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Introduction

Let µ(dx) = Z -1 e -V (x) dx be a probability measure defined on R n (n ≥ 2). We do not require regularity for V and allow it to take values in R ∪ {-∞, +∞}. We only require that e -V dx = 1, or more generally that the previous integral is finite. We denote by µ(f ) the integral of f w.r.t. µ.

We will be interested in this note by functional inequalities verified by the measure µ. Recall that µ satisfies a Poincaré inequality if for all smooth f ,

Var µ (f ) := µ(f 2 ) -µ 2 (f ) ≤ C P (µ) µ(|∇f | 2 ) , (1.1) 
and that it satisfies a log-Sobolev inequality if for all smooth f

Ent µ (f 2 ) := µ(f 2 ln(f 2 )) -µ(f 2 ) ln(µ(f 2 )) ≤ C LS (µ) µ(|∇f | 2 ) . (1.2) 
C P and C LS are understood as the best constants for the previous inequalities to hold. We refer to [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF][START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF][START_REF] Wang | Functional inequalities, Markov processes and Spectral theory[END_REF] among many others, for a comprehensive introduction to some of the useful consequences of these inequalities and their most important properties, such as convergence to equilibrium (in L 2 or in entropy) or concentration of measure. If µ is not normalized as a probability measure, (1.1) reads as

µ(f 2 ) -(1/µ(R n )) µ 2 (f ) ≤ C P (µ) µ(|∇f | 2 ) . (1.3) 
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One key feature of these inequalities is their tensorization property namely C P (µ ⊗ ν) = max(C P (µ), C P (ν))

(the same for C LS ) giving a natural way to control these constants for product measures.

Another particular family of measures is the set of radial (or spherically symmetric) measures or more generally measures admitting a decomposition µ(dx) = µ r (dρ) µ a (dθ) (1.4) with x = ρ θ, ρ ∈ R + and θ ∈ S n-1 . This amounts to V (x) = V r (ρ) + V a (θ) and µ(dx) = n ω n ρ n-1 e -Vr(ρ) e -Va(θ) σ n (dθ)

where σ n denotes the uniform distribution on S n-1 and ω n denotes the volume of the unit euclidean ball. We shall call these measures nearly radial. When µ a = σ n we simply say radial and when V a is bounded below and above we will say almost radial.

It is natural to ask how to control C P (µ) and C LS (µ) in terms of constants related to µ r and µ a . Since µ a is supported by the sphere we will use the natural riemanian gradient, in other words, for θ ∈ S n-1 , we will decompose

∇f = ∇ θ f + ∇ θ ⊥ f := ∇f, θ + Π θ ⊥ ∇f
where Π θ ⊥ denotes the orthogonal projection onto θ ⊥ .

Though natural it seems that the previous question was not often addressed in the literature with the notable exception of radial log-concave measures for which S. Bobkov (see [START_REF] Bobkov | Spectral gap and concentration for some spherically symmetric probability measures[END_REF]) studied the Poincaré constant (his result is improved in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF]) and for which Huet (see [START_REF] Huet | Isoperimetry for spherically symmetric log-concave probability measures[END_REF]) studied isoperimetric properties.

Our main results in the radial (or almost radial) case say that both the Poincaré and the log-Sobolev constant are controlled up to universal constants, by the corresponding constants for the radial part µ r and µ(ρ 2 )/(n-1) for Poincaré and some slightly more intricate combinaition for log-Sobolev, i.e.

Theorem 1.1. Let µ be a radial measure.

(1) (Bobkov's result)

C P (µ) ≤ max C P (µ r ), µ(ρ 2 ) n -1 .
(2) (Th. 4.5) there exists an universal constant c such that

C LS (µ) ≤ c C LS (µ r ) + µ(ρ) max C P (µ r ), µ(ρ 2 ) n -1 1/2
.

Other results and some consequences are also described. More precisely, the "tensorization" part of Bobkov's proof is elementary and will be explained in Section 3, where we will also show how it applies to other types of Poincaré inequalities (weak or super). As a byproduct we will obtain a first (bad) bound for the log-Sobolev constant.

In section 4 we propose a direct approach of the logarithmic Sobolev inequality for (almost) radial measures. This approach uses in particular L q (1 ≤ q ≤ 2) log-Sobolev inequalities for the uniform measure on the sphere we establish in Section 2, based on the study made in [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF] and results in [START_REF] Milman | On the role of convexity in functional and isoperimetric inequalities[END_REF]. In the framework of general log-concave measures, similar ideas already appear in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF].

All these results are applied in section 5 to some examples. In particular, in the radial case, we improve upon the bound recently obtained by Lee and Vempala ([25]) for compactly supported (isotropic) log-concave measures. It reads Theorem 1.2 (Th 5.9). For any radial logconcave probability measure µ whose support K is bounded then

C LS (µ) ≤ C diam 2 (K) n -1 for some universal constant C.

Additional notations.

Let us recall the L 1 inequalities we are interested in, namely Cheeger (or

L 1 Poincaré) inequality µ(|f -m µ f |) ≤ C |∇f | dµ (1.5)
where m µ f denotes a µ-median of f and similarly the L q log-Sobolev inequality (1 ≤ q ≤ 2)

µ(|f | q ln(|f | q )) -µ(|f | q ) ln(µ(|f | q )) ≤ C |∇f | q dµ . (1.6) 
As usual we denote by C C (µ) and C LSq (µ) the optimal constants in the previous inequalities. It is known (see e.g. [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]) that C P (µ) ≤ 4C 2 C (µ). One can also show that there exists an universal constant D such that C LS (µ) ≤ D C 2 LS1 (µ) (see below). These inequalities are strongly related to the isoperimetric profile of µ. Recall that the isoperimetric profile I µ of µ is defined for p ∈ [0, 1] as

I µ (p) = inf A s.t. µ(A)=p µ + n (∂A)
where

µ + n (∂A) = lim inf h→0 µ(A h ) -µ(A) h A h being
the geodesic enlargement of A of size h. Of course in "smooth" situations, as absolutely continuous measures w.r.t. the natural riemanian measure on a riemanian manifold, I µ (p) = I µ (1 -p) so that it is enough to consider p ∈ [0, 1 2 ]. The following results are then well known (see e.g. [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] for the first one and [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF] Theorem 1.1 for the second one) Proposition 1.3. There is an equivalence between the following two statements:

1) I µ (p) ≥ C min(p, 1 -p) 2) and (1.5) holds with constant 1/C.
There is an equivalence between the following two statements:

3) for p ∈ [0, 1/2], I µ (p) ≥ C p ln(1/p) 4 
) and (1.6) holds for q = 1 and with constant 1/C.

According to the previous proposition a L 1 log-Sobolev inequality implies

I µ (p) ≥ (1/C LS1 (µ)) p ln(1/p) ≥ ln(2) (1/C LS1 (µ)) p ln 1/2 (1/p) for p ∈ [0, 1/2].
According to the results in [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF] the latter implies that C LS (µ) ≤ C 2 LS1 (µ) for some new universal constant D.

2.

The uniform measure on the sphere.

In this section we shall recall some properties of σ n the uniform measure on the unit sphere S n- 1 . In what follows s n denotes the area of S n-1 which is equal to 2π n/2 Γ(n/2) .

Many properties rely on the fact that the sphere S n-1 satisfies the curvature-dimension condition CD(n -2, n -1) (see [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] p.87). It follows from Proposition 4.8.4 and Theorem 5.7.4 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] that for n ≥ 3,

C P (σ n ) ≤ 1 n -1 and C LS (σ n ) ≤ 2 n -1 .
These bounds are also true for n = 2. It is easy to check for the Poincaré constant using e.g. [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Proposition 4.5.5 iii). For the logarithmic Sobolev inequality see [START_REF] Émery | A simple proof of the logarithmic Sobolev inequality on the circle[END_REF]. Actually these bounds are optimal (at least up to some universal constants). 

f n (t) = s n-1 s n (1 -t 2 ) n-3 2 ; -1 ≤ t ≤ 1 .
Let F n be the distribution function on [-1, 1] whose probability density is f n , G n = F -1 n be the inverse function of F n . Then

I σn (p) = s n-1 s n (1 -G 2 n (p)) n-2 2 .
Notice in particular that

I σn (1/2) = s n-1 s n = 1 √ π Γ(n/2) Γ((n -1)/2)
.

Using the extension of Stirling'formula to the Γ function, one sees that

lim n→+∞ 2 π/(n -1) s n-1 s n = 1 , (2.1) 
so that one can find universal constants c and C such that

c √ n -1 ≤ s n-1 s n ≤ C √ n -1 .
Using their Lemma 8.2, Bobkov and Houdré ( [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF]) also show in their section 9 that the minimum of I σn (p)/p(1 -p) is attained for p = 1/2 so that for all p ∈ [0, 1/2]

I σn (p) ≥ 1 2 s n-1 s n p (2.2)
and

C C (σ n ) = 2 s n s n-1 ≤ C √ n -1 (2.3)
for some universal constant C. Actually, the application of Lemma 8.2 in [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF] to I α σn for α ∈ [1, n/(n -1)] furnishes some Sobolev inequality (see Proposition 8.1 in [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF]).

Remark 2.2. Since the curvature dimension condition CD(n -2, n -1) implies CD(0, +∞) for n ≥ 2 (i.e. σ n is log-concave) it is known (see e.g. [START_REF] Milman | On the role of convexity in isoperimetry, spectral-gap and concentration[END_REF] for numerous references) that I σn is concave on [0, 1/2]. This furnishes another proof of (2.2). Actually for any log-concave measure µ it was shown by Ledoux ([23] is that the L q log-Sobolev inequality also furnishes such a control for the isoperimetric profile, more precisely for any log-concave probability measure µ and p ∈ [0, 1/2],

I µ (p) ≥ √ 2 34 C LS (µ) p ln 1 2 (1/p) ,
in the case q = 2, and more generally there exists an universal constant c such that for all 1 ≤ q ≤ 2,

I µ (p) ≥ c C 1/q LSq (µ) p ln 1 q (1/p) .
The converse statement I µ (p) ≥ c µ p ln

1 q (1/p) implies C LSq (µ) ≤ C 1 c q µ
for some universal constant C does not require log-concavity and was shown by Bobkov-Zegarlinski [START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF]. Our goal is now to determine the best possible constant C n (q) (best in terms of the dimension) such that

I σn (p) ≥ C n (q) p ln 1/q (1/p) , (2.4) 
and then to apply the equivalence we explained before to derive the best possible L q log-Sobolev inequality for σ n .

We shall consider p = F n (x) in order to have a tractable expression

I σn (F n (x)) = s n-1 s n (1 -x 2 ) n-2 2 .
To this end we will use the following elementary lemma

Lemma 2.3. For all x ∈ [-1, 0) define A n (x) = 1 (n-1) (1 -x 2 ) 1/2 I σn (F (x)). It holds A n (x) ≤ F n (x) ≤ A n (x) -x .
Proof. For all x ∈ [-1, 0), we have on one hand,

F n (x) = x -1 s n-1 s n (1 -u 2 ) (n-3)/2 du ≤ x -1 s n-1 s n -u -x (1 -u 2 ) (n-3)/2 du = s n-1 (-x)(n -1)s n (1 -x 2 ) (n-1)/2 = 1 (-x)(n -1) (1 -x 2 ) 1/2 I σn (F (x)) .
On the other hand

F n (x) = x -1 s n-1 s n (1 -u 2 ) (n-3)/2 du ≥ x -1 s n-1 s n (-u) (1 -u 2 ) (n-3)/2 du = s n-1 (n -1)s n (1 -x 2 ) (n-1)/2 = 1 (n -1) (1 -x 2 ) 1/2 I σn (F (x)) .
It follows for F n (x) ≤ 1/2 and provided (-x)/A n (x) > 1 (for its logarithm to be positive),

F n (x) ln 1/q (1/F n (x)) ≥ F n (x) ln 1/q ((-x)/A n (x)) ≥ A n (x) ln 1/q ((-x)/A n (x)) . But ln((-x)/A n (x)) ≥ ln(-x) + n -1 2 ln(1/(1 -x 2 )) ≥ ln(-x) + 1 4 ln(1/(1 -x 2 )) ≥ 0
for all x ∈ (-1, -a] for some 0 < a < 1 using continuity, so that for x ≤ -a,

ln(-x) + n -1 2 ln(1/(1 -x 2 )) ≥ 2n -3 4 ln(1/(1 -x 2 )) .
This yields for such an x,

F n (x) ln 1/q (1/F n (x)) ≥ 1 (n -1) (1-x 2 ) 1/2 I σn (F (x)) 2n -3 4 ln(1/(1 -x 2 )) + ln (n -1)s n s n-1 1/q
and finally that there exists a constant c(q) such that for such an x,

F n (x) ln 1/q (1/F n (x)) ≥ c(q) (n -1) q-1 q I σn (F n (x)) . (2.5)
In particular the constant C n (q) in (2.4) cannot be bigger than a constant times (n -1)

q-1 q .

For q = 1, it is known (see Theorem 2 in [START_REF] Ledoux | From concentration to isoperimetry: semigroup proofs[END_REF]) that

I σn (p) ≥ 1 2π p ln(1/p)
for p ∈ [0, 1/2], so that if not optimal, this result is optimal up to a constant.

Since we cannot hope a better result, our goal will be now to prove that

C n (q) ≥ C(q) (n -1) q-1 q .
To this end we will take advantage of Ledoux's result applied to σ n , i.e.

I σn (p) ≥ C(2) √ n -1 p ln 1/2 (1/p) . (2.6)
Indeed, its is easy to check that √ n -1 p ln 1/2 (1/p) ≥ (n -1)

q-1 q p ln 1/q (1/p) as soon as p ≥ e -(n-1) . It is thus enough to consider the remaining p = F n (x) ≤ e -(n-1) . Using lemma 2.3 we thus have

s n-1 (n -1)s n (1 -x 2 ) (n-1)/2 ≤ e -(n-1) so that ln(1 -x 2 ) ≤ 2 -1 + ln((n -1)s n /s n-1 ) n -1 ≤ 2 -1 + ln(n -1) n -1 ≤ -2 e -1 e , which implies x ≤ -1 -e -2(e-1)/e 1 2 = y . (2.7) 
We can thus deduce, for such an x

F n (x) ln 1/q (1/F n (x)) ≤ 1 (-x)(n -1) (1 -x 2 ) 1/2 I σn (F (x)) ln((n -1)s n /s n-1 ) + n -1 2 ln(1/(1 -x 2 )) 1/q ≤ 1 (-y)(n -1) (1 -x 2 ) 1/2 I σn (F (x)) ln 1/q ((n -1)s n /s n-1 ) + n -1 2 1/q ln 1/q (1/(1 -x 2 )) ≤ D (n -1) q-1 q I σn (F (x)) , (2.8) 
for some constant D. We may thus state Proposition 2.4. Let n ≥ 3. For any 1 ≤ q ≤ 2 there exist constants C and C(q) such that for all p ∈ [0, 1/2] one has

I σn (p) ≥ C (n -1) 1-1 q p ln 1/q (1/p) , yielding C LSq (σ n ) ≤ C(q) 1 n -1 q-1 .
Actually all constants can be chosen independently of q ∈ [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF][START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]. The bound is optimal with respect to the dimension.

Poincaré inequality and variants for nearly radial measures.

Let us explain Bobkov's tensorization method.

For µ(dx) = µ r (dρ) µ a (dθ) and a smooth f one has first

f 2 (ρ θ) µ r (dρ) ≤ C P (µ r ) ∇f (ρθ), θ 2 µ r (dρ) + f (ρθ) µ r (dρ) 2 = C P (µ r ) |∇ θ f (ρθ)| 2 µ r (dρ) + f (ρθ) µ r (dρ) 2 . (3.1)
Integrating with respect to µ a we obtain

µ(f 2 ) ≤ C P (µ r ) µ(|∇ θ f | 2 ) + f (ρθ) µ r (dρ) 2 µ a (dθ) . (3.2) But if we define w(θ) = f (ρθ) µ r (dρ) it holds, f (ρθ) µ r (dρ) 2 µ a (dθ) ≤ C P (µ a ) |∇w(θ)| 2 µ a (dθ) + w(θ) µ a (dθ) 2 ≤ C P (µ a ) ρ ∇ θ ⊥ f (ρθ)µ r (dρ) 2 µ a (dθ) + µ 2 (f ) ≤ C P (µ a ) µ r (ρ 2 ) µ(|∇ θ ⊥ f | 2 ) + µ 2 (f ) , (3.3) 
where we have used the Cauchy-Schwarz inequality in the last inequality. Here we assume that the Poincaré constant of µ a on the sphere S n-1 is w.r.t. the usual gradient and not the gradient on the sphere. Using that

|∇ θ f | 2 + |∇ θ ⊥ f | 2 = |∇f | 2 ,
we have thus obtained

Theorem 3.1. If µ(dx) = µ r (dρ) µ a (dθ) then C P (µ) ≤ max(C P (µ r ) , µ r (ρ 2 ) C P (µ a )) .
Recall that if C P (µ r ) < +∞ then µ r (e λρ ) < +∞ for λ < 2/ C P (µ r ) (see e.g. [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]) so that µ r (ρ 2 ) is finite too.

A weak version of the Poincaré inequality has been introduced in [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF] (also see the related papers [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF][START_REF] Bobkov | Large deviations and isoperimetry over convex probability measures[END_REF][START_REF] Cattiaux | Functional inequalities for heavy tailed distributions and applications to isoperimetry[END_REF]). A weak Poincaré inequality is a family of inequalities taking the form: for any t > 0 and all smooth f ,

Var µ (f ) ≤ β W P µ (t) µ(|∇f | 2 ) + t Osc 2 (f ) (3.4)
where β W P µ is a non increasing function that can explode at t = 0 (otherwise the classical Poincaré inequality is satisfied) and Osc(f ) denotes the Oscillation of f . The previous proof shows that Theorem 3.2. If µ(dx) = µ r (dρ) µ a (dθ) then

β W P µ (t) ≤ max(β W P µr (t/2) , µ r (ρ 2 ) β W P µa (t/2)) .
The integrability of ρ 2 is ensured as soon as β W P µ does not explode too quickly at the origin (see e.g. [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF]).

Similarly one can reinforce the Poincaré inequality introducing super Poincaré inequalities ( [START_REF] Wang | Functional inequalities, Markov processes and Spectral theory[END_REF][START_REF] Wang | From super Poincaré to weighted log-Sobolev and entropy cost inequalities[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF][START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF][START_REF] Cattiaux | Lyapunov conditions for super Poincaré inequalities[END_REF][START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]): for any t ≥ 1 and all smooth f

µ(f 2 ) ≤ δ µ (t) µ(|∇f | 2 ) + t µ 2 (|f |) , (3.5) 
which is called a generalized Nash inequality in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Chapter 8.4. Here δ µ is assumed to be a non increasing function. It immediately follows

C P (µ) ≤ δ µ (1). If δ µ (t) → 0 as t → +∞ one may consider the inverse function β SP µ (t) = δ -1 µ (t) defined for t ∈]0, δ µ (1)
] and which is non increasing with values in [1, +∞[. We can thus rewrite (3.5) as: for t ∈]0, δ µ (1)],

µ(f 2 ) ≤ t µ(|∇f | 2 ) + β SP µ (t) µ 2 (|f |) . (3.6)
Conversely, assume that there exists a function β (that can always be chosen non increasing) defined for t > 0 and such that

µ(f 2 ) ≤ t µ(|∇f | 2 ) + β(t) µ 2 (|f |)
for all t > 0 and nice function f . Applying this inequality to constant functions shows that β(t) ≥ 1 for all t. But we may replace β(t) by 1 as soon as t ≥ C P (µ).

It is known that if β SP µ (t) behaves like ce c /t as t → 0, (3.6) together with a Poincaré inequality is equivalent to the logarithmic Sobolev inequality (see below).

Following the same route we immediately get that for any positive t and s,

µ(f 2 ) ≤ (s + β SP µr (s) t µ r (ρ 2 )) µ(|∇f | 2 ) + β SP µr (s) β SP µa (t) µ 2 (|f |) . (3.7)
Of course this is a new super Poincaré inequality or more precisely a new family of super Poincaré inequalities. The most natural choice (not necessarily the best one) is

t = s µ(ρ 2 ) β SP µr (s) yielding the following Theorem 3.3. If µ(dx) = µ r (dρ) µ a (dθ) then β SP µ (t) ≤ β SP µr (t/2) β SP µa t 2 µ(ρ 2 ) β SP µr (t/2)
.

The radial case.

If µ is radial i.e. µ a = σ n the uniform measure on S n-1 , we deduce from

C P (σ n ) ≤ 1 n-1 (see section 2), that C P (µ) ≤ max C P (µ r ) , µ r (ρ 2 ) n -1 . (3.8)
Actually σ n satisfies the much stronger Sobolev inequality (for n ≥ 4 see [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] p.308 written for spherical gradient but recall the introduction)

g 2 2n-2 n-3 ≤ σ n (g 2 ) + 4 (n -1)(n -3) σ n (|∇g| 2 ) . (3.9) 
We deduce from this and the Poincaré inequality, the following inequality

g 2 2n-2 n-3 ≤ σ 2 n (g) + c n n -1 σ n (|∇g| 2 ) , (3.10) 
with c n = n+1 n-3 . One can thus derive the corresponding β SP σn . If one wants to see the dimension dependence one has to be a little bit careful. First we apply Hölder's inequality for p > 2,

σ n (g 2 ) ≤ σ 1 p-1 n (|g| p ) σ p-2 p-1 n (|g|) , then choose p = 2n-2 n-3 , yielding according to what precedes σ n (g 2 ) ≤ σ 2 n (g) + c n n -1 σ n (|∇g| 2 ) n-1 n+1 σ 4 n+1 n (|g|) ≤ σ 2 n (|g|) + c n n -1 σ n (|∇g| 2 ) n-1 n+1 σ 4 n+1 n (|g|) .
Recall Young's inequality: for all p > 1 and a, b, t > 0, ab ≤ t a p p + t -(q-1) b q q with 1/p + 1/q = 1. We deduce from what precedes, this time with p = (n + 1)/(n -1),

σ n (g 2 ) ≤ t σ n (|∇g| 2 ) + 1 + 1 (n + 3) (n-1)/2 t -(n-1)/2 σ 2 n (|g|)
and finally that 

β SP σn (t) ≤ 1 + 1 (n + 3) (n-1)/2 t -(n-1)/2 . ( 3 
β SP µ (t) ≤ β SP µr (t/2)   1 + µ(ρ 2 ) β SP µr (t/2) (n + 3) (n-1)/2   .
The cases n = 2 and n = 3 can be studied separately.

Application to the log-Sobolev inequality.

In this subsection we assume that µ is (almost) radial as in the previous subsection.

The equivalence between a log-Sobolev inequality and a super-Poincaré inequality is well known (see e.g. [START_REF] Wang | Functional inequalities, Markov processes and Spectral theory[END_REF] Theorems 3.3.1 and 3.3.3, despite some points we do not understand in the proofs). But here we need precise estimates on the constants. One way to get these estimates is to use the capacity-measure description of these inequalities following the ideas in [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF] (also see [START_REF] Zitt | Super Poincaré inequalities, Orlicz norms and essential spectrum[END_REF] for some additional comments). A simplified version of the results of [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] is contained in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] 

C LS (µ) ≤ 64 C 2 + ln 1 ∨ (1 + 2e 2 )C 1 4 C P (µ) .
Proof. Recall that it is enough to look at t ≤ C P (µ) and then take β SP µ (t) = 1 for t ≥ C P (µ). So we may replace C 1 e C 2 /t by the larger 4 1+2e 2 e C 2 /t with

C 2 = C 2 + C P (µ) ln 1 ∨ (1 + 2e 2 )C 1 4 .
In [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] terminology we thus have δ(s) = C 2 / ln(s(1 + 2e 2 )/4), that satisfies the assumptions of Proposition 8.4.1 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] with q = 4. We thus get for µ(A) ≤ 2,

Cap µ (A) ≥ µ(A) ln((1 + 2e 2 )/2µ(A)) 8C 2 .
But for µ(A) ≤ 1/2, ln((1 + 2e 2 )/2µ(A)) ≥ ln 1 + e 2 µ(A) .

We may thus apply Proposition 8.3.2 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] yielding

C LS (µ) ≤ 64C 2 .
Hence if µ r satisfies a log-Sobolev inequality, β SP µr (t) ≤ 2e 2C LS (µr)/t so that using Corollary 3.4,

β SP µ (t) ≤ 2 e 2C LS (µr)/t + 2 2 µ(ρ 2 ) n + 3 (n-1)/2
e (n+1) C LS (µr)/t . (3.12)

Once again since we only have to look at t < C P (µ), and using (3.8), we obtain the following worse bound

β SP µ (t) ≤ 2 e -(n-1)C LS (µr)/ max(C P (µr), µ(ρ 2 ) n-1 ) + 2µ(ρ 2 ) n + 3 (n-1)/2
e (n+1) C LS (µr)/t .

(3.13) But we can use the following homogeneity property of the log-Sobolev and the Poincaré inequalities: defining for λ > 0,

f (z) µ λ (dz) = f (λz) µ(dz) , it holds C LS (µ λ ) = λ 2 C LS (µ) (the same for C P (µ)).
Looking at the pre-factor in (3.13), we see that making λ go to 0, the second term goes to 0 while the first one is unchanged. Using the homogeneity properties for both µ and µ r , and using lemma 3.6 again, we have thus obtained

C LS (µ) ≤ 64 (n + 1) C LS (µ r ) + C max C P (µ r ), µ(ρ 2 ) n -1 , (3.14) 
where

C = ln 1 ∨ 1 + 2e 2 2 e -(n-1) C LS (µr)/ max(C P (µr), µ(ρ 2 ) n-1 )
.

Of course in many (almost all) situations C = 0. Using C P (µ r ) ≤ C LS (µ r )/2 it is not very difficult to show that C = 0 if and only if

µ(ρ 2 ) ≥ 2(n -1) 2 C LS (µ r ) 1 + e 2 ,
in which case C ≤ ln(1 + e 2 ). These results extend to the "almost" radial situation, using the standard perturbation result for a (super)-Poincaré inequality or a log-Sobolev inequality, as explained in the next Corollary

Corollary 3.7. Assume that µ(dx) = µ r (dρ) µ a (dθ) with m ≤ dµ a dσ n ∞ ≤ M
where σ n is the uniform probability measure on S n-1 . Then

C P (µ) ≤ C P (µ r ) + M m µ r (ρ 2 ) n -1 .
If n ≥ 4 and µ r satisfies a log-Sobolev inequality then so does µ and

C LS (µ) ≤ 64 M m (n + 1) C LS (µ r ) , except if µ(ρ 2 ) ≥ 2(n-1) 2 C LS (µr) 1+e 2
in which case

C LS (µ) ≤ 64 M m (n + 1) C LS (µ r ) + ln(1 + e 2 ) µ(ρ 2 ) n -1 .
The previous two bounds amounts to the existence of an universal constant C such that

C LS (µ) ≤ C M m max n C LS (µ r ) , µ(ρ 2 ) n -1 .
We may of course adapt the above proof to characterize the logarithmic Sobolev inequality starting from Theorem 3.3, i.e: Theorem 3.8. Assume that n ≥ 4, µ(dx) = µ r (dρ) µ a (dθ) and that µ a satisfies a super Poincaré inequality with β SP µa (t) = C a t -κ . Then C LS (µ) ≤ 64 c(κ) C LS (µ r ) + c µ r (ρ 2 ) C P (µ a ) .

4.

The Logarithmic-Sobolev inequality in the nearly radial case.

4.1.

An alternate direct approach.

Instead of using super Poincaré inequalities, let us try to directly mimic Bobkov's tensorization in the case of log-Sobolev. First

(f 2 ln(f 2 ))(ρ θ) µ r (dρ) ≤ C LS (µ r ) |∇ θ f (ρθ)| 2 µ r (dρ) + + f 2 (ρθ) µ r (dρ) ln f 2 (ρθ) µ r (dρ) , (4.1) 
so that integrating with respect to µ a we get

Ent µ (f 2 ) ≤ C LS (µ r ) µ(|∇ θ f | 2 ) + Ent µa (w 2 ) (4.2) with w(θ) = f 2 (ρθ) µ r (dρ) 1 2 
, after having remarked that

µ(f 2 ) ln(µ(f 2 )) = µ a (w 2 ) ln(µ a (w 2 )) .
We are thus facing a difficulty. Indeed

∇w(θ) = f (ρθ) ρ ∇ θ ⊥ f (ρθ) µ r (dρ) f 2 (ρθ) µ r (dρ) 1 2 
.

Hence if we use the classical log-Sobolev inequality

Ent µa (w 2 ) ≤ C LS (µ a ) µ a (|∇w| 2 )

≤ C LS (µ a ) f (ρθ) ρ ∇ θ ⊥ f (ρθ) µ r (dρ) 2 f 2 (ρθ) µ r (dρ) µ a (dθ) . (4.3) 
Using Cauchy-Schwarz inequality in two different ways we have obtained

Proposition 4.1. If µ(dx) = µ r (dρ) µ a (dθ), then (1) 
Ent µ (f 2 ) ≤ max C LS (µ r ) , ρ 2 L ∞ (µr) C LS (µ a ) µ(|∇f | 2 ) . (2) Ent µ (f 2 ) ≤ max (C LS (µ r ) , C LS (µ a )) µ((1 ∨ ρ) 2 |∇f | 2 ) .
Since the log-Sobolev inequality is preserved when translating µ, the first inequality in Proposition 4.1 implies Corollary 4.2. If µ(dx) = µ r (dρ) µ a (dθ) and µ is supported by a bounded set K, then

C LS (µ) ≤ max C LS (µ r ) , diam 2 K 4 C LS (µ a ) .
The second inequality in Proposition 4.1 is a weighted log-Sobolev inequality, with weight (1 ∨ ρ) 2 , which is much weaker than the log-Sobolev inequality. These inequalities have been studied for instance in [START_REF] Wang | From super Poincaré to weighted log-Sobolev and entropy cost inequalities[END_REF][START_REF] Cattiaux | Some remarks on weighted logarithmic Sobolev inequalities[END_REF]. Consequences in terms of concentration, rate of convergence or transport are in particular discussed in section 3 of [START_REF] Cattiaux | Some remarks on weighted logarithmic Sobolev inequalities[END_REF]. The weight (1 ∨ ρ) 2 is however too big for being really interesting. In particular this weighted log-Sobolev inequality does not imply a Poincaré inequality in whole generality. Now consider the almost radial situation. According to section 2, C LS (σ n ) ≤ 2 n-1 for n ≥ 2. It thus follows from corollary 4.2 and perturbation arguments Corollary 4.3. For all µ(dx) = µ r (dρ) µ a (dθ) supported by some bounded set K and satisfying

m ≤ dµ a dσ n ∞ ≤ M , it holds C LS (µ) ≤ max C LS (µ r ) , M m diam 2 K 2(n -1) . (4.4)
4.2. The (almost) radial case.

Assume for a moment that µ a = σ n . Rewrite (4.2),

µ(f 2 ln(f 2 )) ≤ C LS (µ r ) µ(|∇ θ f | 2 ) + g q ln q (g) dσ n (4.5)
with g(θ) = f 2 (ρ θ) µ r (dρ) 1/q and 1 ≤ q ≤ 2.

Instead of the usual log-Sobolev inequality, we may now use the L q log-Sobolev inequality for σ n we have obtained in section 2. It thus holds g q ln(g q ) dσ n ≤ c (n -1) 1-q |∇ θ ⊥ g| q dσ n + g q dσ n ln g q dσ n , (4.6)

so that Ent µ (f 2 ) ≤ C LS (µ r ) µ(|∇ θ f | 2 ) + c (n -1) 1-q |∇ θ ⊥ g| q dσ n . Now |∇ θ ⊥ g| q dσ n = 2 q q f 2 (ρ θ) µ r (dρ) 1-q |f | |∇ θ ⊥ f | ρ µ r (dρ) q dσ n ≤ 2 q q ρ q ∞ f 2 dµ r 1-q 2 |∇ θ ⊥ f | 2 dµ r q 2 dσ n ≤ 2 q q ρ q ∞ f 2 dµ 1-q 2 |∇ θ ⊥ f | 2 dµ q 2 (4.7)
where we have used Hölder's inequality in the last line. If q = 1 we may also use the bound

|∇ θ ⊥ g| dσ n ≤ 2 f 2 ρ 2 dµ r 1/2 |∇ θ ⊥ f | 2 dµ r 1 2 dσ n . (4.8) First use (4.7). Recall Rothaus lemma Ent µ (f 2 ) ≤ Ent µ ((f -µ(f )) 2 ) + 2 Var µ (f ) .
We may thus replace f by f -µ(f ) and use Poincaré's inequality in order to get

|∇ θ ⊥ g| q dσ n ≤ 2 q q ρ q ∞ C P (µ) |∇ θ ⊥ f | 2 dµ . (4.9)
Gathering all these results, using again Poincaré inequality for bounding the variance and Theorem 3.1, we thus have if µ is supported by K

Ent µ (f 2 ) ≤ C LS (µ r ) |∇ θ f (ρθ)| 2 µ r (dρ) + 2C P (µ) |∇f | 2 dµ + c(q) (n -1) 1-q diam q (K) C P (µ) |∇ θ ⊥ f | 2 dµ . (4.10)
It is easy to check that the best value of q is 2 if diamK ≤ (n -1) and 1 if diamK ≥ (n -1).

We have thus shown Theorem 4.4. There exists an universal c such that, if µ is radial with bounded support K,

C LS (µ) ≤ 2 max C P (µ r ) , µ(ρ 2 ) n -1 + max C LS (µ r ) , c min diamK , diam 2 (K) n -1 .
If µ is almost radial it is enough to multiply the previous bound by M/m.

Now we come back to (4.8).

Let us consider f 2 ρ 2 dµ integrating first w.r.t. µ r . By using the variational description of the relative entropy we have for any t > 0

f 2 (ρ θ) ρ 2 µ r (dρ) ≤ Ent µr (f 2 (. θ)) + 1 t ln e tρ 2 µ r (dρ) f 2 (ρ θ) µ r (dρ) . (4.11)
We may of course stop here to get a first control of the logarithmic Sobolev constant of µ by uing recentering and Rothaus lemma (see the end of the argument) but les us see how using the same approach will provide us with an easy to apprehend formulation of the logarithmic Sobolev constant. We first use

f 2 ρ 2 dµ r ≤ 2 f 2 (ρ -µ(ρ)) 2 dµ + 2 µ 2 r (ρ) f 2 dµ r ,
and using again the variational description of the relative entropy we have for any t > 0,

f 2 (ρ θ) (ρ-µ(ρ)) 2 µ r (dρ) ≤ Ent µr (f 2 (. θ)) + 1 t ln e t(ρ-µ(ρ)) 2 µ r (dρ) f 2 (ρ θ) µ r (dρ) .
(4.12) But since ρ → ρ -µ r (ρ) is 1-Lipschitz and of µ r mean equal to 0, it is known (see e.g. [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] formula (4.9)) that for t < 1/C LS (µ r )

e t(ρ-µ(ρ)) 2 µ(dρ) ≤ 1 1 -t C LS (µ r ) .
For t = 1/2 C LS (µ r ) we thus deduce

f 2 (ρ θ) (ρ-µ(ρ)) 2 µ r (dρ) ≤ C LS (µ r ) |∇ θ f (ρ θ)| 2 µ r (dρ) + ln(2) C LS (µ r ) f 2 (ρ θ) µ r (dρ) .
Finally

f 2 ρ 2 dµ ≤ 2 C LS (µ r ) |∇ θ f | 2 dµ + 2(ln(2) C LS (µ r ) + µ 2 r (ρ)) f 2 dµ . (4.13) 
Replacing f by f -µ(f ) and using the Poincaré inequality, we thus deduce

(f -µ(f )) 2 ρ 2 dµ ≤ 2 C LS (µ r ) |∇f | 2 dµ + 2(ln(2) C LS (µ r ) + µ 2 r (ρ)) C P (µ) |∇f | 2 dµ .
Gathering all what precedes we get

Ent µ ((f -µ(f )) 2 ) ≤ A µ(|∇f | 2 )
with

A = C LS (µ r ) + c C LS (µ r ) + 2(ln(2) C LS (µ r ) + µ 2 (ρ)) C P (µ)) 1 2 . (4.14) 
To conclude it remains to use Rothaus lemma again. We have thus obtained after some simple manipulations using in particular 2C P ≤ C LS , the concavity of the square root, and the homogeneity of the inequalities w.r.t. dilations as we did in order to get (3.14) but this time with λ → +∞, and finally (3.8) (replacing for simplicity the max by the sum) Theorem 4.5. There exists an universal constant c such that, for all µ(dx

) = µ r (dρ) µ a (dθ) satisfying m ≤ dµ a dσ n ∞ ≤ M , it holds C LS (µ)) ≤ c M m C LS (µ r ) + µ(ρ) max C P (µ r ) , µ(ρ 2 ) n -1 1/2 .
Alternatively we have

C LS (µ)) ≤ c M m C LS (µ r ) + inf t>0 1 t ln e tρ 2 µ r (dρ) 1/2 max C P (µ r ) , µ(ρ 2 ) n -1 1/2 .
Notice that if µ is supported by a bounded set K, we recover only partially the conclusion of Corollary 4.3.

Remark 4.6. Of course the previous results are much better, in terms of the dimension dependence, than Corollary 3.7 since the pre-factor of C LS (µ r ) is "dimension free" (more precisely can be bounded from above by an universal constant), while the dimension appears in front of C LS (µ r ) in Corollary 3.7. Let us remark also that the constant appearing in the second formulation is close from the one obtained by Bobkov in dimension one [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]. It will appear again in the next Section. Remark also that contrary to the corollary, the proof cannot be extended to more general cases, except if the angular part µ a satisfies a similar L 1 log-Sobolev inequality. ♦

To finish this section, let us remark that one could also get another way to control (4.8) by using Lyapunov conditions rather than using the Logarithmic Sobolev inequality for the radial part. Of course, by [START_REF] Cattiaux | Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity[END_REF], one also knows that in our setting a logarithmic Sobolev inequality is equivalent to some Lyapunov type conditions. However we will see that in order to control (4.8) one needs a slightly weaker inequality. Indeed let us suppose here that there exists W ≥ 1, a, b > 0 such that

ρ 2 ≤ -a L ρ W W + b (4.15) 
where

L ρ f = f -(V r + n-1 ρ
)f is the generator corresponding to the radial part of µ. Recall now that we need to control

f 2 ρ 2 µ r (dρ).
Using (4.15) we get

f 2 ρ 2 µ r (dρ) ≤ a f 2 -LW W µ r (dρ) + b f 2 µ r (dρ).
The first term is easily dealt with, using integration by parts or a large deviations argument as in [START_REF] Cattiaux | Lyapunov conditions for super Poincaré inequalities[END_REF]:

f 2 -LW W µ r (dρ) ≤ |∇ θ f (ρθ)| 2 µ r (dρ).
We then use the same trick as before, i.e centering and Rothaus lemma to get Proposition 4.7. Assume (4.15). There exists an universal constant c such that, for all

µ(dx) = µ r (dρ) µ a (dθ) satisfying m ≤ dµ a dσ n ∞ ≤ M , it holds C LS (µ)) ≤ c M m C LS (µ r ) + √ a + √ b max C P (µ r ) , µ(ρ 2 ) n -1 1/2 .
Remark 4.8. Let us make a few comments about the Lyapunov condition (4.15). It has been shown in [START_REF] Cattiaux | A note on Talagrand's transportation inequality and logarithmic Sobolev inequality[END_REF] that it is a sufficient condition for Talagrand inequality, and that there exists examples satisfying this condition and not a logarithmic Sobolev inequality. Nevertheless, we need for the first part of the proof that the radial part satisfies a logarithmic Sobolev inequality. More crucial are the values of the constants a and b with respect to the dimension. If a can be chosen dimension free in usual cases, say V r (ρ) = ρ k , b is then of order n and we then get an additional √ n factor for the logarithmic Sobolev constant in this case. Of course, it is surely better than the n factor by using Super-Poincaré inequality. ♦ 5. Some applications in the (almost) radial case.

The main interest of the previous results is that they reduce the study of functional inequalities for µ to the one of its radial part µ r which is supported by the half line. For such one dimensional measures explicit criteria of Muckenhoupt (or Hardy) type are well known [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF][START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF][START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF][START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF]). Let us recall the case of the Poincaré inequality (see e.g. [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Theorem 4.5.1) and of the log-Sobolev inequality (see [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF] Theorem 7 with T (u) = 2u, or [START_REF] Cattiaux | Weak logarithmic Sobolev inequalities and entropic convergence[END_REF] Proposition 2.4 for a slightly different version). 

B -= sup x∈I,0≤x<m µ r ([0, x]) ln 1 + 1 µ r ([0, x]) m x 1 ρ r (ρ) dρ B + = sup x∈I,x>m µ r ([x, +∞)) ln 1 + 1 µ r ([x, +∞)) x m 1 ρ (ρ)
dρ .

Several methods are known to furnish estimates for quantities like µ r ([a, +∞[) or (1/ρ r ) (see e.g. [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] chapter 6.4).

Remark 5.2. We will not study in more details the L 1 inequalities on the real (half) line. However, because it is immediate, let us only give an upper bound for C C . Proof. We simply write for any a,

ν(|f -m ν (f )|) ≤ ν(|f -f (a)|) = x a f (t) dt ν(dx) ≤ a -∞ a x |f (t)|dt ν(dx) + +∞ a x a |f (t)|dt ν(dx) ≤ a -∞ |f (t)| ν(] -∞, t]) dt + +∞ a |f (t)| ν([t, +∞[) dt ,
and then write dt = e W (t) ν(dt) to get the result.

It is possible to get a lower bound, and bounds for C LS1 using ad-hoc Orlicz spaces as in [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF] and the previous trick in one dimension. ♦ Remark 5.4. Before to study some simple examples, let us say a word about "optimality" in the radial case. Notice first that if f (x) = g(|x|), ∇f (x) = g (|x|) x |x| so that |∇f | 2 (x) = (g (|x|)) 2 . It follows that C P (µ) ≥ C P (µ r ) and similarly for the log-Sobolev constant.

If we take

f (x) = n i=1 x i /|x|, Var µ (f ) = 1 while µ(|∇f | 2 ) = (n -1) µ(1/ρ 2 ) so that C P (µ) ≥ 1/((n -1) µ(1/ρ 2
). The latter is smaller than µ(ρ 2 )/(n -1) but both quantities are comparable in many situations. We shall see it on the examples below. ♦

In all the examples below, we will pay a particular attention to dimension dependence, so that any sentence like "the good order" or "good dependence" has to be understood "with respect to the dimension n.

Example 5.5. The uniform measure on an euclidean ball.

Consider the simplest example for radial µ i.e. the uniform measure on the euclidean ball of radius R. The good order for the log-Sobolev constant has been derived in [START_REF] Bobkov | From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities[END_REF] Proposition 5.3 by pushing forward the gaussian distribution onto the uniform one on the ball (also see Proposition 5.4 therein for the LSq inequality).

We shall obtain here similar bounds by using our results. First µ r (dρ) = n ρ n-1 R n 1 0≤ρ≤R dρ so that the mean, the (unique) median, the second moment, the Variance of µ r are respectively:

µ n = n n + 1 R, m n = (1/2) 1/n R, µ r (ρ 2 ) = n n + 2 R 2 , v n = n (n + 2)(n + 1) 2 R 2 .
It is then easily seen that b -and b + are both less than R 2 n(n-2) provided n > 2. The case n = 2 can be handled separately. It follows that C P (µ r ) ≤ 4 (R 2 /n 2 ). We also have C P (µ r ) ≥ v n so that R 2 /n 2 is the good order. Finally

C P (µ) ≤ max 4 n 2 , n (n + 2)(n -1) R 2 .
This bound is not sharp, but asymptotically sharp. Indeed µ(1/ρ 2 ) = n n-2 R -2 , so that according to the discussion in remark , C P (µ) ≥ n-2 n(n-1) R 2 . Notice that the upper bound better is exactly the one obtained in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF] Theorem 1.2, while the lower bound is better than the one in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF]. Theorem 1.2 in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF] deals with general radial log-concave measures. by using dedicated tools for log-concave one dimensional measures, we shall come back to this later.

We turn now to the log-Sobolev constant assuming first that n ≥ 3. First

B -= sup 0≤x<mn x 2 n(n -2) 1 -(x/m n ) n-2 ln(1 + (R/x) n ) , so that using ln(1 + u n ) ≤ ln 2 + n ln(u) for u ≥ 1, we deduce B -≤ R 2 n -2 sup u≥1 1 u 2 ln 2 n + ln u ≤ c 1 R 2 n -2 , with c 1 = 1 2e + ln 2 n ≤ 1. Similarly, using ln(1 + u n ) ≥ n ln u for u ≥ 1 we have B -≥ R 2 n -2 sup 2 1/n ≤u ln u u 2 1 -2 (n-2)/n u -(n-2) ≥ c 2 R 2 n -2 ,
with for instance c 2 = ln 2/16 obtained by choosing u = 4. Next

B + = sup mn<x≤R (1 -(x/R) n ) R 2 n(n -2) 2 (n-2)/n -(R/x) n-2 ln 1 + 1 1 -(x/R) n , so that B + ≤ R 2 n(n -2) sup 0<v≤1 (v ln(1 + (1/v))) ≤ R 2 n(n -2)
.

Gathering all this we obtain that ln 2 192

R 2 n -2 ≤ C LS (µ r ) ≤ 10 R 2 n -2 .
Note that choosing f (x) = x one gets the better lower bound

C LS (µ r ) ≥ R 2 n 2 n + 2 ln(1 + 2 n ) - 2 n + 2 ≥ 2 R 2 n -2 (n + 2) 2 .
Using Corollary 4.3 we have thus shown, since C LS (µ) ≥ C LS (µ r ), and after simple manipulations Proposition 5.6. For all n ≥ 3 the uniform measure µ on the euclidean ball of radius R satisfies 1

2 (n-2) R 2 (n+2) 2 ≤ C LS (µ) ≤ 10 R 2 n-2 . 20 
Example 5.7. Spherically symmetric log-concave measures.

The previous example is a particular example of a radial log-concave measure, i.e. µ(dx) = e -V (|x|) dx where V is convex and non decreasing. Actually for what follows (in the radial situation) we do not need V to be non decreasing, but still convex.

For such measures the Poincaré constant was first studied by Bobkov in [START_REF] Bobkov | Spectral gap and concentration for some spherically symmetric probability measures[END_REF]. Bobkov's result was improved by Bonnefont-Joulin-Ma in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF] Theorem 1.2 who states that for such measures µ(ρ 2 ) n ≤ C P (µ) ≤ µ(ρ 2 ) n -1 .

(5.1)

The case of the log-Sobolev constant was not really addressed in the specific radial situation, but rather for general log concave distributions. Define

Orl(µ) = inf{ t > 0 ; exp(|x -µ(x)| 2 /t 2 ) µ(dx) ≤ 2 } .
Then, according to Bobkov's theorem 1.3 in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF], if µ is log-concave

C LS (µ) ≤ C Orl 2 (µ) (5.2)
the right hand side being finite or infinite. When µ is supported by a bounded set K, this yields the rough bound C LS (µ) ≤ C diam 2 (K). The latter has been improved in [START_REF] Lee | Stochastic localization + Stieltjes barrier = tight bound for Log-Sobolev[END_REF] Theorem 8, where it is shown that C LS (µ) ≤ C diam(K) provided µ is isotropic (i.e. its covariance matrix equals identity). Notice that Bobkov's Corollary 2.3 in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] tells that C LS (µ) ≤ 2 (C P (µ) + diam(K) C P (µ)) , (5.3) so that, it also furnishes the diameter bound if the K-L-S conjecture is true.

Actually the specific radial case was only addressed in [START_REF] Huet | Isoperimetry for spherically symmetric log-concave probability measures[END_REF] where the author studies the isoperimetric profile of radial log concave distributions (see theorem 4 and theorem 5 therein). Connections between the log-Sobolev constant and the isoperimetric profile are strong in the log-concave situation (see [START_REF] Milman | On the role of convexity in functional and isoperimetric inequalities[END_REF] Theorem 1.2) but the results of [START_REF] Huet | Isoperimetry for spherically symmetric log-concave probability measures[END_REF] are not easy to handle with. We will thus use our previous results to derive explicit bounds.

Writing µ r (dρ) = n ω n ρ n-1 e -V (ρ) dρ with ω n the volume of the unit euclidean ball, we see that µ r is also log-concave. One can thus apply Bobkov's results in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF], starting with Proposition 4. Using (5.4) and remark 5.5, one can also derive some lower bound.

If we assume in addition that µ is supported by a bounded set K, we may obtain other bounds using our Corollary 4.3 (the same with Theorem 4.4). First we may translate µ so that its support is included in the centered euclidean ball with radius diam(K)/2. But we may also remark that µ r (dρ) = Z -1 n e (n-1) ln ρ-V (ρ) dρ = Z -1 n e -W (ρ) dρ with

W (ρ) = V (ρ) + n -1 ρ 2 ≥ 4(n -1) diam 2 (K) .
According to Bakry-Emery criterion (see e.g. [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Proposition 5.7.1) we deduce C LS (µ r ) ≤ diam 2 (K) 2(n -1) .

(5.5)

Applying Corollary 4.3 we have thus obtained Theorem 5.9. For any radial log-concave probability measure µ whose support K is bounded,

C LS (µ) ≤ C diam 2 (K) (n -1) .
This bound is sharp in the sense that a similar lower bound is true for the uniform measure on a ball (recall Proposition 5.6).

When the diameter is less than n this result is better than [START_REF] Lee | Stochastic localization + Stieltjes barrier = tight bound for Log-Sobolev[END_REF]. Actually we do not need µ to be isotropic contrary to [START_REF] Lee | Stochastic localization + Stieltjes barrier = tight bound for Log-Sobolev[END_REF]. In general there is no control on the diameter of K for an isotropic log-concave measure (or more generally for an almost isotropic measure i.e. such that Cov ≤ Id in the sense of quadratic forms), except of course that diamK ≥ √ n.

I 2 Proposition 2 . 1 .

 221 σn is described in by Bobkov and Houdré in [10] Lemma 9.1 and Lemma 9.Let n ≥ 3. Define
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 4 Orl 2 (µ r ) ≤ C LS (µ r ) ≤ 48 Orl 2 (µ r ) (5.4)whereOrl(µ r ) = inf{ t > 0 ; exp((ρ -µ r (ρ)) 2 /t 2 ) µ r (dρ) ≤ 2 } .As a byproduct we get thanks to Theorem 4.5 and (5.1)Proposition 5.8. If µ is a radial log-concave distribution, C LS (µ) ≤ C Orl 2 (µ r ) + µ(ρ 2 ) √ n -1 .

  , see in particular Proposition 8.3.2 and Proposition 8.4.1, from which one can deduce the (slightly worse bound) β SP µ (t) ≤ e 96 C LS (µ)-2/t . The converse part is a consequence of [2]. Lemma 3.6. [see [2] Proposition 8.3.2 and Proposition 8.4.1] Conversely, if β SP µ (t) ≤ C 1 e C 2 /t and µ satisfies a Poincaré inequality with constant C P (µ), then
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