
HAL Id: hal-02418665
https://hal.science/hal-02418665

Submitted on 19 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate LoRa Performance evaluation using Marcum
function

Jules Courjault, Baptiste Vrigneau, Matthieu Gautier, Olivier Berder

To cite this version:
Jules Courjault, Baptiste Vrigneau, Matthieu Gautier, Olivier Berder. Accurate LoRa Performance
evaluation using Marcum function. IEEE International conference on Global Communications (Globe-
com), Dec 2019, Hawaï, United States. �hal-02418665�

https://hal.science/hal-02418665
https://hal.archives-ouvertes.fr


Accurate LoRa Performance evaluation
using Marcum function

Jules Courjault
Univ Rennes, CNRS, IRISA

Lannion, France

Baptiste Vrigneau
Univ Rennes, CNRS, IRISA

Lannion, France

Matthieu Gautier
Univ Rennes, CNRS, IRISA

Lannion, France

Olivier Berder
Univ Rennes, CNRS, IRISA

Lannion, France

Abstract—In the last years, Internet of Things (IoT) grew up in
an exponential behavior and required long range and low power
wireless transmissions. Several standards were proposed and
LoRa has emerged as a high potential candidate for many IoT
solutions. LoRa modulation is based on a chirp spread-spectrum
technique and offers efficient transmission up to 50 kbps over
several kilometers. Although the principle is known and studied
for decades now, the performance in terms of symbol or bit error
probability has been theoretically analyzed in few papers only.
Closed-form approximations for additive white Gaussian noise
and Rayleigh fading were recently proposed. In this paper, we
propose a new approach based on Marcum function. Simulations
and comparisons with the state of the art show that the proposed
approximation of the Binary Error Probability is up to ten times
more accurate for a full SNR range.

Index Terms—LP-WAN, LoRa transmission, Binary Error
Probability performance analysis, Marcum function

I. INTRODUCTION

During the last decade, the number of small connected
nodes grew up exponentially for various applications such
as environmental monitoring or connected farms [1]. Many
emerging solutions recently arised to cover the needs for
long range and very low energy consumption wireless trans-
missions. A panel of standards for Low Power Wide Area
Network (LP-WAN) was presented in the paper [2]. Among
the candidates, LoRa is a long range communication tech-
nology promoted by the LoRa Alliance. The LoRa physical
layer, which allows long-range, low-power and low data rate
communications, is developed by Semtech [3] [4]. LoRa com-
munications can use frequency bands of 433 MHz, 868 MHz
or 915 MHz and its data rate can reach up to 50 kbps. It
uses the Chirp Spread Spectrum (CSS) modulation with a
linear variation of frequency on time [5] [6], which allows
the reduction of both interference and Doppler effects [7].
LoRa modulation can be configured with three parameters:
the bandwidth BW , the spreading factor SF , and the coding
ratio CR. Although LoRa is described in the patent, rigorous
theoretical studies of this technology are still missing. The
author in [8] proposed to rigorously study the modulation and
demodulation in a mathematical approach but, as highlighted
in [9], the paper still lacks a theoretical analysis of the Bit Er-
ror Probability (BEP). As explained later in the present paper,
the problem is less to find the theoretical expression, it was
already done in [10], than an approximation easily computable.
All proposed expressions in the literature are based on the

complementary error function, while we propose an accurate
approximation of the BEP for an Additive White Gaussian
Noise (AWGN) channel based on the Marcum function [11]
which was already employed in communications theory [12].

The rest of the paper is organized as follows: Section II
presents the required basics and the state of the art of LoRa
BER approximations. Section III introduces the novelty based
on a Taylor expansion and the main results with Marcum
function. Section IV compares proposed results to the state
of the art before the conclusion in Section V.

II. STATE OF THE ART

A. LoRa BEP theoretical expression and issues
For conciseness, only the needed equations are introduced

and the reader can refer to [8] and [9] for detailed explanations.
We remind that the receiver first applies a down chirp, sec-
ondly performs the discrete Fourier transform of the receive
signal, and third estimates the symbols with the maximum
value criterion. As the symbols have the same probability and
the problem is equivalent to a permutation, the study can focus
on the probability of correct decision of the symbol m, denoted
Pm. According to [9], [10], this probability can be expressed
as follows:

Pm = Fχ2

(
|
√
N +Wp[N −m]|2

σ2

)N−1
, (1)

where N = 2SF , SF is the spreading factor and is an integer
between 7 to 12, and Wp[N − m] is a Gaussian complex
noise of variance σ2. By using the cumulative density function
(cdf) of a χ2 random with 2 degrees of freedom Fχ2(x) =
1− exp(− x

σ2 ), eq.(1) can be written:

Pm =

(
1− exp

(
|
√
N +Wp[N −m]|2

σ2

))N−1
. (2)

By defining the Signal-to-Noise Ratio SNR = 1/σ2 and the
random variable

Z =
|
√
N +Wp[N −m]|2

σ2
, (3)

Z follows a non central χ2 law with 2 degrees of freedom
and the noncentrality parameter λ = 2N ·SNR. Its probability
density function (pdf) is expressed as:

fZ(x) =
1

2
exp

(
−x+ λ

2

)
I0

(√
λx
)
, (4)



with I0(.) the modified Bessel function of the second kind of
order 0. Finally, the last step is the computation of the average
Symbol Error Probability (SEP):

SEP =

∫ +∞

0

(
1−

(
1− e−z/2

)N−1)
fZ(z)dz, (5)

=
1

N

N−1∑
k=1

Ck+1
N (−1)k+1e−N ·SNR k

(k+1) , (6)

with Ck+1
N = N !/(k+1)!(N−k−1)! the binomial coefficient.

However, the numerical computation of this result suffers
from accuracy issue and the results can not be obtained when
SF is greater than 6. This problem was already pointed out
in [9], [10], and justifies the crucial need for finding accurate
approximations. Generally, the performance is expressed with
the BEP and due to equiprobability of the wrong symbol, the
following relation can be used:

BEP =
2SF−1

2SF − 1
SEP. (7)

B. Existing approximations of the BEP

Reynders et al. proposed in [13] the approximation:

BEP ≈ Q
(

log12(SF )√
2

SNR
)
, (8)

with Q(x) the Q-function or the tail distribution of the standard
normal distribution. Another study [6] gives the following
expression that relies on numerical fitting:

BEP ≈ 0.5 ·Q
(

1.28
√
SF.SNR− 1.28

√
SF + 0.4

)
. (9)

Recently, the authors in [9] proposed two new accurate estima-
tions of the BEP for LoRa communications in AWGN channel
and a Rayleigh channel. The principle is to approximate a
Ricean distribution by a Gaussian one and the expression for
AWGN channel is:

BEP ≈ 0.5 ·Q


√
N · SNR−

(
H2
N−1 − π2

12

)1/4
√
HN−1 −

√
H2
N−1 −

π2

12 + 0.5

 , (10)

where Hm is the mth harmonic number which can be ap-
proximated by Hm ≈ log(m) + 1

2m + 0.57722. The second
approximation is obtained from the former with some simpli-
fications and approximations:

BEP ≈ 0.5 ·Q
(√

2N · SNR−
√

1.386 · SF + 1.154
)
. (11)

III. CLOSED-FORM USING MARCUM FUNCTION

A. Approximation of Pm
As introduced above, the previous works focused on approx-

imating Chi squared or Ricean distributions with a Gaussian
one. The novelty of this work is to find an approximation of
g(z) = 1 −

(
1− e−z/2

)N−1
while keeping the non-central

Chi squared distribution. When g(z) is extended in a sum, the
term e−kz/2 is less significant when k and z increase. Thus,
the sum can be limited to ε terms. It is equivalent to find the
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Fig. 1: Comparison of the exact function g(z) and approxi-
mations with different orders ε from 1 to 7 and SF = 7, 12.
Values of zc are plotted with cross marker.

approximation thanks to the Taylor’s series for high values of
z and the first major expression is obtained:

g(z) ≈ g̃(z) =

ε∑
k=1

(−1)k+1CkN−1e
−kz/2. (12)

Fig. 1 shows the comparison with the exact g(z) and
different approximation orders, ε = 1 to 7. The good point is
that binomial coefficients are limited to low values of k, which
solves a computational issue. Since N is high, especially for
SF = 12, the binomial coefficient CkN−1 will suffer from
loss of precision, typically when k is more than 5. Although
the approximation is tightly close for high values of z, the
divergence is problematic: the approximation tends toward
infinity for odd values of ε and toward zero for even orders.
Nevertheless, a simple and efficient approximation based on
a piecewise definition is obvious in order to obtain the initial
value 1:

g(z) '
{

1 if z ≤ zc
g̃(z) if z > zc

. (13)

where zc is a threshold depending on the values of ε and
SF that will be discussed in the next paragraph. The different
values of zc are available in the Fig. 1 and a quick observation
is that the piecewise approximation should be accurate for low
values of ε (inferior to 7).

The next step is to compute the average as in eq.(5):

SEP =

∫ zc

0

fZ(z)dz +∫ ∞
zc

ε∑
k=1

(−1)k+1CkN−1e
−kz/2fZ(z)dz. (14)

By using the definition of the pdf in (4) and the variable
changes x0 =

√
z and xk =

√
z(k + 1), the SEP can be
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Fig. 2: Approximation of the threshold zc: numerical solutions
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expressed by this practical result after some mathematical
manipulations:

SEP = 1+
ε+1∑
k=1

CkN
N

(−1)ke−
N·SNR(k−1)

k Q1

(√
2N

k
SNR,

√
kzc

)
,

(15)

with Q1 the Marcum function of order 1 defined by:

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1
e−

x2+a2

2 IM−1(ax)dx. (16)

B. How to find zc?

Almost all parameters are known for computing (15) except
the value of zc. The problem is not trivial and we propose a
solution for low values of the order ε. One should note that the
results in the next section and the above remark confirm that
the order does not need to be greater than 7. First, by applying
the variable change ζ = e−

z
2 in (12), solving g̃(z) = 1 is

equivalent to find the roots of a ε-order polynom. Since the
approximation with even values of ε can not reach the value
1, the study is limited to odd value cases. The only known
assumption is that zc is the unique positive real root. However,
we are able to obtain the exact solutions for ε = 1 and ε = 3.
By using the notation ζc(ε) = e−

zc(ε)
2 , we have:

ζc(1) = 1/(N − 1) (17)
ζc(3) = τ − N−4

(N−2)(N−3)2
1
τ + 1

N−3 (18)

τ =
(

(N−4)(N−5)
(N−1)(N−2)(N−3)3 +

√
2(N−4)

(N−1)(N−2)1.5(N−3)1.5

) 1
3

(19)

τ ' (1+
√
2)

1
3

N (20)

The last simplification for τ is obtained when N is larger
than 1. A straightforward numerical observation leads to a
heuristic polynomial function of order 1 that gives the exact
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Fig. 3: BEP approximation for order ε = 1 to 7 and SF = 7
to 12.

values of ζc and zc for ε = 1, 3 and an approximation for
higher values:

ζc(ε) = α1ε+ α0 (21)
α1 = (ζc(3)− ζc(1))/2, α0 = ζc(1)− α1 (22)

Concerning the even cases, we propose to define zc as the
value maximizing g̃(z), i.e. zc is the solution to the equation
∂g̃(z)
∂z = 0. The result has also a polynomial form and the same

study for odd cases can be applied. However, for conciseness,
we proposed the heuristic approximation zc(ε) = zc(ε − 1)
when ε is even, as shown on Fig. 2. Fig. 2 shows the com-
parison between a numerical solving of zc and the proposed
approximation. We can observe that the approximation is still
tight to the numerical value for ε = 5, 7.

IV. RESULTS AND COMPARISONS

A. Impact and choice of the order ε

The BEP approximation is illustrated by Fig. 3 for different
values of the order ε = 1 to 7 and SF = 7 to 12. It is obvious
that the approximation converges very fast: if the order ε = 1 is
still visible, the other curves are mingled. A quick conclusion
is that the order ε = 1 is already a good approximation with
the best trade-off between complexity and accuracy, and it is
not necessary to increase ε higher than 3. In order to confirm
this, a convergence parameter is defined by:

∆BEP,i→j =
(

BEP|ε=i − BEP|ε=j
)
/ BEP|ε=i . (23)

It allows the evaluation of the BEP variation when the order
ε is increased. Fig. 4 shows three cases ∆BEP,1→3, ∆BEP,3→5,
and ∆BEP,5→7 as a function of SNR for different values of
SF . The variation when the order ε increases from 1 to 3 is
inferior to 10%, the variation is lower than 3% when the order
ε changes from 3 to 5, and less that 1% for the next step 5 to
7. Moreover, Table I shows maximum values of ∆BEP,i→i+1

for i = 1 to 6. Since the approximation for even ε is less
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accurate, their contributions are less significant than the odd
ones. It means that odd orders should be used, typically ε = 3.

B. SNR-corrected zero-order approximation

The complexity computation is linked to the number of
Marcum functions in the formula, which is equal to ε + 1.
It means that the lowest approximation, i.e. ε = 1, needs
to compute two Marcum functions. In order to limit the
complexity, we propose a heuristic zero order approximation,
i.e. only one Marcum function, based on the case ε = 1
associating the same bound zc(1) and a correction γ applied
to the SNR:

SEP = 1−Q1

(√
2NγSNR,

√
2 log(N − 1)

)
. (24)

A straightforward numerical study based on minimizing the
mean square error was done in order to fit the zero-order
expression to the 7th-order one as a function of SF . The
obtained numerical values are given in Table II and BEP curves
are plotted in Fig. 5. The first observation is that the values of
γ depend on SF . A numerical approximation was found that
gives the tractable form:

γ '
√

2SF/20 + 0.681 (25)

The BEP comparison shows that the approximation is still
close to the 7th order. It is confirmed with the relative error

TABLE I: Numerical values for the maximum value of
∆BEP,i→i+1 when SF = 7 to 12, i = 1 to 6

i 1 2 3 4 5 6
max ∆BEP,i→i+1 11.6% 0.9% 2.4% 0.4% 0.76% 0.17%

TABLE II: Numerical values for SNR correcting coefficient

SF 7 8 9 10 11 12
γ 0.868 0.882 0.894 0.905 0.915 0.924
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plotted in the Fig. 6. The error is less than 10% but it increases
very fast at high SNR: the diversity order is different and the
values diverge. Moreover, since the error is plotted in absolute
values, an inflexion point is visible that corresponds to the
equality. In conclusion, the approximation is close to the exact
value but is available for a given BEP range, i.e. a value of
BEP inferior to 10−6 in our proposal.

C. BEP comparisons

Fig. 7 compares the proposed approximation with simulated
BEP and the two results of [9] which are the best of the state
of the art. These simulations validate that the Marcum-based
approximation is tightly accurate with a low order ε = 5. At
high SNR, our proposition and [9, eq.(21)] are equivalent and
close to simulation but [9, eq.(23)] is less accurate. However,
differences are visible at low SNR: both solutions of [9]
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Fig. 7: Comparison of the proposed approximation with sim-
ulation and [9], the order ε is 5 and SF = 7 to 12.

are upper bounds while our approximation is still close to
simulations. In order to highlight these differences, Fig. 8
proposes to focus on the relative error of approximations
with respect to the simulated BEP. The approximations [9,
eq.(21)] and [9, eq.(23)] are compared to our proposed solution
with ε = 0, 3, 5. The observation of the curves confirms that
the Marcum-based expression is more accurate than both [9,
eq.(21)] and [9, eq.(23)] and increasing the order ε enhances
the accuracy. At SNR=-15dB, the approximation error for a
spreading factor of 7 is about 1%, which represents a gain of
almost 10 compare to previous works. On the other hand, the
heuristic approximation for ε = 0 achieves an error quasi-
equivalent to ε = 3 and might propose the best trade-off
complexity/accuracy.

V. CONCLUSION

In this paper, a new approximation of BEP for LoRa
transmissions is proposed for AWGN channel. Instead of
approximating a Ricean or Chi squared distribution thanks to a
Gaussian one, we proposed to keep the noncentral Chi squared
distribution, leading to a Marcum-based form. Simulation
results confirm that the proposed solution is more accurate
than the state-of-the-art for a full SNR range and may be
considered as a numerical reference of the LoRa BEP for
helping the design of a communication. On the other hand,
a heuristic simplified version was derived in order to keep
only one Marcum function to compute.
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