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POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES FOR

NEARLY RADIAL MEASURES.

PATRICK CATTIAUX ♠ , ARNAUD GUILLIN ♦, AND LIMING WU ♦

♠ Université de Toulouse

♦ Université Clermont-Auvergne

Abstract. If Poincaré inequality has been studied by Bobkov for radial measures, few is
known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap
here using different methods: Bobkov’s argument and super-Poincaré inequalities, direct
approach via L1-logarithmic Sobolev inequalities. We also give various examples where the
obtained bounds are quite sharp. Recent bounds obtained by Lee-Vempala in the logconcave
bounded case are refined for radial measures.

Key words : radial measure, logconcave measure, Poincaré inequality, logarithmic Sobolev
inequality, Super-Poincaré inequality.
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1. Introduction

Let µ(dx) = Z−1 e−V (x) dx be a probability measure defined on Rn (n ≥ 2). We do not
require regularity for V and allow it to take values in R ∪ {−∞,+∞}. We only require that∫
e−V dx = 1, or more generally that the previous integral is finite. We denote by µ(f) the

integral of f w.r.t. µ.

We will be interested in this note by functional inequalities verified by the measure µ. Recall
that µ satisfies a Poincaré inequality if for all smooth f ,

Varµ(f) := µ(f2)− µ2(f) ≤ CP (µ)µ(|∇f |2) , (1.1)

and that it satisfies a log-Sobolev inequality if for all smooth f

Entµ(f2) := µ(f2 ln(f2))− µ(f2) ln(µ(f2)) ≤ CLS(µ)µ(|∇f |2) . (1.2)

CP and CLS are understood as the best constants for the previous inequalities to hold. We
refer to [1, 2, 29] among many others, for a comprehensive introduction to some of the useful
consequences of these inequalities and their most important properties, such as convergence
to equilibrium (in L2 or in entropy) or concentration of measure.

If µ is not normalized as a probability measure, (1.1) reads as

µ(f2) − (1/µ(Rn)) µ2(f) ≤ CP (µ)µ(|∇f |2) . (1.3)
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One key feature of these inequalities is their tensorization property namely

CP (µ⊗ ν) = max(CP (µ), CP (ν))

(the same for CLS) giving a natural way to control these constants for product measures.

Another particular family of measures is the set of radial (or spherically symmetric) measures
or more generally measures admitting a decomposition

µ(dx) = µr(dρ)µa(dθ) (1.4)

with x = ρ θ, ρ ∈ R+ and θ ∈ Sn−1. This amounts to V (x) = Vr(ρ) + Va(θ) and

µ(dx) = nωn ρ
n−1 e−Vr(ρ) e−Va(θ) σn(dθ)

where σn denotes the uniform distribution on Sn−1 and ωn denotes the volume of the unit
euclidean ball.

We shall call these measures nearly radial. When µa = σn we simply say radial and when Va
is bounded below and above we will say almost radial.

It is natural to ask how to control CP (µ) and CLS(µ) in terms of constants related to µr and
µa. Since µa is supported by the sphere we will use the natural riemanian gradient, in other
words, for θ ∈ Sn−1, we will decompose

∇f = ∇θf +∇θ⊥f := 〈∇f, θ〉+ Πθ⊥∇f
where Πθ⊥ denotes the orthogonal projection onto θ⊥.

Though natural it seems that the previous question was not often addressed in the literature
with the notable exception of radial log-concave measures for which S. Bobkov (see [8])
studied the Poincaré constant (his result is improved in [13]) and for which Huet (see [22])
studied isoperimetric properties.

Our main results in the radial (or almost radial) case say that both the Poincaré and the log-
Sobolev constant are controlled up to universal constants, by the corresponding constants for
the radial part µr and µ(ρ2)/(n−1) for Poincaré and some slightly more intricate combinaition
for log-Sobolev, i.e.

Theorem 1.1. Let µ be a radial measure.

(1) (Bobkov’s result)

CP (µ) ≤ max

(
CP (µr),

µ(ρ2)

n− 1

)
.

(2) (Th. 4.5) there exists an universal constant c such that

CLS(µ) ≤ c

(
CLS(µr) + µ(ρ) max

(
CP (µr),

µ(ρ2)

n− 1

)1/2
)
.

Other results and some consequences are also described. More precisely, the “tensorization”
part of Bobkov’s proof is elementary and will be explained in Section 3, where we will also
show how it applies to other types of Poincaré inequalities (weak or super). As a byproduct
we will obtain a first (bad) bound for the log-Sobolev constant.

In section 4 we propose a direct approach of the logarithmic Sobolev inequality for (almost)
radial measures. This approach uses in particular Lq (1 ≤ q ≤ 2) log-Sobolev inequalities
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for the uniform measure on the sphere we establish in Section 2, based on the study made
in [10] and results in [26]. In the framework of general log-concave measures, similar ideas
already appear in [7].

All these results are applied in section 5 to some examples. In particular, in the radial case,
we improve upon the bound recently obtained by Lee and Vempala ([25]) for compactly
supported (isotropic) log-concave measures. It reads

Theorem 1.2 (Th 5.9). For any radial logconcave probability measure µ whose support K
is bounded then

CLS(µ) ≤ C diam2(K)

n− 1
for some universal constant C.

Additional notations.

Let us recall the L1 inequalities we are interested in, namely Cheeger (or L1 Poincaré)
inequality

µ(|f −mµf |) ≤ C
∫
|∇f | dµ (1.5)

where mµf denotes a µ-median of f and similarly the Lq log-Sobolev inequality (1 ≤ q ≤ 2)

µ(|f |q ln(|f |q)) − µ(|f |q) ln(µ(|f |q)) ≤ C

∫
|∇f |q dµ . (1.6)

As usual we denote by CC(µ) and CLSq(µ) the optimal constants in the previous inequalities.
It is known (see e.g. [7]) that CP (µ) ≤ 4C2

C(µ). One can also show that there exists an
universal constant D such that CLS(µ) ≤ DC2

LS1(µ) (see below).

These inequalities are strongly related to the isoperimetric profile of µ. Recall that the
isoperimetric profile Iµ of µ is defined for p ∈ [0, 1] as

Iµ(p) = inf
A s.t. µ(A)=p

µ+
n (∂A)

where

µ+
n (∂A) = lim inf

h→0

µ(Ah)− µ(A)

h

Ah being the geodesic enlargement of A of size h. Of course in “smooth” situations, as abso-
lutely continuous measures w.r.t. the natural riemanian measure on a riemanian manifold,
Iµ(p) = Iµ(1− p) so that it is enough to consider p ∈ [0, 1

2 ].

The following results are then well known (see e.g. [7] for the first one and [10] Theorem 1.1
for the second one)

Proposition 1.3. There is an equivalence between the following two statements:

1)
Iµ(p) ≥ C min(p, 1− p)

2) and (1.5) holds with constant 1/C.

There is an equivalence between the following two statements:

3)
for p ∈ [0, 1/2], Iµ(p) ≥ C p ln(1/p)
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4) and (1.6) holds for q = 1 and with constant 1/C.

According to the previous proposition a L1 log-Sobolev inequality implies

Iµ(p) ≥ (1/CLS1(µ)) p ln(1/p) ≥ ln(2) (1/CLS1(µ)) p ln1/2(1/p)

for p ∈ [0, 1/2]. According to the results in [12] the latter implies that CLS(µ) ≤ C2
LS1(µ)

for some new universal constant D.

2. The uniform measure on the sphere.

In this section we shall recall some properties of σn the uniform measure on the unit sphere

Sn−1. In what follows sn denotes the area of Sn−1 which is equal to 2πn/2

Γ(n/2) .

Many properties rely on the fact that the sphere Sn−1 satisfies the curvature-dimension
condition CD(n − 2, n − 1) (see [2] p.87). It follows from Proposition 4.8.4 and Theorem
5.7.4 in [2] that for n ≥ 3,

CP (σn) ≤ 1

n− 1
and CLS(σn) ≤ 2

n− 1
.

These bounds are also true for n = 2. It is easy to check for the Poincaré constant using
e.g. [2] Proposition 4.5.5 iii). For the logarithmic Sobolev inequality see [21]. Actually these
bounds are optimal (at least up to some universal constants).

Iσn is described in by Bobkov and Houdré in [10] Lemma 9.1 and Lemma 9.2

Proposition 2.1. Let n ≥ 3. Define

fn(t) =
sn−1

sn
(1− t2)

n−3
2 ; −1 ≤ t ≤ 1 .

Let Fn be the distribution function on [−1, 1] whose probability density is fn, Gn = F−1
n be

the inverse function of Fn. Then

Iσn(p) =
sn−1

sn
(1−G2

n(p))
n−2
2 .

Notice in particular that

Iσn(1/2) =
sn−1

sn
=

1√
π

Γ(n/2)

Γ((n− 1)/2)
.

Using the extension of Stirling’formula to the Γ function, one sees that

lim
n→+∞

√
2π/(n− 1)

sn−1

sn
= 1 , (2.1)

so that one can find universal constants c and C such that

c
√
n− 1 ≤ sn−1

sn
≤ C

√
n− 1 .

Using their Lemma 8.2, Bobkov and Houdré ([10]) also show in their section 9 that the
minimum of Iσn(p)/p(1− p) is attained for p = 1/2 so that for all p ∈ [0, 1/2]

Iσn(p) ≥ 1

2

sn−1

sn
p (2.2)
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and

CC(σn) = 2
sn
sn−1

≤ C√
n− 1

(2.3)

for some universal constant C. Actually, the application of Lemma 8.2 in [10] to Iασn for
α ∈ [1, n/(n− 1)] furnishes some Sobolev inequality (see Proposition 8.1 in [10]).

Remark 2.2. Since the curvature dimension condition CD(n− 2, n− 1) implies CD(0,+∞)
for n ≥ 2 (i.e. σn is log-concave) it is known (see e.g. [27] for numerous references) that Iσn
is concave on [0, 1/2]. This furnishes another proof of (2.2).

Actually for any log-concave measure µ it was shown by Ledoux ([23] formula (5.8)) that

CC(µ) ≤ 6C
1
2
P (µ). The constant 6 is improved by 16/

√
π in [14] proposition 2.11. We

thus have the precise estimate CC(σn) ≤ (16/
√
π) (1/

√
n− 1) and a lower bound for the

isoperimetric profile linked to the Poincaré constant. Notice that the asymptotic (n→ +∞)
optimal constant here is 2/

√
π. ♦

Another remarkable property of log-concave measures identified by Ledoux ([23] Theorem 5.3)
for the usual (L2) log-Sobolev inequality and generalized in Theorem 1.2 of [26] by E. Milman,
is that the Lq log-Sobolev inequality also furnishes such a control for the isoperimetric profile,
more precisely for any log-concave probability measure µ and p ∈ [0, 1/2],

Iµ(p) ≥
√

2

34
√
CLS(µ)

p ln
1
2 (1/p) ,

in the case q = 2, and more generally there exists an universal constant c such that for all
1 ≤ q ≤ 2,

Iµ(p) ≥ c

C
1/q
LSq(µ)

p ln
1
q (1/p) .

The converse statement Iµ(p) ≥ cµ p ln
1
q (1/p) implies CLSq(µ) ≤ C 1

cqµ
for some universal

constant C does not require log-concavity and was shown by Bobkov-Zegarlinski [12].

Our goal is now to determine the best possible constant Cn(q) (best in terms of the dimension)
such that

Iσn(p) ≥ Cn(q) p ln1/q(1/p) , (2.4)

and then to apply the equivalence we explained before to derive the best possible Lq log-
Sobolev inequality for σn.

We shall consider p = Fn(x) in order to have a tractable expression

Iσn(Fn(x)) =
sn−1

sn
(1− x2)

n−2
2 .

To this end we will use the following elementary lemma

Lemma 2.3. For all x ∈ [−1, 0) define An(x) = 1
(n−1) (1− x2)1/2 Iσn(F (x)). It holds

An(x) ≤ Fn(x) ≤ An(x)

−x
.
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Proof. For all x ∈ [−1, 0), we have on one hand,

Fn(x) =

∫ x

−1

sn−1

sn
(1− u2)(n−3)/2 du

≤
∫ x

−1

sn−1

sn

−u
−x

(1− u2)(n−3)/2 du

=
sn−1

(−x)(n− 1)sn
(1− x2)(n−1)/2 =

1

(−x)(n− 1)
(1− x2)1/2 Iσn(F (x)) .

On the other hand

Fn(x) =

∫ x

−1

sn−1

sn
(1− u2)(n−3)/2 du

≥
∫ x

−1

sn−1

sn
(−u) (1− u2)(n−3)/2 du

=
sn−1

(n− 1)sn
(1− x2)(n−1)/2 =

1

(n− 1)
(1− x2)1/2 Iσn(F (x)) .

�

It follows for Fn(x) ≤ 1/2 and provided (−x)/An(x) > 1 (for its logarithm to be positive),

Fn(x) ln1/q(1/Fn(x)) ≥ Fn(x) ln1/q((−x)/An(x)) ≥ An(x) ln1/q((−x)/An(x)) .

But

ln((−x)/An(x)) ≥ ln(−x) +
n− 1

2
ln(1/(1− x2)) ≥ ln(−x) +

1

4
ln(1/(1− x2)) ≥ 0

for all x ∈ (−1,−a] for some 0 < a < 1 using continuity, so that for x ≤ −a,

ln(−x) +
n− 1

2
ln(1/(1− x2)) ≥ 2n− 3

4
ln(1/(1− x2)) .

This yields for such an x,

Fn(x) ln1/q(1/Fn(x)) ≥ 1

(n− 1)
(1−x2)1/2 Iσn(F (x))

(
2n− 3

4
ln(1/(1− x2)) + ln

(
(n− 1)sn
sn−1

))1/q

and finally that there exists a constant c(q) such that for such an x,

Fn(x) ln1/q(1/Fn(x)) ≥ c(q) (n− 1)
q−1
q Iσn(Fn(x)) . (2.5)

In particular the constant Cn(q) in (2.4) cannot be bigger than a constant times (n− 1)
q−1
q .

For q = 1, it is known (see Theorem 2 in [24]) that

Iσn(p) ≥ 1

2π
p ln(1/p)

for p ∈ [0, 1/2], so that if not optimal, this result is optimal up to a constant.

Since we cannot hope a better result, our goal will be now to prove that

Cn(q) ≥ C(q) (n− 1)
q−1
q .

To this end we will take advantage of Ledoux’s result applied to σn, i.e.

Iσn(p) ≥ C(2)
√
n− 1 p ln1/2(1/p) . (2.6)
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Indeed, its is easy to check that

√
n− 1 p ln1/2(1/p) ≥ (n− 1)

q−1
q p ln1/q(1/p)

as soon as p ≥ e−(n−1). It is thus enough to consider the remaining p = Fn(x) ≤ e−(n−1).
Using lemma 2.3 we thus have

sn−1

(n− 1)sn
(1− x2)(n−1)/2 ≤ e−(n−1)

so that

ln(1− x2) ≤ 2

(
−1 +

ln((n− 1)sn/sn−1)

n− 1

)
≤ 2

(
−1 +

ln(n− 1)

n− 1

)
≤ −2

e− 1

e
,

which implies

x ≤ −
(

1− e−2(e−1)/e
) 1

2
= y . (2.7)

We can thus deduce, for such an x

Fn(x) ln1/q(1/Fn(x)) ≤ 1

(−x)(n− 1)
(1− x2)1/2 Iσn(F (x))(

ln((n− 1)sn/sn−1) +
n− 1

2
ln(1/(1− x2))

)1/q

≤ 1

(−y)(n− 1)
(1− x2)1/2 Iσn(F (x))(

ln1/q((n− 1)sn/sn−1) +

(
n− 1

2

)1/q

ln1/q(1/(1− x2))

)
≤ D (n− 1)

q−1
q Iσn(F (x)) , (2.8)

for some constant D. We may thus state

Proposition 2.4. Let n ≥ 3. For any 1 ≤ q ≤ 2 there exist constants C and C(q) such that
for all p ∈ [0, 1/2] one has

Iσn(p) ≥ C (n− 1)
1− 1

q p ln1/q(1/p) ,

yielding

CLSq(σn) ≤ C(q)

(
1

n− 1

)q−1

.

Actually all constants can be chosen independently of q ∈ [1, 2]. The bound is optimal with
respect to the dimension.
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3. Poincaré inequality and variants for nearly radial measures.

Let us explain Bobkov’s tensorization method.

For µ(dx) = µr(dρ)µa(dθ) and a smooth f one has first∫
f2(ρ θ)µr(dρ) ≤ CP (µr)

∫
〈∇f(ρθ), θ〉2 µr(dρ) +

(∫
f(ρθ)µr(dρ)

)2

= CP (µr)

∫
|∇θf(ρθ)|2 µr(dρ) +

(∫
f(ρθ)µr(dρ)

)2

. (3.1)

Integrating with respect to µa we obtain

µ(f2) ≤ CP (µr)µ(|∇θf |2) +

∫ (∫
f(ρθ)µr(dρ)

)2

µa(dθ) . (3.2)

But if we define w(θ) =
∫
f(ρθ)µr(dρ) it holds,∫ (∫

f(ρθ)µr(dρ)

)2

µa(dθ) ≤ CP (µa)

∫
|∇w(θ)|2 µa(dθ) +

(∫
w(θ)µa(dθ)

)2

≤ CP (µa)

∫ ∣∣∣∣∫ ρ∇θ⊥f(ρθ)µr(dρ)

∣∣∣∣2 µa(dθ) + µ2(f)

≤ CP (µa)µr(ρ
2)µ(|∇θ⊥f |2) + µ2(f) , (3.3)

where we have used the Cauchy-Schwarz inequality in the last inequality. Here we assume
that the Poincaré constant of µa on the sphere Sn−1 is w.r.t. the usual gradient and not the
gradient on the sphere. Using that

|∇θf |2 + |∇θ⊥f |2 = |∇f |2 ,

we have thus obtained

Theorem 3.1. If µ(dx) = µr(dρ)µa(dθ) then

CP (µ) ≤ max(CP (µr) , µr(ρ
2)CP (µa)) .

Recall that if CP (µr) < +∞ then µr(e
λρ) < +∞ for λ < 2/

√
CP (µr) (see e.g. [1]) so that

µr(ρ
2) is finite too.

A weak version of the Poincaré inequality has been introduced in [28] (also see the related
papers [3, 9, 16]). A weak Poincaré inequality is a family of inequalities taking the form: for
any t > 0 and all smooth f ,

Varµ(f) ≤ βWP
µ (t)µ(|∇f |2) + tOsc2(f) (3.4)

where βWP
µ is a non increasing function that can explode at t = 0 (otherwise the classical

Poincaré inequality is satisfied) and Osc(f) denotes the Oscillation of f . The previous proof
shows that

Theorem 3.2. If µ(dx) = µr(dρ)µa(dθ) then

βWP
µ (t) ≤ max(βWP

µr (t/2) , µr(ρ
2)βWP

µa (t/2)) .
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The integrability of ρ2 is ensured as soon as βWP
µ does not explode too quickly at the origin

(see e.g. [3]).

Similarly one can reinforce the Poincaré inequality introducing super Poincaré inequalities
([29, 30, 4, 5, 18, 2]): for any t ≥ 1 and all smooth f

µ(f2) ≤ δµ(t)µ(|∇f |2) + t µ2(|f |) , (3.5)

which is called a generalized Nash inequality in [2] Chapter 8.4. Here δµ is assumed to be a
non increasing function. It immediately follows CP (µ) ≤ δµ(1). If δµ(t)→ 0 as t→ +∞ one
may consider the inverse function βSPµ (t) = δ−1

µ (t) defined for t ∈]0, δµ(1)] and which is non
increasing with values in [1,+∞[. We can thus rewrite (3.5) as: for t ∈]0, δµ(1)],

µ(f2) ≤ t µ(|∇f |2) + βSPµ (t)µ2(|f |) . (3.6)

Conversely, assume that there exists a function β (that can always be chosen non increasing)
defined for t > 0 and such that

µ(f2) ≤ t µ(|∇f |2) + β(t)µ2(|f |)
for all t > 0 and nice function f . Applying this inequality to constant functions shows that
β(t) ≥ 1 for all t. But we may replace β(t) by 1 as soon as t ≥ CP (µ).

It is known that if βSPµ (t) behaves like cec
′/t as t→ 0, (3.6) together with a Poincaré inequality

is equivalent to the logarithmic Sobolev inequality (see below).

Following the same route we immediately get that for any positive t and s,

µ(f2) ≤ (s+ βSPµr (s) t µr(ρ
2))µ(|∇f |2) + βSPµr (s)βSPµa (t)µ2(|f |) . (3.7)

Of course this is a new super Poincaré inequality or more precisely a new family of super
Poincaré inequalities. The most natural choice (not necessarily the best one) is

t =
s

µ(ρ2)βSPµr (s)

yielding the following

Theorem 3.3. If µ(dx) = µr(dρ)µa(dθ) then

βSPµ (t) ≤ βSPµr (t/2)βSPµa

(
t

2µ(ρ2)βSPµr (t/2)

)
.

3.1. The radial case.

If µ is radial i.e. µa = σn the uniform measure on Sn−1, we deduce from CP (σn) ≤ 1
n−1 (see

section 2), that

CP (µ) ≤ max

(
CP (µr) ,

µr(ρ
2)

n− 1

)
. (3.8)

Actually σn satisfies the much stronger Sobolev inequality (for n ≥ 4 see [2] p.308 written
for spherical gradient but recall the introduction)

‖ g ‖22n−2
n−3

≤ σn(g2) +
4

(n− 1)(n− 3)
σn(|∇g|2) . (3.9)



10 P. CATTIAUX, A. GUILLIN, AND L. WU

We deduce from this and the Poincaré inequality, the following inequality

‖ g ‖22n−2
n−3

≤ σ2
n(g) +

cn
n− 1

σn(|∇g|2) , (3.10)

with cn = n+1
n−3 .

One can thus derive the corresponding βSPσn . If one wants to see the dimension dependence
one has to be a little bit careful.

First we apply Hölder’s inequality for p > 2,

σn(g2) ≤ σ
1
p−1
n (|g|p) σ

p−2
p−1
n (|g|) ,

then choose p = 2n−2
n−3 , yielding according to what precedes

σn(g2) ≤
(
σ2
n(g) +

cn
n− 1

σn(|∇g|2)

)n−1
n+1

σ
4

n+1
n (|g|)

≤ σ2
n(|g|) +

(
cn

n− 1
σn(|∇g|2)

)n−1
n+1

σ
4

n+1
n (|g|) .

Recall Young’s inequality: for all p > 1 and a, b, t > 0,

ab ≤ t a
p

p
+ t−(q−1) b

q

q

with 1/p+ 1/q = 1. We deduce from what precedes, this time with p = (n+ 1)/(n− 1),

σn(g2) ≤ t σn(|∇g|2) +

(
1 +

1

(n+ 3)(n−1)/2
t−(n−1)/2

)
σ2
n(|g|)

and finally that

βSPσn (t) ≤ 1 +
1

(n+ 3)(n−1)/2
t−(n−1)/2 . (3.11)

We can thus plug (3.11) in Theorem 3.3 and get

Corollary 3.4. If µ(dx) = µr(dρ)σn(dθ) and n ≥ 4, then

βSPµ (t) ≤ βSPµr (t/2)

1 +

(
µ(ρ2)βSPµr (t/2)

(n+ 3)

)(n−1)/2
 .

The cases n = 2 and n = 3 can be studied separately.

3.2. Application to the log-Sobolev inequality.

In this subsection we assume that µ is (almost) radial as in the previous subsection.

The equivalence between a log-Sobolev inequality and a super-Poincaré inequality is well
known (see e.g. [29] Theorems 3.3.1 and 3.3.3, despite some points we do not understand
in the proofs). But here we need precise estimates on the constants. One way to get these
estimates is to use the capacity-measure description of these inequalities following the ideas
in [5] (also see [31] for some additional comments).
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Lemma 3.5. [see [15] Proposition 3.4]

If µ satisfies a logarithmic-Sobolev inequality with constant CLS(µ) then βSPµ (t) ≤ 2 e2CLS(µ)/t.

A simplified version of the results of [5, 4] is contained in [2], see in particular Proposition
8.3.2 and Proposition 8.4.1, from which one can deduce the (slightly worse bound) βSPµ (t) ≤
e96CLS(µ)−2/t.

The converse part is a consequence of [2].

Lemma 3.6. [see [2] Proposition 8.3.2 and Proposition 8.4.1]

Conversely, if βSPµ (t) ≤ C1 e
C2/t and µ satisfies a Poincaré inequality with constant CP (µ),

then

CLS(µ) ≤ 64

(
C2 + ln

(
1 ∨ (1 + 2e2)C1

4

)
CP (µ)

)
.

Proof. Recall that it is enough to look at t ≤ CP (µ) and then take βSPµ (t) = 1 for t ≥ CP (µ).

So we may replace C1 e
C2/t by the larger 4

1+2e2
eC
′
2/t with

C ′2 = C2 + CP (µ) ln

(
1 ∨ (1 + 2e2)C1

4

)
.

In [2] terminology we thus have δ(s) = C ′2/ ln(s(1 + 2e2)/4), that satisfies the assumptions
of Proposition 8.4.1 in [2] with q = 4. We thus get for µ(A) ≤ 2,

Capµ(A) ≥ µ(A) ln((1 + 2e2)/2µ(A))

8C ′2
.

But for µ(A) ≤ 1/2,

ln((1 + 2e2)/2µ(A)) ≥ ln

(
1 +

e2

µ(A)

)
.

We may thus apply Proposition 8.3.2 in [2] yielding CLS(µ) ≤ 64C ′2. �

Hence if µr satisfies a log-Sobolev inequality, βSPµr (t) ≤ 2e2CLS(µr)/t so that using Corollary
3.4,

βSPµ (t) ≤ 2 e2CLS(µr)/t + 2

(
2µ(ρ2)

n+ 3

)(n−1)/2

e(n+1)CLS(µr)/t . (3.12)

Once again since we only have to look at t < CP (µ), and using (3.8), we obtain the following
worse bound

βSPµ (t) ≤ 2

(
e−(n−1)CLS(µr)/max(CP (µr),

µ(ρ2)
n−1

) +

(
2µ(ρ2)

n+ 3

)(n−1)/2
)
e(n+1)CLS(µr)/t .

(3.13)
But we can use the following homogeneity property of the log-Sobolev and the Poincaré
inequalities: defining for λ > 0,∫

f(z)µλ(dz) =

∫
f(λz)µ(dz) ,

it holds CLS(µλ) = λ2CLS(µ) (the same for CP (µ)).
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Looking at the pre-factor in (3.13), we see that making λ go to 0, the second term goes to 0
while the first one is unchanged. Using the homogeneity properties for both µ and µr, and
using lemma 3.6 again, we have thus obtained

CLS(µ) ≤ 64

(
(n+ 1)CLS(µr) + C max

(
CP (µr),

µ(ρ2)

n− 1

))
, (3.14)

where

C = ln

(
1 ∨ 1 + 2e2

2
e−(n−1)CLS(µr)/max(CP (µr),

µ(ρ2)
n−1

)

)
.

Of course in many (almost all) situations C = 0. Using CP (µr) ≤ CLS(µr)/2 it is not very
difficult to show that C 6= 0 if and only if

µ(ρ2) ≥ 2(n− 1)2CLS(µr)

1 + e2
,

in which case C ≤ ln(1 + e2).

These results extend to the “almost” radial situation, using the standard perturbation re-
sult for a (super)-Poincaré inequality or a log-Sobolev inequality, as explained in the next
Corollary

Corollary 3.7. Assume that µ(dx) = µr(dρ)µa(dθ) with

m ≤
∣∣∣∣∣∣∣∣dµadσn

∣∣∣∣∣∣∣∣
∞
≤M

where σn is the uniform probability measure on Sn−1. Then

CP (µ) ≤ CP (µr) +
M

m

µr(ρ
2)

n− 1
.

If n ≥ 4 and µr satisfies a log-Sobolev inequality then so does µ and

CLS(µ) ≤ 64
M

m
(n+ 1)CLS(µr) ,

except if µ(ρ2) ≥ 2(n−1)2 CLS(µr)
1+e2

in which case

CLS(µ) ≤ 64
M

m

(
(n+ 1)CLS(µr) + ln(1 + e2)

µ(ρ2)

n− 1

)
.

The previous two bounds amounts to the existence of an universal constant C such that

CLS(µ) ≤ C
M

m
max

(
nCLS(µr) ,

µ(ρ2)

n− 1

)
.

We may of course adapt the above proof to characterize the logarithmic Sobolev inequality
starting from Theorem 3.3, i.e:

Theorem 3.8. Assume that n ≥ 4, µ(dx) = µr(dρ)µa(dθ) and that µa satisfies a super
Poincaré inequality with βSPµa (t) = Ca t

−κ. Then

CLS(µ) ≤ 64
(
c(κ)CLS(µr) + c µr(ρ

2)CP (µa)
)
.
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4. The Logarithmic-Sobolev inequality in the nearly radial case.

4.1. An alternate direct approach.

Instead of using super Poincaré inequalities, let us try to directly mimic Bobkov’s ten-
sorization in the case of log-Sobolev. First∫

(f2 ln(f2))(ρ θ)µr(dρ) ≤ CLS(µr)

∫
|∇θf(ρθ)|2 µr(dρ) +

+

(∫
f2(ρθ)µr(dρ)

)
ln

(∫
f2(ρθ)µr(dρ)

)
, (4.1)

so that integrating with respect to µa we get

Entµ(f2) ≤ CLS(µr)µ(|∇θf |2) + Entµa(w2) (4.2)

with

w(θ) =

(∫
f2(ρθ)µr(dρ)

) 1
2

,

after having remarked that

µ(f2) ln(µ(f2)) = µa(w
2) ln(µa(w

2)) .

We are thus facing a difficulty. Indeed

∇w(θ) =

∫
f(ρθ) ρ∇θ⊥f(ρθ)µr(dρ)(∫

f2(ρθ)µr(dρ)
) 1

2

.

Hence if we use the classical log-Sobolev inequality

Entµa(w2) ≤ CLS(µa)µa(|∇w|2)

≤ CLS(µa)

∫ (∫
f(ρθ) ρ∇θ⊥f(ρθ)µr(dρ)

)2∫
f2(ρθ)µr(dρ)

µa(dθ) . (4.3)

Using Cauchy-Schwarz inequality in two different ways we have obtained

Proposition 4.1. If µ(dx) = µr(dρ)µa(dθ), then

(1)

Entµ(f2) ≤ max
(
CLS(µr) , ‖ ρ ‖2L∞(µr)

CLS(µa)
)
µ(|∇f |2) .

(2)

Entµ(f2) ≤ max (CLS(µr) , CLS(µa)) µ((1 ∨ ρ)2 |∇f |2) .

Since the log-Sobolev inequality is preserved when translating µ, the first inequality in Propo-
sition 4.1 implies

Corollary 4.2. If µ(dx) = µr(dρ)µa(dθ) and µ is supported by a bounded set K, then

CLS(µ) ≤ max

(
CLS(µr) ,

diam2K

4
CLS(µa)

)
.
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The second inequality in Proposition 4.1 is a weighted log-Sobolev inequality, with weight
(1∨ ρ)2, which is much weaker than the log-Sobolev inequality. These inequalities have been
studied for instance in [30, 20]. Consequences in terms of concentration, rate of convergence
or transport are in particular discussed in section 3 of [20]. The weight (1 ∨ ρ)2 is however
too big for being really interesting. In particular this weighted log-Sobolev inequality does
not imply a Poincaré inequality in whole generality.

Now consider the almost radial situation. According to section 2, CLS(σn) ≤ 2
n−1 for n ≥ 2.

It thus follows from corollary 4.2 and perturbation arguments

Corollary 4.3. For all µ(dx) = µr(dρ)µa(dθ) supported by some bounded set K and satis-
fying

m ≤
∣∣∣∣∣∣∣∣dµadσn

∣∣∣∣∣∣∣∣
∞
≤M ,

it holds

CLS(µ) ≤ max

(
CLS(µr) ,

M

m

diam2K

2(n− 1)

)
. (4.4)

4.2. The (almost) radial case.

Assume for a moment that µa = σn. Rewrite (4.2),

µ(f2 ln(f2)) ≤ CLS(µr)µ(|∇θf |2) +

∫
gq lnq(g) dσn (4.5)

with g(θ) =
(∫

f2(ρ θ)µr(dρ)
)1/q

and 1 ≤ q ≤ 2.

Instead of the usual log-Sobolev inequality, we may now use the Lq log-Sobolev inequality
for σn we have obtained in section 2. It thus holds∫

gq ln(gq) dσn ≤ c (n− 1)1−q
∫
|∇θ⊥g|q dσn +

(∫
gq dσn

)
ln

(∫
gq dσn

)
, (4.6)

so that

Entµ(f2) ≤ CLS(µr)µ(|∇θf |2) + c (n− 1)1−q
∫
|∇θ⊥g|q dσn .

Now ∫
|∇θ⊥g|q dσn =

2q

q

∫ (∫
f2(ρ θ)µr(dρ)

)1−q (∫
|f | |∇θ⊥f | ρµr(dρ)

)q
dσn

≤ 2q

q
‖ ρ ‖q∞

∫ (∫
f2 dµr

)1− q
2
(∫

|∇θ⊥f |2 dµr
) q

2

dσn

≤ 2q

q
‖ ρ ‖q∞

(∫
f2 dµ

)1− q
2
(∫

|∇θ⊥f |2 dµ
) q

2

(4.7)

where we have used Hölder’s inequality in the last line. If q = 1 we may also use the bound∫
|∇θ⊥g| dσn ≤ 2

∫ (∫
f2 ρ2 dµr

)1/2 (∫
|∇θ⊥f |2 dµr

) 1
2

dσn . (4.8)
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First use (4.7). Recall Rothaus lemma

Entµ(f2) ≤ Entµ((f − µ(f))2) + 2 Varµ(f) .

We may thus replace f by f − µ(f) and use Poincaré’s inequality in order to get∫
|∇θ⊥g|q dσn ≤

2q

q
‖ ρ ‖q∞ CP (µ)

(∫
|∇θ⊥f |2 dµ

)
. (4.9)

Gathering all these results, using again Poincaré inequality for bounding the variance and
Theorem 3.1, we thus have if µ is supported by K

Entµ(f2) ≤ CLS(µr)

∫
|∇θf(ρθ)|2 µr(dρ) + 2CP (µ)

(∫
|∇f |2 dµ

)
+ c(q) (n− 1)1−q diamq(K)CP (µ)

(∫
|∇θ⊥f |2 dµ

)
. (4.10)

It is easy to check that the best value of q is 2 if diamK ≤ (n− 1) and 1 if diamK ≥ (n− 1).
We have thus shown

Theorem 4.4. There exists an universal c such that, if µ is radial with bounded support K,

CLS(µ) ≤ 2 max

(
CP (µr) ,

µ(ρ2)

n− 1

)
+ max

(
CLS(µr) , c min

(
diamK ,

diam2(K)

n− 1

))
.

If µ is almost radial it is enough to multiply the previous bound by M/m.

Now we come back to (4.8).

Let us consider
∫
f2 ρ2 dµ integrating first w.r.t. µr. By using the variational description of

the relative entropy we have for any t > 0∫
f2(ρ θ) ρ2 µr(dρ) ≤ Entµr(f

2(. θ)) +
1

t
ln

(∫
etρ

2
µr(dρ)

) (∫
f2(ρ θ)µr(dρ)

)
. (4.11)

We may of course stop here to get a first control of the logarithmic Sobolev constant of µ by
uing recentering and Rothaus lemma (see the end of the argument) but les us see how using
the same approach will provide us with an easy to apprehend formulation of the logarithmic
Sobolev constant. We first use∫

f2 ρ2 dµr ≤ 2

∫
f2 (ρ− µ(ρ))2 dµ + 2µ2

r(ρ)

∫
f2 dµr ,

and using again the variational description of the relative entropy we have for any t > 0,∫
f2(ρ θ) (ρ−µ(ρ))2 µr(dρ) ≤ Entµr(f

2(. θ)) +
1

t
ln

(∫
et(ρ−µ(ρ))2 µr(dρ)

) (∫
f2(ρ θ)µr(dρ)

)
.

(4.12)
But since ρ 7→ ρ − µr(ρ) is 1-Lipschitz and of µr mean equal to 0, it is known (see e.g. [7]
formula (4.9)) that for t < 1/CLS(µr)∫

et(ρ−µ(ρ))2 µ(dρ) ≤ 1√
1− t CLS(µr)

.

For t = 1/2CLS(µr) we thus deduce∫
f2(ρ θ) (ρ−µ(ρ))2 µr(dρ) ≤ CLS(µr)

∫
|∇θf(ρ θ)|2 µr(dρ) + ln(2)CLS(µr)

∫
f2(ρ θ)µr(dρ) .
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Finally∫
f2 ρ2 dµ ≤ 2CLS(µr)

∫
|∇θf |2 dµ + 2(ln(2)CLS(µr) + µ2

r(ρ))

∫
f2 dµ . (4.13)

Replacing f by f − µ(f) and using the Poincaré inequality, we thus deduce∫
(f−µ(f))2 ρ2 dµ ≤ 2CLS(µr)

∫
|∇f |2 dµ+ 2(ln(2)CLS(µr) + µ2

r(ρ))CP (µ)

∫
|∇f |2 dµ .

Gathering all what precedes we get

Entµ((f − µ(f))2) ≤ Aµ(|∇f |2)

with

A = CLS(µr) + c
(
CLS(µr) + 2(ln(2)CLS(µr) + µ2(ρ))CP (µ))

) 1
2 . (4.14)

To conclude it remains to use Rothaus lemma again. We have thus obtained after some
simple manipulations using in particular 2CP ≤ CLS , the concavity of the square root, and
the homogeneity of the inequalities w.r.t. dilations as we did in order to get (3.14) but this
time with λ→ +∞, and finally (3.8) (replacing for simplicity the max by the sum)

Theorem 4.5. There exists an universal constant c such that, for all µ(dx) = µr(dρ)µa(dθ)
satisfying

m ≤
∣∣∣∣∣∣∣∣dµadσn

∣∣∣∣∣∣∣∣
∞
≤M ,

it holds

CLS(µ)) ≤ c
M

m

(
CLS(µr) + µ(ρ) max

(
CP (µr) ,

µ(ρ2)

n− 1

)1/2
)
.

Alternatively we have

CLS(µ)) ≤ c
M

m

(
CLS(µr) +

(
inf
t>0

1

t
ln

(∫
etρ

2
µr(dρ)

))1/2

max

(
CP (µr) ,

µ(ρ2)

n− 1

)1/2
)
.

Notice that if µ is supported by a bounded set K, we recover only partially the conclusion
of Corollary 4.3.

Remark 4.6. Of course the previous results are much better, in terms of the dimension
dependence, than Corollary 3.7 since the pre-factor of CLS(µr) is “dimension free” (more
precisely can be bounded from above by an universal constant), while the dimension appears
in front of CLS(µr) in Corollary 3.7. Let us remark also that the constant appearing in
the second formulation is close from the one obtained by Bobkov in dimension one [7]. It
will appear again in the next Section. Remark also that contrary to the corollary, the proof
cannot be extended to more general cases, except if the angular part µa satisfies a similar L1

log-Sobolev inequality. ♦

To finish this section, let us remark that one could also get another way to control (4.8)
by using Lyapunov conditions rather than using the Logarithmic Sobolev inequality for the
radial part. Of course, by [17], one also knows that in our setting a logarithmic Sobolev
inequality is equivalent to some Lyapunov type conditions. However we will see that in order
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to control (4.8) one needs a slightly weaker inequality. Indeed let us suppose here that there
exists W ≥ 1, a, b > 0 such that

ρ2 ≤ −aLρW
W

+ b (4.15)

where Lρf = f ′′− (V ′r + n−1
ρ )f ′ is the generator corresponding to the radial part of µ. Recall

now that we need to control ∫
f2ρ2µr(dρ).

Using (4.15) we get∫
f2ρ2µr(dρ) ≤ a

∫
f2−LW

W
µr(dρ) + b

∫
f2µr(dρ).

The first term is easily dealt with, using integration by parts or a large deviations argument
as in [18]: ∫

f2−LW
W

µr(dρ) ≤
∫
|∇θf(ρθ)|2µr(dρ).

We then use the same trick as before, i.e centering and Rothaus lemma to get

Proposition 4.7. Assume (4.15). There exists an universal constant c such that, for all
µ(dx) = µr(dρ)µa(dθ) satisfying

m ≤
∣∣∣∣∣∣∣∣dµadσn

∣∣∣∣∣∣∣∣
∞
≤M ,

it holds

CLS(µ)) ≤ c
M

m

(
CLS(µr) +

√
a+
√
bmax

(
CP (µr) ,

µ(ρ2)

n− 1

)1/2
)
.

Remark 4.8. Let us make a few comments about the Lyapunov condition (4.15). It has been
shown in [19] that it is a sufficient condition for Talagrand inequality, and that there exists
examples satisfying this condition and not a logarithmic Sobolev inequality. Nevertheless,
we need for the first part of the proof that the radial part satisfies a logarithmic Sobolev
inequality. More crucial are the values of the constants a and b with respect to the dimension.
If a can be chosen dimension free in usual cases, say Vr(ρ) = ρk, b is then of order n and
we then get an additional

√
n factor for the logarithmic Sobolev constant in this case. Of

course, it is surely better than the n factor by using Super-Poincaré inequality. ♦

5. Some applications in the (almost) radial case.

The main interest of the previous results is that they reduce the study of functional inequal-
ities for µ to the one of its radial part µr which is supported by the half line. For such
one dimensional measures explicit criteria of Muckenhoupt (or Hardy) type are well known
[1, 2, 6, 5, 4]). Let us recall the case of the Poincaré inequality (see e.g. [2] Theorem 4.5.1)
and of the log-Sobolev inequality (see [5] Theorem 7 with T (u) = 2u, or [15] Proposition 2.4
for a slightly different version).
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Proposition 5.1. Assume that µr is absolutely continuous w.r.t. Lebesgue measure with
density ρr. Assume in addition that the support of µr is an interval I. Let m be a median of
µr, then

1

2
max(b−, b+) ≤ CP (µr) ≤ 4 max(b−, b+)

and
1

12
max(B−, B+) ≤ CLS(µr) ≤ 10 max(B−, B+)

where

b− = sup
x∈I,0≤x<m

µr([0, x])

∫ m

x

1

ρr(ρ)
dρ

b+ = sup
x∈I,x>m

µr([x,+∞))

∫ x

m

1

ρr(ρ)
dρ

while

B− = sup
x∈I,0≤x<m

µr([0, x]) ln

(
1 +

1

µr([0, x])

) ∫ m

x

1

ρr(ρ)
dρ

B+ = sup
x∈I,x>m

µr([x,+∞)) ln

(
1 +

1

µr([x,+∞))

) ∫ x

m

1

ρr(ρ)
dρ .

Several methods are known to furnish estimates for quantities like µr([a,+∞[) or
∫

(1/ρr)
(see e.g. [1] chapter 6.4).

Remark 5.2. We will not study in more details the L1 inequalities on the real (half) line.
However, because it is immediate, let us only give an upper bound for CC .

Proposition 5.3. Let ν(dx) = e−W (x)dx be a probability measure on R.

Then CC(ν) ≤ max(b1−, b
1
+) where

b1− = sup
t∈R

eW (t) ν(]−∞, t]) and b1+ = sup
t∈R

eW (t) ν([t,+∞[) .

Proof. We simply write for any a,

ν(|f −mν(f)|) ≤ ν(|f − f(a)|) =

∫ ∣∣∣∣∫ x

a
f ′(t) dt

∣∣∣∣ ν(dx)

≤
∫ a

−∞

∫ a

x
|f ′(t)|dt ν(dx) +

∫ +∞

a

∫ x

a
|f ′(t)|dt ν(dx)

≤
∫ a

−∞
|f ′(t)| ν(]−∞, t]) dt +

∫ +∞

a
|f ′(t)| ν([t,+∞[) dt ,

and then write dt = eW (t) ν(dt) to get the result. �

It is possible to get a lower bound, and bounds for CLS1 using ad-hoc Orlicz spaces as in [10]
and the previous trick in one dimension. ♦

Remark 5.4. Before to study some simple examples, let us say a word about “optimality” in
the radial case.

Notice first that if f(x) = g(|x|), ∇f(x) = g′(|x|) x
|x| so that |∇f |2(x) = (g′(|x|))2. It follows

that CP (µ) ≥ CP (µr) and similarly for the log-Sobolev constant.
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If we take f(x) =
∑n

i=1 xi/|x|, Varµ(f) = 1 while µ(|∇f |2) = (n − 1)µ(1/ρ2) so that
CP (µ) ≥ 1/((n− 1)µ(1/ρ2). The latter is smaller than µ(ρ2)/(n− 1) but both quantities are
comparable in many situations. We shall see it on the examples below. ♦

In all the examples below, we will pay a particular attention to dimension dependence, so
that any sentence like “the good order” or “good dependence” has to be understood “with
respect to the dimension n.

Example 5.5. The uniform measure on an euclidean ball.

Consider the simplest example for radial µ i.e. the uniform measure on the euclidean ball of
radius R. The good order for the log-Sobolev constant has been derived in [11] Proposition
5.3 by pushing forward the gaussian distribution onto the uniform one on the ball (also see
Proposition 5.4 therein for the LSq inequality).

We shall obtain here similar bounds by using our results. First

µr(dρ) =
nρn−1

Rn
10≤ρ≤R dρ

so that the mean, the (unique) median, the second moment, the Variance of µr are respec-
tively:

µn =
n

n+ 1
R, mn = (1/2)1/nR, µr(ρ

2) =
n

n+ 2
R2, vn =

n

(n+ 2)(n+ 1)2
R2 .

It is then easily seen that b− and b+ are both less than R2

n(n−2) provided n > 2. The case n = 2

can be handled separately. It follows that CP (µr) ≤ 4 (R2/n2). We also have CP (µr) ≥ vn
so that R2/n2 is the good order. Finally

CP (µ) ≤ max

(
4

n2
,

n

(n+ 2)(n− 1)

)
R2 .

This bound is not sharp, but asymptotically sharp. Indeed µ(1/ρ2) = n
n−2 R

−2, so that

according to the discussion in remark , CP (µ) ≥ n−2
n(n−1) R

2.

Notice that the upper bound better is exactly the one obtained in [13] Theorem 1.2, while
the lower bound is better than the one in [13]. Theorem 1.2 in [13] deals with general radial
log-concave measures. by using dedicated tools for log-concave one dimensional measures,
we shall come back to this later.

We turn now to the log-Sobolev constant assuming first that n ≥ 3.
First

B− = sup
0≤x<mn

x2

n(n− 2)

(
1− (x/mn)n−2

)
ln(1 + (R/x)n) ,

so that using ln(1 + un) ≤ ln 2 + n ln(u) for u ≥ 1, we deduce

B− ≤
R2

n− 2
sup
u≥1

(
1

u2

(
ln 2

n
+ lnu

))
≤ c1

R2

n− 2
,

with c1 = 1
2e + ln 2

n ≤ 1. Similarly, using ln(1 + un) ≥ n lnu for u ≥ 1 we have

B− ≥
R2

n− 2
sup

21/n≤u

(
lnu

u2

(
1− 2(n−2)/nu−(n−2)

))
≥ c2

R2

n− 2
,
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with for instance c2 = ln 2/16 obtained by choosing u = 4.

Next

B+ = sup
mn<x≤R

(1− (x/R)n)
R2

n(n− 2)

(
2(n−2)/n − (R/x)n−2

)
ln

(
1 +

1

1− (x/R)n

)
,

so that

B+ ≤
R2

n(n− 2)
sup

0<v≤1
(v ln(1 + (1/v))) ≤ R2

n(n− 2)
.

Gathering all this we obtain that

ln 2

192

R2

n− 2
≤ CLS(µr) ≤ 10

R2

n− 2
.

Note that choosing f(x) = x one gets the better lower bound

CLS(µr) ≥ R2 n2

n+ 2

(
ln(1 +

2

n
)− 2

n+ 2

)
≥ 2R2 n− 2

(n+ 2)2
.

Using Corollary 4.3 we have thus shown, since CLS(µ) ≥ CLS(µr), and after simple manipu-
lations

Proposition 5.6. For all n ≥ 3 the uniform measure µ on the euclidean ball of radius R

satisfies 1
20

2 (n−2)R2

(n+2)2
≤ CLS(µ) ≤ 10 R2

n−2 .

Example 5.7. Spherically symmetric log-concave measures.

The previous example is a particular example of a radial log-concave measure, i.e. µ(dx) =

e−V (|x|) dx where V is convex and non decreasing. Actually for what follows (in the radial
situation) we do not need V to be non decreasing, but still convex.

For such measures the Poincaré constant was first studied by Bobkov in [8]. Bobkov’s result
was improved by Bonnefont-Joulin-Ma in [13] Theorem 1.2 who states that for such measures

µ(ρ2)

n
≤ CP (µ) ≤ µ(ρ2)

n− 1
. (5.1)

The case of the log-Sobolev constant was not really addressed in the specific radial situation,
but rather for general log concave distributions. Define

Orl(µ) = inf{ t > 0 ;

∫
exp(|x− µ(x)|2/t2)µ(dx) ≤ 2 } .

Then, according to Bobkov’s theorem 1.3 in [7], if µ is log-concave

CLS(µ) ≤ C Orl2(µ) (5.2)

the right hand side being finite or infinite. When µ is supported by a bounded set K, this
yields the rough bound CLS(µ) ≤ C diam2(K). The latter has been improved in [25] Theorem
8, where it is shown that CLS(µ) ≤ C diam(K) provided µ is isotropic (i.e. its covariance
matrix equals identity). Notice that Bobkov’s Corollary 2.3 in [7] tells that

CLS(µ) ≤ 2 (CP (µ) + diam(K)
√
CP (µ)) , (5.3)

so that, it also furnishes the diameter bound if the K-L-S conjecture is true.
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Actually the specific radial case was only addressed in [22] where the author studies the
isoperimetric profile of radial log concave distributions (see theorem 4 and theorem 5 therein).
Connections between the log-Sobolev constant and the isoperimetric profile are strong in the
log-concave situation (see [26] Theorem 1.2) but the results of [22] are not easy to handle
with. We will thus use our previous results to derive explicit bounds.

Writing µr(dρ) = nωn ρ
n−1 e−V (ρ) dρ with ωn the volume of the unit euclidean ball, we

see that µr is also log-concave. One can thus apply Bobkov’s results in [7], starting with
Proposition 4.4 therein

3

4
Orl2(µr) ≤ CLS(µr) ≤ 48Orl2(µr) (5.4)

where

Orl(µr) = inf{ t > 0 ;

∫
exp((ρ− µr(ρ))2/t2)µr(dρ) ≤ 2 } .

As a byproduct we get thanks to Theorem 4.5 and (5.1)

Proposition 5.8. If µ is a radial log-concave distribution,

CLS(µ) ≤ C
(
Orl2(µr) +

µ(ρ2)√
n− 1

)
.

Using (5.4) and remark 5.5, one can also derive some lower bound.

If we assume in addition that µ is supported by a bounded set K, we may obtain other
bounds using our Corollary 4.3 (the same with Theorem 4.4). First we may translate µ so
that its support is included in the centered euclidean ball with radius diam(K)/2. But we
may also remark that

µr(dρ) = Z−1
n e(n−1) ln ρ−V (ρ) dρ = Z−1

n e−W (ρ) dρ

with

W ′′(ρ) = V ′′(ρ) +
n− 1

ρ2
≥ 4(n− 1)

diam2(K)
.

According to Bakry-Emery criterion (see e.g. [2] Proposition 5.7.1) we deduce

CLS(µr) ≤
diam2(K)

2(n− 1)
. (5.5)

Applying Corollary 4.3 we have thus obtained

Theorem 5.9. For any radial log-concave probability measure µ whose support K is bounded,

CLS(µ) ≤ C
diam2(K)

(n− 1)
.

This bound is sharp in the sense that a similar lower bound is true for the uniform measure
on a ball (recall Proposition 5.6).

When the diameter is less than n this result is better than [25]. Actually we do not need µ
to be isotropic contrary to [25]. In general there is no control on the diameter of K for an
isotropic log-concave measure (or more generally for an almost isotropic measure i.e. such
that Cov ≤ Id in the sense of quadratic forms), except of course that diamK ≥

√
n.
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inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de
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Patrick CATTIAUX, Institut de Mathématiques de Toulouse. CNRS UMR 5219., Université
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Auvergne, avenue des Landais, F-63177 Aubière.

E-mail address: liming.wu@uca.fr


