@  so as to be applied as much as 

necessary. Thus, the scheduling optimization problem consists of finding the best decision variables to minimize 

the objective function: 

�eH�� , jH�� , �H��� = arg min ��e, j, �� (36) 

 Subject to the W@B = 3 inequality constraints and the variable decisions bounds: 

xB�e, j, �� ≤ 0, � = 1, … , W@B (37) 

m��V� ∈ n0,1o (38) 

0 ≤ uF�VJ ≤ 1, u��V� ∈ v (39) 

0 ≤ wF�VJ ≤ 1, w��V� ∈ v (40) 

 According to this formulation, the considered scheduling optimization problem corresponds to a MINLP 

problem (Mixed-Integer Non Linear Programming). 

 

3.3.4. Problem solving by a genetic algorithm 

 The optimization problem involves a large number of decision variables (3 ( Q real and binary variables) and 

the solving time has to be limited, so a meta-heuristic method based on a genetic algorithm has been chosen as 

done in several papers dealing with heuristic optimization for DSM [28–31]. An individual (i.e. a chromosome) 

corresponds to a set of the e, j and �, leading to a chromosome made of 3 ( Q genes. The genetic algorithm 

used is based on the genetic algorithm proposed in [32] and consists of the following steps, considering the 

parameters given in Table 1: 
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1. Initialization: an initial population of Nind individuals is randomly created; 

2. Evaluation: the performance of each chromosome is evaluated according to the objective function; 

3. Genetic operations application: selection, crossover and mutation operators are applied in order to keep 

the best solutions and to bring diversity. The application of the genetics operators leads to a new 

generation of Nind individuals. 

4. Steps 2 and 3 are repeated until the stopping criteria is satisfied (if the maximal number of generations 

Ngen is reached or if no change of the objective function is observed since Ngen stop generations). 

Table 1: Genetic algorithm parameters 

Parameter Value 

Population size Nind 100 individuals 
Number of generations Ngen 8000 
Crossover rate Cr 0.3 
Mutation rate Xr 0.2 
Selection Roulette 
Stopping criteria Ngen stop 4000 

 

3.4. Multi-level algorithm 

 To limit the discomfort caused by using DSM, the previously described strategies were applied in a 

hierarchical manner using a multi-level DSM algorithm for which a flowchart is given in Fig. 5. The proposed 

algorithm is based on the ��� profile expected for the Q forthcoming hours, for which different zones of DSM 

application are defined according to ��� threshold values, as shown in Fig. 6: 

• Mode 1: the multi-source system operation is assessed without DSM ; 

• Mode 2 and 3: if the state of charge without DSM is expected to be lower than a chosen threshold value 

���� during the scheduling period, anticipation strategies (Section 3.2) are used. Anticipation of 

electric room heaters (Mode 3) is only carried out if the water heaters’ load shifting (Mode 2) did not 

allow the occurrence of ��� values lower than ���� to be avoided.  

• Mode 4: if an occurrence of fully discharged batteries is expected in the Q forthcoming hours even by 

applying the DSM strategies based on load anticipation, the load scheduling procedure (Section 3.3) is 

applied.  

 To take into account the rebound effect caused by the electric room heaters turning off [33], the electric room 

heater energy lost during the scheduling period is recovered once the ��� reaches its maximum value, 
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considering that the electric room heaters operate at their maximum power. A summary of the developed DSM 

strategies is given in Table 2.  

 
Fig. 5. Flowchart of the multi-level DSM algorithm 

 

 

Fig. 6 : DSM modes according to the threshold SoC values 
 

 The multi-level DSM algorithm is performed at time sample ��� . The necessary data for the computation of 

each DSM mode is presented in Fig. 7. To assess the performances of the proposed DSM strategies for the Q 

forthcoming hours at time ��� , the forecasted data related to the generated and demanded powers expected for 

this period and the batteries state of charge at ���  are required. In this article, a perfect forecasting ability was 

achieved by evaluating the generated and demanded powers according to the resources and load data time series. 

The application of the multi-level DSM algorithm leads to a demand planning which can be different from the 
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initial load profile. Moreover, the occurrence of fully discharged batteries will be avoided by computing the 

proposed DSM algorithm. 

Table 2: Summary of the proposed DSM modes 

DSM 

mode n° 

(priority 

order) 

DSM 

strategy 

Main goal Method/Tool Load and DSM 

strategy 

considered 

Trigger condition Described in 

Section/Figure 

1 Without DSM Evaluate the expected 
state of charge 
evolution over the 
scheduling period 

Rule-based None None Section 3.1 

2 Water heaters 
anticipation 

Use the excess of 
generated power 
when it occurs 
whatever the power 
balance in the future 

Rule-based Water heaters load 
shifting by 
anticipation 

At least one 
occurrence for which 
SoC is lower than 
SoCa is expected 
during the K coming 
hours 

Section 3.2.1 

3 Electric room 
heaters 
anticipation 

Use the excess of 
generated power 
when it occurs if a 
lack of power is 
expected in the future 

Rule-based Electric room 
heaters load 
shifting by 
anticipation 

At least one 
occurrence for which 
SoC is lower than 
SoCa is expected 
during the K coming 
hours 

Section 3.2.2 
Fig. 4 

4 Scheduling 
for critical 
situations 

Schedule the three 
load profiles while 
limiting the 
modification of initial 
demand 

Genetic 
algorithm 

Water heaters and 
electric room 
heaters loads: load 
shifting and load 
shedding 
Other loads: load 
shedding 

At least one 
occurrence of SoCmin 
is expected during 
the K coming hours 

Section 3.3 

 

 After the application of one of the DSM modes over the scheduling period, the unmet load demand rate �� 

over a given period is assessed [21]: 

�� = 1 * � ����� ��V��Z[� Vt�� ������V��Z[� Vt�
 (41) 

 Loss of comfort is evaluated according to the heating degree-hours indicator �g [34], expressed in °C.h, 

representing the variations of room air temperature under (�g�) and above (�gg) the normal temperature 

(20°C): 

�g� = s maxF20 * D@�F�VJ, 0J ( ∆��Z[� 
Vt�  (42) 

�gg = s maxFD@�F�VJ * 20, 0J ( ∆��Z[� 
Vt�  (43) 
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4.  Results and discussion 

 The proposed multi-level DSM algorithm was applied to the multi-source system over a simulation period of 

W hours according to the simulation flowchart given in Fig. 8 and involving a rolling horizon with the update 

period X and an hourly time step ∆� = 1 h. The simulation is performed using Matlab 2017b software on an 

Intel® Core™ i7-6500U CPU @ 2.5 GHz processor. 

�xK� ��� �� , … ,�xK� ��� ��Z[� 
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Fig. 2. Overview of necessary data in the four DSM modes 
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Fig. 8. Flowchart of the simulation 

 The simulation was carried out using the following parameters: Q = 36, X = 6, W = 72 and ���� = 0.6. The 

following weighting factors of the objective function are used: �  = 200, �- = 1, �} = �. = 1000 and �� = 500. 

These values enable the load shedding of electric room heaters and other loads to be equally penalized (�} and 

�.) limiting room air temperature fluctuations around to the setpoint value (20°C). The values chosen for �  and 

�- enable to shift the water heaters and electric room heaters loads as much as possible.  

 The devices and technical data related to the sources are given in [19] in addition to data related to resources 

and the load for the case study of Ouessant Island.  For the batteries, the lithium-ion technology is chosen 

because it represents an effective compromise between capacity, power and costs in comparison with other 

technologies (lead-acid, redox, etc.). The batteries used in this work correspond to ten units of the battery 

Max+20M from Saft manufacturer. The main characteristics of the batteries storage system are: 

���� 0�1  = 10.9 MWh, �BC ��� = 22 MW, ��@ABC ��� = -25 MW, + = 0.166%/day and /��� = 0.96. The state of 

charge was limited by ����@� = 0.1 and ������  = 0.95 to avoid a premature ageing which can occur for ��� 

values close to 0 and 1 as has been discussed in several articles [35,36]. The power �!� ��� related to all the 

electric room heaters of the island when operated at maximum power was �!� ��� = 1 MW, occurring when the 

air temperature DHI�  was 2°C. 

 In Section 4.1, the multi-level algorithm was applied over a three-day period in order to show the impact of 

each DSM strategy. For the fourth DSM mode, the use of the genetic algorithm has been validated in Section 4.2 
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according to a convergence analysis and a sensitivity analysis of the weighting factors. Finally, the impacts of 

the temporal parameters and the ��� threshold values of the proposed algorithm are studied in the Section 4.3.  

4.1. Application of the multi-level Demand-Side Management algorithm over a few days period 

 The performances of the multi-level DSM algorithm application over a period of three days (W = 72) were 

evaluated first. A summary of the numerical results obtained at each step of the multi-level DSM algorithm is 

given in Table 3.  

 The results obtained without DSM are presented in Fig. 9. By applying only the Mode 1 of Fig. 5, the unmet 

load reaches 5.68%, corresponding to nine hours of fully discharged batteries. The heat discomfort degradation 

�g� reaches 49.26 °C.h. 

 When the DSM strategies based on anticipation were applied (Modes 2 and 3), the unmet load becomes 3.6%, 

corresponding to seven hours for which batteries were fully discharged as shown in the results given in Fig. 10. 

The heat discomfort level �g� was reduced to 34.59 °C.h. Thanks to the application of both these DSM modes 

(2 and 3), the first occurrence of the batteries becoming fully discharged is postponed, but this situation cannot 

be avoided. 

 Thus, the fourth step of Fig. 5 was applied. No energy was lost thanks to the use of the genetic optimization 

algorithm over this period. As the results presented in Fig. 11 show, the water heaters demand has been shifted 

before and after the critical period when the generated power is greater than the demand. Moreover, as Fig. 11 

and Fig. 12 show, pre-heating was proposed before the 1st of March. The modified heating profile leads to a heat 

discomfort of 31.03 °C.h for temperatures lower than normal temperature (�g�� and 12.3 °C.h for temperatures 

higher than normal temperature (�gg�, due to pre-heating. 

 According to these results, the application of the proposed DSM algorithm effectively reduced the unmet load 

energy �� and improved thermal comfort compared to a case where no DSM was applied. The fourth step of the 

algorithm increases the computational time due to the computation of the genetic algorithm but the obtained time 

(150 s) remains short in comparison with the hour given to the algorithm to propose a new planning. 
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Fig. 9. Power and SoC profiles for simulation without DSM (Mode 1) 

Fig. 10. Power and SoC profiles for simulation with DSM based on anticipation (Modes 2 and 3) 

Fig. 11. Power and SoC profiles for simulation with DSM based on anticipation and scheduling according to 
load shedding and load shifting (Mode 4) 

Fig. 12. Room air temperature evolution (Mode 4) 
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Table 3: Summary of the results obtained after application of each step of the multi-level DSM algorithm 

Level of DSM algorithm 
�� 

[%] 

Number of hours of fully 

discharged batteries 

��� 

[°C.h] 

��� 

[°C.h] 

Computational 

time [s] 
 

1: without DSM (Fig. 9) 5.68 9 49.26 0 0.26  

2: after application of water heaters 
anticipation DSM strategy 

3.73 7 36.01 0 0.35  

3: after application of electric room 
heaters anticipation DSM strategy 

(Fig. 10) 
3.6 7 34.59 0.08 0.4  

4: after genetic algorithm computation 
(Fig. 11) 

0 0 31.03 12.3 150  

 

4.2. Validation of Demand-Side Management strategy for critical situations (Mode 4) 

 The proposed DSM strategy for critical situations (Mode 4 of DSM algorithm) is based on the use of a meta-

heuristic method (genetic algorithm) which means that the convergence of the method needs to be validated and 

the impact of the weighting factors assessed. In this section, the genetic algorithm was run over a period of 

Q = 36 hours presented in Fig. 13, corresponding to a part of the profile used in Fig. 9. 

 

 

4.2.1. Convergence and reproducibility validation 

 To ensure that the objective function could reach a value close to the minimum in short time, the number of 

generations Ngen is set at 8000. The results obtained are presented in Fig. 14 and Table 4. Although the unmet 

load energy �� is reduced (�� = 2.46%) compared to a case without DSM, it does not reach zero. Indeed, the 

power generated was found to be larger than the demand for only two hours (the first two hours of the Fig. 13 

period) which were used for the load shifting of water heaters and electric room heaters. Thus, load shedding 

could not be avoided during this period. The solution proposed by genetic algorithm for this period leads to a 

loss of energy of 5.34% for other loads, 0% for electric room heaters and 0% for water heaters.  
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Table 4: Summary of the results obtained after application of the genetic algorithm 

Level of DSM algorithm �� [%] 
Number of hours of fully 

discharged batteries 

��� 

[°C.h] 
��� 

[°C.h] 

1: without DSM (Fig. 13) 6.74 5 8.95 0 

4: after genetic algorithm computation (Fig. 14) 2.46 0 8.05 9.28 

 

 The evolution of the objective function during the genetic algorithm execution for this period is given in Fig. 

15, according to the iteration number. The results show that the chosen number of generations is sufficient to 

ensure convergence as the objective function value reached a value close to the minimum in short time. For a 

number of generations Ngen set to 8000 and a scheduling period of Q = 36, the computation time was found to be 

around 150 seconds. 

 

 

  To check and approve the meta-heuristic method used for critical situations, reproducibility and convergence 

were validated by running the genetic algorithm multiple times for the same scheduling period (Fig. 13). The 

unmet load �� and rates of the lost energy for each load, corresponding to the terms � , �} and �. of the 

objective function, are given in Table 5 for ten executions of the genetic algorithm. The results obtained show a 

convergence with the same distribution of energy losses. The average unmet load �� reached 2.471% due to the 

shedding of non-shiftable loads, while the electric room heaters’ demand and the water heaters’ demand were 

retained. The calculation of standard deviation shows a low dispersion of the results. 

Fig. 4. Results obtained after execution of the genetic algorithm 

Fig. 5. Evolution of the objective function according to the generation number 
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Table 5: Reproducibility of the genetic algorithm 

Run 
Unmet Load �� 

[%] 

100�� [%] 

(water heaters lost 

energy) 

100�� [%] 

(electric room 

heaters lost energy) 

100�� [%] 

(other loads lost 

energy) 

1 2.467 0 0 5.342 
2 2.500 0 0 5.414 
3 2.467 0 0 5.342 
4 2.471 0 0 5.351 
5 2.468 0 0 5.345 
6 2.464 0 0 5.336 
7 2.471 0 0 5.351 
8 2.467 0 0 5.342 
9 2.467 0 0 5.342 

10 2.466 0 0 5.340 
Average value 2.471 0 0 5.35 

Standard deviation (relative 
to the average value) 

0.01 (0.4%) 0 (0%) 0 (0%) 0.02 (0.4%) 

 

4.2.2. Impact of weighting factors 

 To assess the impact of the weighting factors considered in the objective function, a sensitivity analysis was 

carried out by running the genetic algorithm over the period of 36 hours used in Fig. 13 and changing only one 

weighting factor value each time. The results are summarized in Table 6 in which the first line represents the 

basic configuration discussed in sections 4.1 and 4.2.1.  

Table 6: Loss of energy and comfort degradation according to weighting factor values 

w1 w2 w3 w4 w5 

�� [%] 

(Without 

DSM: 

6.74%) 

100�� [%] 

(water 

heaters lost 

energy) 

100�� [%] 

(electric room 

heaters lost 

energy) 

100�� [%] 

(other loads 

lost energy) 

��� [°C.h] 

(Without 

DSM: 

8.95°C.h) 

��� [°C.h] 

(Without 

DSM: 

0°C.h) 

200 1 1000 1000 500 2.46 0 0 5.34 8.05 9.28 

100 1 1000 1000 500 2.47 6 0 4.37 8.88 8.94 

500 1 1000 1000 500 2.46 0 0.15 5.18 13.78 17.00 

200 500 1000 1000 500 2.59 0 0 5.62 6.08 6.99 

200 1 500 1000 500 2.47 0 5.31 0.02 22.08 10.25 

200 1 2000 1000 500 3.22 0 0 6.98 6.80 8.38 

200 1 1000 500 500 3.42 0 0 7.40 10.81 15.79 

200 1 1000 2000 500 2.47 0 5.31 0.02 21.44 11.88 

200 1 1000 1000 50 2.47 0 0.08 5.26 10.16 8.89 

200 1 1000 1000 1000 2.46 0 0.01 5.33 11.65 8.97 

 By reducing � , the loss of water heater energy was found to increase, as this loss was penalized less. When 

the weighting factor �- was increased, the variations of electric room heater power around the initial value were 

limited leading to a greater loss of energy and lower thermal discomfort. The increase of �} was found to 

improve thermal comfort but if its value is larger than �., more shedding occurs for the other loads. To give 

more priority to the other loads, the weighting factor �. must be greater than �}. However, this distribution of 

weighting factors was found to lessen thermal comfort. Finally, changes applied to �� showed that decreasing it 

enabled the reduction of other loads shedding but thermal comfort was lessened. A small �� corresponds to a 
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lower penalization of the batteries discharge which means that the load shedding during occurrences of batteries 

discharge can be avoided. 

4.3. Sensitivity analysis 

 A sensitivity analysis of the parameters used in the proposed algorithm was carried out over the same period 

than the period considered in Fig. 9 (W = 72) by applying the multi-level DSM algorithm given in Fig. 5. 

 Firstly, the impacts of the scheduling period Q and the update time X were assessed. The results presented in 

Fig. 16 show that a long scheduling period allows the total unmet load rate �� to be reduced because the DSM 

strategies based on load shifting (water heaters and electric room heaters) can be applied early enough to avoid 

load shedding. However, a long scheduling period requires a long-term weather forecast which decreases the 

predicted reliability of the results. Also, a long scheduling period increases the computation time, especially for 

the genetic algorithm, as the number of decision variables increases. However, as Fig. 17 shows, the computation 

time of the multi-level DSM algorithm is always smaller than the shortest update time step (X = 1 h) whatever 

the duration Q of the scheduling period considered. For example, the computation time was found to be about 

150 seconds for Q = 36 and did not exceed three minutes for the longest value (Q = 48). Thus, the proposed 

algorithm is computationally efficient for use in a real time system. Moreover, a short update period (X = 6) 

allows the occurrence of a low state of charge to be detected earlier compared to the case where X = 12 (Fig. 16), 

which decreases the total unmet load rate ��. An update time step of 6 hours corresponds to the duration 

between two updates of the weather forecasts. Thus, the case with Q = 36 and X = 6 seems to be a good 

compromise between load scheduling optimization, algorithm performance and data prediction effectiveness . 

Fig. 6. Influence of the scheduling period duration and the update period on the unmet load rate 
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Fig. 17 : Influence of the scheduling period duration on the computation time of the multi-level DSM algorithm 

 Finally, the effect of the state of charge threshold value ���� included in the DSM algorithm (Fig. 5 and Fig. 

6) was studied. This parameter corresponds to the value which activates the application of strategies based on 

load anticipation. Thus, a sensitivity analysis was carried out according to different ���� and Q values by 

applying steps 2 and 3 of the DSM algorithm over the period presented in Fig. 5, as done in the third case of the 

Table 3. The results presented in Fig. 18 show that the increase of ���� allowed the unmet demand rate �� to be 

reduced because the DSM strategies were applied earlier. In the case of a low ���� value (0.2 for example), less 

occurrences of the power generated being greater than the load power were found over the scheduling period 

which limits the possibilities to shift consumption. Moreover, a broad time window (Q = 36 for example) was 

found to improve the unmet demand reduction. 

 

 
 

5. Conclusion 

 This paper presents a set of DSM strategies which can be used to enhance flexibility in the energy 

management of an offgrid system based on the use of different renewable sources. The considered DSM 
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Fig. 7. Impact of threshold SoC value triggering the application of strategies based on anticipation, considering 
only the DSM modes 1, 2 and 3 
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strategies are based on load shifting and load shedding and were applied to water heaters, electric room heaters 

and other loads according to the proposed algorithm. The starting assumption was that the first two kinds of 

loads could be controlled remotely. The hierarchical algorithm was found to favour load shifting by anticipating 

shiftable loads when an excess of generated power occurs and before critical situations. To prevent and avoid 

situations in which the batteries become discharged, a new load schedule has been proposed using a genetic 

algorithm, allowing load shedding and load shifting actions to be weighted according to user preferences. The 

main results obtained from this study show the benefits of anticipating shiftable loads when enough energy is 

generated by the sources according to the reduction of the unmet load rate. As such strategies cannot always 

avoid critical situations, some load shedding is sometimes required. Thus, a compromise is needed to share the 

loss of energy between the three load profiles to prevent thermal comfort being lessened as much as possible. 

The sensitivity analysis carried out shows a sufficiently long scheduling period and a short update period are 

required to reduce energy loss as much as possible. A zero unmet load rate was achieved thanks to the proposed 

algorithm and the load shifting strategies. This is an improvement on the results obtained in a previous study 

done for the same multi-source system with only DSM strategies based on load anticipation [19]. A zero unmet 

load rate cannot always be achieved in studies dealing with DSM according to the results presented in [21,37]. 

 Future work will attempt to assess the impact of the proposed DSM algorithm on the multi-source system 

sizing in terms of unmet load rate and costs. Moreover, an analysis of the most suitable sources among the four 

considered herein will be carried out according to the strategies proposed. The proposed DSM algorithm could 

be modified by considering more types of loads if their power can be forecasted for the Q forthcoming hours. 

Additional ��� levels could also be added to the multi-level algorithm so as to trigger the strategies considered 

for these loads. Finally, the algorithm needs to be computed on a real-time test bench to ensure that it is 

computationally efficient and can interact with external data. 
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Figures/Tables captions 

Figure/Table  Caption Size Color 

Fig. 1 Overview of the considered multi-source system Single column No 

Fig. 2 
Fig. 2: Flowchart of the energy management algorithm considered for the 

calculation of the powers ����, ���� and ������ Double column No 

Fig. 3 Timeline of the simulation with rolling horizon for day-ahead scheduling Single column No 

Fig. 4 
Flowchart of the anticipation based DSM strategy for electric room heaters 

demand 
Double column No 

Fig. 5 Flowchart of the multi-level DSM algorithm Single column No 

Fig. 6 DSM modes according to the threshold SoC values Double column Yes 

Fig. 7 Overview of necessary data in the four DSM modes Double column No 

Fig. 8 Flowchart of the simulation Single column No 

Fig. 9 Power and SoC profiles for simulation without DSM (Mode 1) Double column Yes 

Fig. 10 
Power and SoC profiles for simulation with DSM based on anticipation 

(Modes 2 and 3) 
Double column Yes 

Fig. 11 
Power and SoC profiles for simulation with DSM based on anticipation 

and scheduling according to load shedding and load shifting (Mode 4) 
Double column Yes 

Fig. 12 Room air temperature evolution (Mode 4) Double column Yes 

Fig. 13 
Period considered for the validation of the genetic algorithm convergence, 

without DSM 
Double column Yes 

Fig. 14 Results obtained after execution of the genetic algorithm Double column Yes 

Fig. 15 Evolution of the objective function according to the generation number Single column No 

Fig. 16 
Influence of the scheduling period duration and the update period on the 

unmet load rate 
Single column Yes 

Fig. 17 
Influence of the scheduling period duration on the computation time of the 

multi-level DSM algorithm 
Single column No 

Fig. 18 
Impact of threshold SoC value triggering the application of strategies 

based on anticipation, considering only the DSM modes 1, 2 and 3 
Single column Yes 

Table 1 Genetic algorithm parameters Single column No 

Table 2 Summary of the proposed DSM modes Double column No 

Table 3 
Summary of the results obtained after application of each step of the 

multi-level DSM algorithm 
Double column No 

Table 4 Summary of the results obtained after application of the genetic algorithm Double column No 

Table 5 Reproducibility of the genetic algorithm Double column No 

Table 6 
Loss of energy and comfort degradation according to weighting factor 

values 
Double column No 




