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In this paper, we prove an orbital stability result for the Degasperis-Procesi peakon with respect to perturbations having a momentum density that is first negative and then positive. This leads to the orbital stability of the antipeakon-peakon profile with respect to such perturbations.

Introduction

In this paper, we consider the Degasperis-Procesi equation (DP) first derived in [START_REF] Degasperis | Asymptotic integrability[END_REF], usually written as [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] u t -u txx + 4uu x = 3u x u xx + uu xxx , (t, x) ∈ R + × R, u(0, x) = u 0 (x), x ∈ R .

The DP equation has been proved to be physically relevant for water waves (see [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF]) as an asymptotic shallow-water approximation to the Euler equations in some specific regime. It shares a lot of properties with the famous Camassa-Holm equation (CH) that reads [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF] u t -u txx = -3uu x + 2u x u xx + uu xxx , (t, x) ∈ R + × R .

In particular, it has a bi-hamiltonian structure, it is completely integrable (see [START_REF] Degasperi | A new integrable equation with peakon solutions[END_REF]) and has got the same explicit peaked solitary waves. These solitary waves are called peakons whenever c > 0 and antipeakons whenever c < 0 and are defined by

(3) u(t, x) = ϕ c (x -ct) = cϕ(x -ct) = ce -|x-ct| , c ∈ R * , (t, x) ∈ R 2 .
Note that to give a sense to these solutions one has to apply (1 -∂ 2 x ) -1 to (1), to rewrite it under the form (4)

u t + 1 2 ∂ x (u 2 ) + 3 2 (1 -∂ 2 x ) -1 ∂ x (u 2 ) = 0, (t, x) ∈ R + × R.
However, in contrast with the CH equation, the DP equation has also shock peaked waves (see for instance [START_REF] Lundmark | Formation and dynamics of shock waves in the Degasperis-Procesi equation[END_REF]) which are given by

u(t, x) = - 1 t + k sgn(x)e -|x| , k > 0 (t, x) ∈ R + × R .
Another important difference between the CH and the DP equations is due to the fact that the DP conservations laws permit only to control the L 2 -norm of the solution whereas the H 1 -norm is a conserved quantity for the CH equation. In particular, without any supplementary hypotheses, the solutions of the DP equation may be unbounded contrary to the CH-solutions. In this paper we will make use of the three following conservation laws of the DP equation :

M (u) = R y, E(u) = R yv = R 4v 2 + 5v 2 x + v 2 xx ( 5 
)
and

F (u) = R u 3 = R -v 3 xx + 12vv 2 xx -48v 2 v xx + 64v 3 , ( 6 
)
where y = (1 -∂ 2

x )u and v = (4 -∂ 2 x ) -1 u. It is worth noticing that these two variables, the momentum density y = (1 -∂ 2

x )u and the smooth variable v = (4 -∂ 2 x ) -1 u play a crucial role in the DP dynamic. In the sequel we will often make use of the fact that (1) can be rewritten under the form [START_REF] Dika | Stability of multipeakons[END_REF] y t + uy x + 3u x y = 0, (t, x) ∈ R + × R, which is a transport equations for the momentum density as well as under the form ( 8)

v t = -∂ x (1 -∂ 2 x ) -1 u 2 , (t, x) ∈ R + × R.
Note that, in the same way as v is associated with u, we will associate with the peakon profile ϕ c the so-called smooth-peakon profile ρ c that is given by ( 9)

ρ c = (4 -∂ 2 x ) -1 ϕ c = 1 4 e -2|•| * ϕ c = c 3 e -|•| - c 6 e -2|•| ≥ 0 .
In [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] (see also [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] for a great simplification) an orbital stability 1 result is proven for the DP peakon by adapting the approach first developed by Constantin and Strauss [START_REF] Constantin | Stability of peakons[END_REF] for the Camassa-Holm peakon. However, in deep contrast to the Camassa-Holm case, the proof in [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] (and also in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]) crucially use that the momentum density of the perturbation is non negative. This is absolutely required for instance in [ [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF], Lemma 3.5] to get the crucial estimate on the auxiliary function h (see Section 5 for the definition of h)). Up to our knowledge, there is no available stability result for the Degasperis-Procesi peakons without this requirement on the momentum density and one of the main contribution of this work is to give a first stability result for the DP peakon with respect to perturbations that do not share this sign requirement. At this stage, it is worth noticing that the global existence of smooth solutions to the DP equation is only known for initial data that have either a momentum density with a constant sign or a momentum density that is first non negative and then non positive.

The first part of this paper is devoted to the proof of a stability result for the peakon with respect to perturbations that belong to this second class of initial data. We would like to emphasize that the key supplementary argument with respect to the case of a non negative momentum density is of a dynamic nature. Inspired by similar considerations for the Camassa-Holm equation contained in [START_REF] Molinet | Asymptotic Stability for Some Non positive Perturbations of the Camassa-Holm Peakon with Application to the Antipeakon-peakon Profile[END_REF], we study the dynamic of the momentum density y(t) at the left of a smooth curve x(t) such that u(t, •) -ϕ c (• -x(t)) remains small for all t ∈ [0, T ] with T > 0 large enough. This is in deep contrast with the arguments in the case y ≥ 0 and with the common arguments for orbital stability that are of static nature : They only use the conservation laws together with the continuity of the solution.

In a second time, we combine this stability result with some almost monotony results to get the orbital stability of the DP antipeakon-peakon profile and more generally of trains of antipeakon-peakons.

Before stating our results let us introduce some notations and some function spaces that will appear in the statements. For p ∈ [1, +∞] we denote by L p (R) the usual Lebesgue spaces endowed with their usual norm • L p . We notice that by integration by parts, it holds

u(t, •) 2 L 2 = R (4v -v xx ) 2 dx = R 16v 2 + 8v 2 x + v 2 xx dx
and thus

E(u) ≤ u 2 L 2 ≤ 4E(u) . Therefore, E(•) is equivalent to • 2 L 2 (R)
and in the sequel of this paper we set [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF])

u H = E(u) so that u H ≤ u L 2 ≤ 2 u H
As in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], we will work in the space Y defined by ( 11)

Y := u ∈ L 2 (R) with u -u xx ∈ M(R)
where M(R) is the space of finite Radon measure on R that is endowed with the norm • M where

y M := sup ϕ∈C(R), ϕ L ∞ ≤1
| y, ϕ | .

Hypothesis 1. We will say that u 0 ∈ Y satisfies Hypothesis 1 if there exists x 0 ∈ R such that its momentum density y 0 = u 0 -u 0,xx satisfies [START_REF] Lannes | The water waves problem[END_REF] supp y - 0 ⊂] -∞, x 0 ] and supp y + 0 ⊂ [x 0 , +∞[. where y + 0 and y - 0 are respectively the positive and the negative part of the Radon measure y 0 . Theorem 1 (Stability of a single Peakon). There exists 0 < ε 0 < 1 such that for any c > 0, A > 0 and 0 < ε < ε 0 1∧c 2 (2+c) 3 , there exists 0 < δ = δ(A, ε, c) ≤ ε 4 such that for any u 0 ∈ Y satisfying Hypothesis 1 with [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] u 0 -ϕ c H ≤ δ ≤ ε 4 and

(14) u 0 -u 0,xx M ≤ A,
the emanating solution of the DP equation satisfies

(15) u(t, •) -ϕ c (• -ξ(t)) H ≤ 2(2 + c) ε, ∀t ∈ R + and (16) u(t, •) -ϕ c (• -ξ(t)) L ∞ ≤ 8(2 + c) 2 ε 2/3 , ∀t ∈ R + ,
where ξ(t) ∈ R is the only point where the function v(t,

•) = (4 -∂ 2 x ) -1 u(t,
•) reaches its maximum on R. Combining the above stability of a single peakon with the general framework first introduced in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] and more precisely following [START_REF] Dika | Stability of multipeakons[END_REF]- [START_REF] Dika | Stability of train anti-peakons-peakons[END_REF] we obtain the stability of a train of well-ordered antipeakons and peakons. This contains in particular the stability of the antipeakon-peakon profile.

Theorem 2. Let be given N

-∈ N * negative velocities c -N-< .. < c -1 < 0, N + ∈ N * positive velocities 0 < c 1 < .. < c N+ and A > 0. There exist B = B( c) > 0, L 0 = L 0 (A, c) > 0 and 0 < ε 0 = ε 0 ( c) < 1 such that for any 0 < ε < ε 0 ( c) there exists 0 < δ(ε, A, c) < ε 4 such that if u ∈ C(R + ; H 1 )
is the solution of the DP equation emanating from u 0 ∈ Y , satisfying Hypothesis 1 with [START_REF] Molinet | Asymptotic Stability for Some Non positive Perturbations of the Camassa-Holm Peakon with Application to the Antipeakon-peakon Profile[END_REF] u 0 -u 0,xx M ≤ A, and

(18) u 0 - N+ j=-N - j =0 ϕ cj (• -z 0 j ) H ≤ δ ≤ ε 4 for some z 0 -N-< .. < z 0 -1 < z 0 1 < • • • < z 0 N+ such that (19) z 0 j -z 0 q ≥ L ≥ L 0 , ∀(j, q) ∈ [[-N -, N + ]] \ {0} 2 , j > q ,
then there exist

N -+ N + functions ξ -N-(•), .., ξ -1 (•), ξ 1 (•), .., ξ N+ (•) such that (20) sup t∈R+ u(t, •) - N+ j=-N - j =0 ϕ cj (• -ξ j (t)) H < B(ε + L -1/8 )
and

(21) sup t∈R+ u(t, •) - N+ j=-N - j =0 ϕ cj (• -ξ j (t)) L ∞ ε 2/3 + L -1 12 .
Moreover, for any t ≥ 0 and i

∈ [[1, N + ]](resp. i ∈ [[-N -, -1]]), ξ i (t) is the only point of maximum (resp. minimum) of v(t) on [ξ i (t) -L/4, ξ i (t) + L/4].

Global well-posedness results

We first recall some obvious estimates that will be useful in the sequel of this paper. Noticing that

p(x) = 1 2 e -|x| satisfies p * y = (1 -∂ 2 x ) -1 y for any y ∈ H -1 (R) we easily get u W 1,1 = p * (u -u xx ) W 1,1 u -u xx M and t u xx M ≤ u L 1 + u -u xx M which ensures that (22) Y → u ∈ W 1,1 (R) with u x ∈ BV (R) .
It is also worth noticing that for u ∈ C ∞ 0 (R), satisfying Hypothesis 1,

(23) u(x) = 1 2 x -∞ e x -x (u -u xx )(x )dx + 1 2 +∞ x e x-x (u -u xx )(x )dx and u x (x) = - 1 2 x -∞ e x -x (u -u xx )(x )dx + 1 2 +∞ x e x-x (u -u xx )(x )dx , so that for x ≤ x 0 we get u x (x) = u(x) -e -x x -∞ e x y(x ) dx ≥ u(x)
whereas for x ≥ x 0 we get

u x (x) = -u(x) + e x +∞ x e -x y(x ) dx ≥ -u(x)
Throughout this paper, we will denote {ρ n } n≥1 the mollifiers defined by (24)

ρ n = R ρ(ξ) dξ -1 nρ(n•) with ρ(x) = e 1/(x 2 -1) for |x| < 1 0 for |x| ≥ 1.
Following [START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF] we approximate u ∈ Y satisfying Hypothesis 1 by the sequence of functions (25)

u n = p * y n with y n = -(ρ n * y -)(• + 1 n ) + (ρ n * y + )(• - 1 n ) and y = u -u xx ,
that belong to Y ∩ H ∞ (R) and satisfy Hypothesis 1 with the same x 0 . It is not too hard to check that (26)

y n L 1 ≤ y M .
Moreover, noticing that

u n = -ρ n * (p * y -) (• + 1 n ) + ρ n * (p * y + ) (• - 1 n ), with p * y ∓ ∈ H 1 (R) ∩ W 1,1 (R), we infer that (27) u n → u ∈ H 1 (R) ∩ W 1,1 (R) .
that ensures that for any u ∈ Y satisfying Hypothesis 1 it holds (28)

u x ≥ u on ] -∞, x 0 [ and u x ≥ -u on ]x 0 , +∞[ .
The following propositions briefly recall the global well-posedness results for the Cauchy problem of the DP equation (see for instance [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] and [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF] for details of the proof) and its consequences. [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF], [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF])

Proposition 1. (Strong solutions

Let u 0 ∈ H s (R) with s ≥ 3. Then the initial value problem (4) has a unique solution u ∈ C [0, T ]; H s (R) ∩ C 1 [0, T ]; H s-1 (R) where T = T u 0 H 3 2 +
> 0 and, for any r > 0, the map u 0 → u is continuous from

B(0, r) H s into C [0, T (r); H s (R) . Moreover, let T * > 0 be the maximal time of existence of u in H s (R) then (29) T * < +∞ ⇔ lim inf t T * u x = -∞ . If furthermore y 0 = u 0 -u 0,xx ∈ L 1 (R) and u 0 satisfies Hypothesis 1 then T * = +∞ and y = u -u xx ∈ L ∞ loc R + ; L 1 (R) with (30) y(t) L 1 ≤ e 3t 2 u0 L 2 +2t u0 L ∞ y 0 L 1 , ∀t ∈ R + ,
and

(31) R y(t, x) dx = R y(0, x) dx, ∀t ∈ R + .
Proposition 2. (Global Weak Solution [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF]) Let u 0 ∈ Y satisfying Hypothesis 1 for some x 0 ∈ R.

Uniqueness and global existence :

(4) has a unique solution

u ∈ C R + ; H 1 (R) ∩ C 1 R + ; L 2 (R) ∩ L ∞ loc R + ; Y . M (u) = y, 1 , E(u) = y, v and F (u) are conservation laws . Moreover, for any t ∈ R + , the density momentum y(t) satisfies supp y -(t) ⊂] -∞, x 0 (t)] and supp y + (t) ⊂ [x 0 (t), +∞[ where x 0 (t) = q(t, x 0 ) with q(•, •) defined by (32) q t (t, x) = u(t, q(t, x)) , (t, x) ∈ R 2 q(0, x) = x , x ∈ R .
2. Continuity with respect to initial data : For any sequence {u 0,n } bounded in Y that satisfy Hypothesis 1 and such that u 0,n → u 0 in H 1 (R), the emanating sequence of solutions {u n } satisfies for any

T > 0 (33) u n → u in C [0, T ]; H 1 (R) .
and

(34) (1 -∂ 2 x )u n n→∞ * (1 -∂ 2 x )u in L ∞ ]0, T [; M(R) .
Proof. Assertion 1. is proved in [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] except the conservation of F (u). But this is clearly a direct consequence of the conservation of F for smooth solutions together with (33). So let us prove Assertion 2. We first assume that {u 0,n } is the sequence defined in (25). In view of the conservation of H and (30), the sequence {u n } of smooth solutions to the DP equation emanating from

{u 0,n } is bounded in C([0, T ]; H 1 ) ∩ L ∞ (]0, T [; Y ) for any fixed T > 0. Therefore, there exists w ∈ L ∞ (R + ; H 1 (R)) with (1 -∂ 2 x )w ∈ L ∞ loc (R + ; M(R)) such that, for any T > 0, u n n→∞ w ∈ L ∞ (]0, T [; H 1 (R)) and (1 -∂ 2 x )u n n→∞ * (1 -∂ 2 x )w in L ∞ (]0, T [; M(R)) .
Moreover, in view of (4),

{∂ t u n } is bounded in L ∞ (]0, T [; L 2 (R) ∩ L 1 (R)
) and Helly's, Aubin-Lions compactness and Arzela-Ascoli theorems ensure that w is a solution to (4) that belongs to C w ([0, T ];

H 1 (R)) with w(0) = u 0 . In particular, w t ∈ L ∞ (]0, T [; L 2 (R)) and thus w ∈ C([0, T ]; L 2 (R)). Since w ∈ L ∞ (]0, T [; H 3 2 -(R)), this actually implies that w ∈ C([0, T ]; H 3 2 -(R)) and thus w t ∈ C([0, T ]; L 2 (R)
). Therefore, w belongs to the uniqueness class which ensures that w = u and that (34) holds for this sequence. In particular passing to the limit in (30) we infer that for any u 0 ∈ Y satisfying Hypothesis 1 it holds ( 35)

y(t) M ≤ e 3t 2 u0 L 2 +2t u0 L ∞ y 0 M , ∀t ∈ R + .
With (35) in hands, we can now proceed exactly in the same way but for any sequence {u 0,n } bounded in Y that converges to u 0 in H 1 (R). This shows that (34) holds. Finally, the conservation of E(•) together with the weak convergence result in

C w ([0, T ]; H 1 (R)) lead to a strong convergence result in C([0, T ]; L 2 (R)) that leads to (33) by using that u ∈ L ∞ loc (R + ; H 3 2 -(R)).
In the sequel, we will make a constant use of the following properties of the flow-map q(•, •) established for instance in [START_REF] Yin | Global solutions to a new integrable equation with peakons[END_REF] : Under the hypotheses of Proposition 2, (1) The mapping q(t, •) is an increasing diffeomorphism of R with (36) q x (t, x) = exp t 0 u x s, q(s, x) ds > 0, ∀(t, x) ∈ R + × R.

(2) If moreover u 0 ∈ H 3 (R) then (37) y t, q(t, x) q 3 x (t, x) = y 0 (x), ∀(t, x) ∈ R + × R.

In particular, for all t ≥ 0, (38) y t, x 0 (t)) = y t, q(t, x 0 ) = 0, ∀(t, x) ∈ R + × R.

Some uniform L ∞ -estimates

In [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF] it is proven that as far as the solution to the DP equation stays smooth, its L ∞ -norm can be bounded by a polynomial function of time with coefficients that depend only on the L 2 and L ∞ -norm of the initial data. In this section we first improve this result under Hypothesis 1 by showing that the solution is then bounded in positive times by a constant that only depends on the L 2 -norm of the initial data. This result is not directly needed in our work but we think that it has its own interest. In a second time we use the same type of arguments to prove that any function that is L 2 -close to a peakon profile and satisfies Hypothesis 1, is actually L ∞ -close to the peakon profile. This last result will be very useful for our work and will for instance enable us to prove that as far as u stays L 2 -close to a translation of a peakon profile, the growth of the total variation of its momentum density can be control by an exponential function of the time but with a small constant in front of the time. This will be the aim of the last lemma of this section. Lemma 1. For any u 0 ∈ Y satisfying Hypothesis 1, the associated solution u ∈ C(R + ; H 1 ) to (4) given by Proposition 2 satisfies

(39) u(t) L ∞ (R) ≤ 2(1 + √ 2) u 0 H , ∀t ∈ R + .
Proof. We fix t ∈ R + , x ∈ R and denote by E(x) the integer part of x. Since u(t, •) ∈ H 1 (R) → C(R), the Mean-Value theorem for integrals together with [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] and the conservation of • H ensure that there exists η ∈ E(x) -1, E(x) such that

u 2 (t, η) = E(x) E(x)-1 u 2 (t, θ)dθ ≤ u(t, •) 2 L 2 (R) ≤ 4 u(t, •) 2 H = 4 u 0 2 H .
Therefore, by (28) and [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF], since 0 ≤ x -η ≤ 2, one may write

u(t, x) = u(t, η) + x η u θ (t, θ)dθ ≥ -2 u 0 H - x η |u(t, θ)| dθ ≥ -2 u 0 H -2 √ x -η u 0 H ≥ -2(1 + √ 2) u 0 H . (40)
Now, suppose that there exists x * ∈ R such that u(t, x * ) > 2(1 + √ 2) u 0 H . Then, on one side the Mean-Value theorem for integrals similarly ensures that there exists γ ∈ E(x * ) + 1, E(x * ) + 2 such that

u 2 (t, γ) = E(x * )+2 E(x * )+1 u 2 (t, θ)dθ ≤ u(t, •) 2 L 2 (R) ≤ 4 u 0 2 H .
On the other side, (28) again leads to

(41) u(t, γ) = u(t, x * ) + γ x * u θ (t, θ)dθ > 2(1 + √ 2) u 0 H -2 √ γ -x * u 0 H > 2 u 0 H .
The fact that the two above estimates are not compatible completes the proof of the lemma.

Lemma 2 (L ∞ approximations). Let ψ ∈ W 1,∞ (R) ∩ L 2 (R) and u ∈ Y , satisfying Hypothesis 1, then (42) u -ψ L ∞ (R) ≤ 2 u -ψ 2/3 H 1 + √ 2 u -ψ 2/3 H + ψ L ∞ + ψ L ∞ . In particular, for any (c, r) ∈ R 2 it holds (43) u -ϕ c (• -r) L ∞ (R) ≤ 2 u -ϕ c (• -r) 2/3 H 1 + √ 2 u -ϕ c (• -r) 2/3 H + 2c .
Proof. We first notice that (43) follows directly from (42) by taking ψ = ϕ c (• -r) and using that

ϕ c L ∞ = ϕ c L ∞ = c.
Let us now prove (43). We set α = u -ψ 2/3 H . Fixing x ∈ R, there exists k ∈ Z such x ∈ kα, (k + 1)α . Therefore, applying the Mean-Value theorem on the interval (k -1)α, kα , we obtain that there exists η ∈ (k -1)α, kα such that

(44) u(η) -ψ(η) 2 = 1 α kα (k-1)α u(θ) -ψ(θ) 2 dθ ≤ 4 α u -ψ 2 H = 4α 2 .
Now, in view of (28), we get

(45) u(x) -ψ(x) = u(η) -ψ(η) + x η [u x (θ) -ψ (θ)]dθ ≥ -2α - √ 2α |u| + |ψ | L 2 (](k-1)α,(k+1)α[) .
and the triangular inequality together with [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] yield

|u|+|ψ | L 2 (](k-1)α,(k+1)α[) ≤ |u-ψ|+|ψ|+|ψ | L 2 (](k-1)α,(k+1)α[) ≤ 2 u-ψ H + √ 2α ( ψ L ∞ + ψ L ∞ ).
We thus eventually get

(46) u(x) -ψ(x) ≥ -2α 1 + √ 2α + ψ L ∞ + ψ L ∞ .
Now, suppose that there exists x * ∈ R such that

u(x * ) -ψ(x * ) > 2α 1 + √ 2α + ψ L ∞ + ψ L ∞
Similarly, there exists k * ∈ R such that x * ∈ k * α, (k * + 1)α and applying the Mean-Value theorem for integrals on (k * + 1)α, (k * + 2)α we obtain that there exists γ ∈ (k * + 1)α, (k * + 2)α such that, on one hand,

u(γ) -ψ(γ) 2 = 1 α (k * +2)α (k * +1)α u(θ) -ψ(θ) 2 dθ ≤ 4α 2 .
On the other hand, proceeding as above we get

u(γ) -ψ(γ) = u(x * ) -ψ(x * ) + γ x * [u x (θ) -ψ (θ)]dθ > 2α 1 + √ 2α + ψ L ∞ + ψ L ∞ - √ 2α 2α 3/2 + √ 2α( ψ L ∞ + ψ L ∞ ) > 2α .
The incompatibility of the two above estimates completes the proof of the lemma.

Lemma 3. Let u 0 ∈ Y satisfying Hypothesis 1 and u ∈ C(R + ; H 1 ) ∩ L ∞ (R + ; Y ) be the associated solution to DP given by Proposition 2. If for some c ≥ 0, 0 < α < 1 and T > 0 it holds

(47) sup t∈[0,T ] inf r∈R u(t, •) -ϕ c (• -r) H ≤ α, then (48) u(t) ≥ -4α 2 3 (2 + c), ∀t ∈ [0, T ] and (49) sup t∈[0,T ] y(t) M ≤ 1 + 2e 8α 2 3 (2+c)t y 0 M .
Proof. According to Proposition 2, approximating u 0 by the sequence u 0,n given by (25), it suffices to prove the result for smooth initial data u 0 ∈ Y ∩ H ∞ (R) satisfying Hypothesis 1. We notice that since ϕ c > 0 on R, (47) together with Lemma 2 ensure that for all t ∈ [0, T ],

u(t, •) ≥ -2α 2/3 1 + √ 2α 2/3 + 2c ≥ -4α 2 3 (2 + c) on R .
Therefore, according to [START_REF] Dika | Stability of multipeakons[END_REF], (32), (38) and (28), we have

d dt R y -(t, x)dx = - d dt q(t,x0) -∞ y(t, x)dx = 2 q(t,x0) -∞ u x (t, x)y(t, x)dx ≤ -2 q(t,x0) -∞ (-u(t, x)) y(t, x)dx ≤ 8α 2 3 (2 + c) R y -(t, x)dx.
Hence, Grönwall's inequality yields In this section we assume that sup t∈[0,T ] inf r∈R u(t) -ϕ c (• -r) H < ε for some T > 0 and some 0 < ε < 1 small enough. Then we can construct a C 1 -function x : [0, T ] → R such that sup t∈[0,T ] u(t) -ϕ c (•x(t)) H ε and we study the behavior of y -in an growing with time interval at the left of x(t). Lemma 4. There exist ε0 > 0, 0 < κ 0 < 1 and K ≥ 1 such that if a solution u ∈ C([0, T ]; H 1 (R)) to (4) satisfies for some c > 0 and some function r : [0, T ] → R,

(50) R y -(t, x)dx ≤ e 8α
(52) sup t∈[0,T ] u(t, •) -ϕ c (• -r(t)) H < cε 0 ,
then there exist a unique function x : [0, T ] -→ R such that

(53) sup t∈[0,T ] x(t) -r(t) ≤ κ 0 < ln(3/2)
and

(54) R v(t, x)ρ (x -x(t)) dx = 0, ∀t ∈ [0, T ] . where v = (4 -∂ 2 x ) -1 u and ρ = (4 -∂ 2 x ) -1 ϕ. Moreover, x(•) ∈ C 1 ([0, T ]) with (55) sup t∈[0,T ] ẋ(t) -c ≤ c 8 ,
and if

(56) sup t∈[0,T ] u(t, •) -ϕ c (• -r(t)) H < ε, for some 0 < ε ≤ cε 0 then (57) sup t∈[0,T ] u(t, •) -ϕ c (• -x(t)) H ≤ Kε .
Proof. We follow the same approach as in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF], by requiring an orthogonality condition on v = (4 -∂ 2 x ) -1 u instead of u. This will be useful to get the C 1 -regularity of x(•). In the sequel of the proof, we endow H 2 (R) with the norm (that is equivalent to the usual norm)

v 2 H 2 := R 4v 2 + 5v 2 x + v 2 xx = (4 -∂ 2 x )v 2 H
where the last identity follows from [START_REF] Degasperi | A new integrable equation with peakon solutions[END_REF]. Let 0 < ε < 1. For r ∈ R we introduce the function

Y : (-ε, ε) × B H 2 ρ(• -r), ε -→ R defined by Y (y, v) = R v(t, x) -ρ(x -r -y) ρ (x -r -y)dx. It is clearly that Y 0, ρ(• -r) = 0 and that Y is of class C 1 .
Moreover, by integration by parts, it holds

∂Y ∂y (y, v) = - R v(t, x)ρ (x -r -y)dx.
Hence, by integration by parts we may write

(58) ∂Y ∂y 0, ρ(• -r) = - R ρ(x -r)∂ 2 x ρ(x -r)dx = ∂ x ρ(• -r) 2 L 2 (R) = 5 54 = 0.
From the Implicit Function Theorem we deduce that there exist ε0 > 0, 0 < κ 0 < ln(3/2) and a C 1 -function

y r : B H 2 ρ(• -r), ε0 -→] -κ 0 , κ 0 [ which is uniquely determined such that Y y r (v), v = Y 0, ρ(• -r) = 0, ∀v ∈ B H 2 ρ(• -r), ε0 .
In particular, there exists

C 0 > 0 such that if v ∈ B H 2 ρ(• -r), β , with 0 < β ≤ ε0 , then (59) y r (v(t, •)) ≤ C 0 β.
Note that by a translation symmetry argument ε0 , κ 0 , and C 0 are independent of r ∈ R. Therefore, by uniqueness, we can define a C 1 -mapping

x : r∈R B H 2 ρ(• -r), ε0 -→] -κ 0 , κ 0 [ by setting x(v) = r + y r (v) ∀v ∈ B H 2 ρ(• -r), ε0 . Now, according to (52), it holds { 1 c v(t, ), [0, T ]} ⊂ ∪ z∈R B H 2 (ρ(• -z), ε0
) so that we can define the function x(•) on R by setting x(t) = x(v(t)). By construction x(•) satisfies ( 53)-(54). Moreover, (56) together with (59) ensure that for any c > 0 and any 0 < ε < cε 0 , it holds

(60) 1 c u(t) -ϕ(• -x(t)) H ≤ ( ε c ) + sup |z|≤C0 ε c ϕ -ϕ(• -z)) H ε c
which proves (57).

In view of ( 4), any solution

u ∈ C(R; H 1 (R)) of (D-P) satisfies u t ∈ C(R; L 2 (R)) and thus belongs to C 1 (R; L 2 (R)). This ensures that v ∈ C 1 (R; H 2 (R)) so that the mapping t → x(t) = x(v(t)) is of class C 1 on R.
Now, we notice that applying the operator (4 -∂ 2 x ) -1 to the two members of (4) and using that

(61) (4 -∂ 2 x ) -1 (1 -∂ 2 x ) -1 = 1 3 (1 -∂ 2 x ) -1 - 1 3 (4 -∂ 2 x ) -1 , we get that v satisfies (62) v t = - 1 2 ∂ x (1 -∂ 2 x ) -1 u 2 .
On the other hand, setting R(t, •) = cρ(• -x(t)) and w = v -R and differentiating (54) with respect to time we get

R w t ρ (• -x(t)) = ẋ(t) R w ρ (• -x(t)) = -ẋ(t) R ∂ x w ρ (• -x(t)) = ( ẋ(t) -c)O( w H 1 ) + c O( w H 1 ) . ( 63 
)
Substituting v by w + R in (62) and using that R satisfies

∂ t R + ( ẋ -c)∂ x R = - 1 2 ∂ x (1 -∂ 2 x ) -1 ϕ 2 c (• -x(t)) ,
we infer that w satisfies

w t -( ẋ -c)∂ x R = - 1 2 ∂ x (1 -∂ 2 x ) -1 u 2 -ϕ 2 c = - 1 2 ∂ x (1 -∂ 2 x ) -1 (u -ϕ c )(u + ϕ c ) .
Taking the L 2 -scalar product of this last equality with ρ (• -x(t)) and using (63) together with ( 52) and (57) we get, for all t ∈ [0, T ],

( ẋ(t) -c) R ∂ x R(t, •) ρ (• -x(t)) + c O( w H 1 ) ≤ O( w H 1 ) + O( u -ϕ c (• -x(t) H ) Kc ε0 .
Therefore, by recalling (58) and possibly decreasing the value of ε0 > 0 so that K ε0 1, we obtain (55).

Proposition 3. There exists ε 0 > 0 such that for any

u 0 ∈ Y ∩H ∞ (R) satisfying Hypothesis 1, if the solution u ∈ C(R + ; H ∞ (R) emanating from u 0 satisfies for some c > 0, T > 0 and some function r : [0, T ] → R, (64) sup t∈[0,T ] u(t, •) -ϕ c (• -r(t)) H < ε 0 (1 ∧ c 2 ), then for all t ∈ [0, T ], (65) y -(t, •) L 1 (]r(t)-1 16 ct,+∞[) ≤ e -ct/8 y 0 L 1 (R) . where y -= max(-y, 0) and x(•) is the C 1 -function constructed in Lemma 4.
Proof. Let ε0 > 0 and K ≥ 1 be the universal constants that appears in the statement of Lemma 4. Assuming (56) with

ε < min(cε 0 , 10 -20 (1 ∧ c 2 )/K) ≤ 10 -20 ∧ ε0 K (1 ∧ c 2 ) , (57), Lemma 2 ensure that (66) sup t∈[0,T ] u(t, •) -ϕ c (• -x(t)) L ∞ ≤ 10 -5 c .
where x(•) is the C 1 -function constructed in Lemma 4. Therefore, setting (67)

ε 0 := 10 -20 ∧ ε0 K ,
(64) ensures that (66) holds.

Let t ∈ [0, T ], we separate two possible cases according to the distance between x 0 (t/2) and x(t/2), where x 0 (•) is defined in Proposition 2. Case 1:

(68) x 0 (t/2) < x(t/2) -ln(3/2).
In view of (66) and the monotony of ϕ on R -, it holds

(69) u(τ, x) ≤ ϕ c -ln(3/2) + c 16 = 2 3 c + 1 16 c ≤ 3 4 c, ∀x ≤ x(τ ) -ln(3/2) with τ ∈ [0, T ] .
In particular (68) and (32) lead to

(70) ẋ0 (t/2) = u t/2, x 0 (t/2) ≤ 3 4 c. Therefore, since (55) forces ẋ(t) ≥ 7c/8 on [0, T ], a classical continuity argument ensures that x 0 (•) < x(•) -ln(3/2) on [t/2, T ] and thus ẋ0 (•) ≤ 3 4 c on [t/2, T ]. It follows from (53) that r(t) -x 0 (t) ≥ x(t) -x 0 (t) -ln(3/2) = t t/2 ẋ(θ) -ẋ0 (θ) dθ + x(t/2) -x 0 (t/2) -ln(3/2) ≥ c 16 t .
This proves that y -(t, •) = 0 on ]r(t) -1 16 ct, +∞[ and thus that (65) holds in this case. Case 2:

(71) x 0 (t/2) ≥ x(t/2) -ln(3/2).
Then we first claim that

(72) x 0 (τ ) ≥ x(τ ) -ln(3/2) ∀τ ∈ [0, t/2].
Indeed, assuming the contrary, we would get as above that x 0 (•) < x(•) -ln(3/2) on [τ, T ] that would contradicts (71). Second, we notice that (66) ensures that

(73) u τ, x(τ ) -ln(3) ≥ ϕ c (-ln(3)) - c 16 ≥ c 4 , ∀τ ∈ [0, T ] . Since (28) forces u x (τ ) ≥ u(τ ) on ] -∞, x 0 (τ )] for any τ ∈ R + , (72)-(73) then ensure that u(τ ) is increasing on [x 0 (τ ) -ln(2), x 0 (τ )] and (74) u x (τ, x) ≥ u(τ, x) ≥ c 4 , ∀(τ, x) ∈ [0, T ] × [x 0 (τ ) -ln 2, x 0 (τ )] .
Now, in this case we divide the proof into two steps.

Step : 1. The aim of this step is to prove the following estimate on y(t/2) :

(75)

x0(t/2) x0(t/2)-ln 2 y(t/2, s)ds ≤ e -1 4 ct y 0 L 1 (R) .
For τ ∈ R + , we denote by q -1 (τ, •) the inverse mapping of q(τ, •). Then, the change of variables along the flow θ = q -1 (t/2, s) leads to (76)

x0(t/2) x0(t/2)-ln 2 y(t/2, s)ds = q -1 (t/2,x0(t/2)) q -1 (t/2,x0(t/2)-ln 2)
y t/2, q(t/2, θ) q x (t/2, θ) dθ.

Since x 0 (τ ) = q(τ, x 0 ) it clearly holds x 0 = q -1 (t/2, x 0 (t/2)) and (74) together with (32) force

∂ t q τ, q -1 (t/2, x) ≤ ẋ0 (τ ), ∀ (τ, x) ∈ [0, t/2] × [x 0 (t/2) -ln 2, x 0 (t/2)] .
This ensures that for all τ ∈ [0, t/2],

(77) 0 < x 0 (τ ) -q(τ, q -1 (t/2, x 0 (t/2) -ln 2)) ≤ x 0 (t/2) -q(t/2, q -1 (t/2, x 0 (t/2) -ln 2)) = ln 2
In particular, for any θ ∈ [q -1 (t/2, x 0 (t/2)-ln 2), x 0 ] and any τ ∈ [0, t/2], it holds q(τ, θ) ∈ [x 0 (τ )-ln 2, x 0 (τ )] and (74) yields u x (τ, q(τ, θ)) ≥ u(τ, q(τ, θ)) ≥ c/4 . In view of (36) we thus deduce that

q x (t/2, θ) = exp t/2 0 u x (τ, q(τ, θ)) dτ ≥ exp( c 8 t) .
Plugging this estimate in (76), using (37), (77) and that y(τ, •) ≤ 0 on ] -∞, x 0 (τ )] for τ ≥ 0, we eventually get 75) and (53) prove that (65) also holds in this case which completes the proof of the proposition. First, for any t 1 ≥ 0 we define the function q t1 (•,

x0(t/2) x0(t/2)-ln 2 y(t/2, s)ds ≥ e -c 4 t q -1 (t/2,x0(t/2))=x0 q -1 (t/2,x0(t/2)-ln 2) y t/2, q(t/2, θ) q 3 x (t/2, θ) dθ ≥ e -c
•) on R + × R as follows (79) ∂ t q t1 (t, x) = u(t, q t1 (t, x)), ∀(t, x) ∈ R + × R, q t1 (t 1 , x) = x, x ∈ R.
The mapping q t1 (t, •) is an increasing diffeomorphism of R and we denote by q -1 t1 (t, •) it inverse mapping. As in (36) we have

∂ x q t1 (t, x) = exp t t1 u x s, q t1 (s, x) ds > 0, ∀(t, x) ∈ R + × R,

and

(80)

y t, q t1 (t, x) (∂ x q t1 ) 3 (t, x) = y(t 1 , x), ∀(t, x) ∈ R + × R.
In particular, (48), (28) together with (66) ensure that for any τ ∈ [t/2, t] and any x ≤ x 0 (t/2), (81)

∂ x q t/2 (τ, x) ≥ exp - t t/2 2 -5 c ds ≥ e -2 -4 ct .
Using the change of variables θ = q -1 t/2 (t, s) we eventually get 

x0(t) q t/2 (t
x 0 (τ ) ≤ x(τ ) + ln(4/3), ∀τ ∈ [0, T ] .
Indeed, otherwise since u(τ, x(τ )) ≥ c -c 16 and u x (τ, •) ≥ u(τ, •) on ] -∞, x 0 (τ )] this would imply that u(τ, x(τ ) + ln(4/3)) ≥ 15 16 c that is not compatible with ϕ c (ln(4/3)) = 4 3 c and (64). From (83) we deduce that for all τ ∈ [0, T ], (84)

x 0 (τ ) -ln(2) ≤ x(τ ) -ln(3/2)
and thus

u(τ, x 0 (τ ) -ln(2)) ≤ ϕ c (x 0 (τ ) -x(τ ) -ln(2)) + c 16 ≤ ϕ c (-ln(3/2)) + c 16 ≤ 3c 4 .
Combining this last inequality at τ = t/2 with (79), (55) and a continuity argument we infer that

ẋ(τ ) -∂ t q t/2 (τ, x 0 (t/2) -ln(2)) ≥ c 8 , ∀τ ∈ [t/2, T ] ,
which yields

(85) q t/2 (t, x 0 (t/2) -ln(2)) ≤ x(t) -ln(3/2) - c 16 t .
Combining (82) and ( 85), (78) follows.

Corollary 1. Under the same hypotheses as in Proposition 3, for all t ∈ [0, T ], it holds

(86) u(t, •) -6v(t, •) ≤ e 9-ct 32 y 0 L 1 (R) on ]r(t) -8, +∞[ , where v = (4 -∂ x ) -1 u. Proof. By (61), it hods 6v -u = (1 -∂ 2 x ) -1 y -2(4 -∂ 2 x ) -1 y = 1 2 e -|•| * y - 1 2 e -2|•| * y = 1 2 (e -|•| -e -2|•| ) * y ≥ - 1 2 (e -|•| -e -2|•| ) * y -≥ - 1 2 e -|•| * y -. (87)
Therefore, for x ≥ r(t) -8, (49), (65) and (67) lead to 6v(x) -u(x) ≥ -1 2

r(t)-c 16 t -∞ e -|x-z| y -(z) dz - 1 2 +∞ r(t)-c 16 t e -|x-z| y -(z) dz ≥ - 1 2 e 0∧(8-c 16 t) (1 + 2e 2 -5 ct ) y 0 L 1 - 1 2 e -ct/8 y 0 L 1 (R)
≥ -e 9-ct 32 y 0 L 1 (R) .

Proof of Theorem 1

Before starting the proof, we need the two following lemmas that will help us to rewrite the problem in a slightly different way. The next lemma ensures that the distance in H to the translations of ϕ c is minimized for any point of maximum of v = (4 -∂ 2

x ) -1 u. Lemma 5 (Quadratic Identity [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF]). For any u ∈ L 2 (R) and ξ ∈ R, it holds

(88) E(u) -E(ϕ c ) = u -ϕ c (• -ξ) 2 H + 4c v(ξ) - c 6 ,
where v = (4 -∂ 2 x ) -1 u and ξ is any point where v reaches its maximum. We will also need the following lemma that is implicitly contained in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF].

Lemma 6. Let u ∈ L ∞ (R) ∩ L 2 (R) such that (89) u -ϕ c (• -r) L ∞ ≤ 10 -5 c
for some c > 0 and some r ∈ R.

Then v = (4 -∂ 2 x ) -1 u has got a unique point of maximum ξ on R and (90) u -ϕ c (• -ξ) H ≤ u -ϕ c (• -r) H .
Finally, ξ ∈ Θ r = [r -6.7, r + 6.7], is the only critical point of v in Θ r and (91) sup

x ∈Θr |u(x)|, |v(x)|, |v x (x)| ≤ c 100 . Proof. Let us first recall that v -ρ c = 1 4 e -2|•| * (u -ϕ c ) so that Young convolution inequalities yield (92) v -ρ c L ∞ ≤ 1 4 e -2|•| L 1 u -ϕ c L ∞ ≤ 1 4 u -ϕ c L ∞ and (v -ρ c ) L ∞ ≤ 1 2 u -ϕ c L ∞ . Moreover, (v -ρ c ) = 4(v -ρ c ) -(u -ϕ c ) leads to (v -ρ c ) L ∞ ≤ 2 u -ϕ c L ∞ .
Now, the crucial observations in [START_REF] Kabakouala | A remark on the stability of peakons for the Degasperis-Procesi equation[END_REF] are that

(93) ρ ≤ √ 2 -2 6 on V 0 , ρ (x) = -ρ (-x) ≥ 10 -4 , ∀x ∈ Θ 0 /V 0 , where, ∀r > 0, V r = [r -ln √ 2, r + ln √ 2]
. Therefore, (89) together with (93) ensure that v is strictly decreasing on V r and that v > 0 on [r -6.7, r -ln √ 2] and v < 0 on [r + ln √ 2, r + 6.7]. This proves that v has got a unique critical point ξ on Θ r that is a local maximum and that ξ ∈ V r ⊂ Θ r . Moreover ρ(0) = 1/6 together with the direct estimates

(94) ρ ∨ |ρ | ≤ 5 × 10 -4 on R/Θ 0 and ϕ ∨ |ϕ | ≤ 5 × 10 -3 on R/Θ 0 ,
ensure that this is actually the unique point of maximum of v on R. This proves the first part of (91) whereas the second part follows again from (94). Finally, (90) follows directly from Lemma 5 together with the fact v(ξ) is the maximum of v on R.

Now, let us recall that, by (25), we can approximate any u 0 ∈ Y satisfying Hypothesis 1 by a sequence

{u 0,n } ⊂ Y ∩ H ∞ (R) satisfying Hypothesis 1 such that u 0,n → u 0 in H 1 (R) ∩ W 1,1 (R) and y n L 1 ≤ y M , ∀n ∈ N.
Therefore the continuity with respect to initial data in Proposition 2 ensures that to prove Theorem 1 we can reduce ourself to initial data

u 0 ∈ Y ∩ H ∞ .
Let ε 0 be the universal constant defined in (67) and let us fix

(95) 0 < ε < ε 0 1 ∧ c 2 (2 + c) 3 .
Let us also fix A > 0. From the continuity with respect to initial data (33) at ϕ c , the fact that t → ϕ c (• -ct) is an exact solution and the translation symmetry of the (D-P) equation, there exists

(96) 0 < δ = δ(A, ε, c) ≤ ε 4
such that for any u 0 ∈ Y satisfying Hypothesis 1 and ( 14)-( 13) with A and δ, it holds

(97) u(t) -ϕ c (x -ct) H ≤ 2(2 + c) ε, ∀t ∈ [0, T ε ], with T ε = max 0, 32 c 9 + ln(A/ε 2 ) , where u ∈ C(R + ; H 1 (R)) is the solution of the (D-P) equation emanating from u 0 . So let u 0 ∈ Y ∩ H ∞ (R)
that satisfies Hypothesis 1 and ( 14)-( 13) with A and δ. (97) together with the definition (67) of ε 0 and Lemma 2 then ensure that

(98) u(t) -ϕ c (x -ct) L ∞ < 10 -5 c, ∀t ∈ [0, T ε ],
and Lemma 6 then ensures that (99)

u(t) -ϕ c (x -ξ(t)) H ≤ 2(2 + c) ε , ∀t ∈ [0, T ε ],
where ξ(t) is the only point where v(t) = (4 -∂ 2 x ) -1 u(t) reaches its maximum. By a continuity argument it remains to prove that for any

T ≥ T ε , if (100) inf r∈R u(t) -ϕ c (x -r) H ≤ 3(2 + c) ε on [0, T ] then v(T ) = (4 -∂ 2 x
) -1 u(T ) reaches its maximum on R at a unique point ξ(T ) and ( 101)

u(T ) -ϕ c (x -ξ(T )) H ≤ 2(2 + c) ε .
At this stage it is worth noticing that, as above, (100) together with the definition (67) of ε 0 and Lemma 2 ensure that inf

r∈R u(t) -ϕ c (x -r) L ∞ ≤ 10 -5 c, ∀t ∈ [0, T ] .
Therefore applying Lemma 6 and again Lemma 2 we obtain that

(102) u(t) -ϕ c (x -ξ(t)) H ≤ 3(2 + c) ε and u(t) -ϕ c (x -ξ(t)) L ∞ ≤ 10 -5 c, ∀t ∈ [0, T ],
where ξ(t) is the only point where v(t) = (4 -∂ 2 x ) -1 u(t) reaches its maximum. Moreover, (100) together with (95), (67), Corollary 1 and the definition of T ε in (97) then ensure that

(103) u(t, •) -6v(t, •) ≤ ε 2 on Θ ξ(t) , ∀t ∈ [0, T ] .
To prove (101), we follow closely the proof in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF], keeping (103) in hands. The idea comes back to [START_REF] Constantin | Stability of peakons[END_REF] and consists in constructing two functions g and h that permits to link in a good way E(u), F (u) and the maximum

M of v = (4 -∂ 2 x ) -1 u.
This was first implement in [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] for the (DP)-equation under the additional hypothesis that the momentum density of the initial data is non negative.

Lemma 7 ( See [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF]).

Let u ∈ L 2 (R) and v = (4 -∂ 2 x ) -1 u ∈ H 2 (R). Denote by M = max R v(•) = v(ξ)
and define the function g by

(104) g(x) = 2v(x) + v xx (x) -3v x (x) = u(x) -6v x (x) + 12v(x), ∀x ≤ ξ, 2v(x) + v xx (x) + 3v x (x) = u(x) + 6v x (x) + 12v(x), ∀x ≥ ξ.
Then it holds

(105) R g 2 (x)dx = E(u) -12M 2 ,
and

(106) R g 2 (x)dx = u -ϕ c (• -ξ) 2 H -12 c 6 -M 2 ≤ u -ϕ c (• -ξ) 2 H .
Proof. The first identity is proven in [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] by combining integration by parts and the fact that v x (ξ) = 0. To prove the second identity we remark that by the definition of ρ c in (9), it holds

2ρ c (• -ξ) -ρ c (• -ξ) + 3ρ c (• -ξ) = 0, ∀x ≤ ξ, 2ρ c (• -ξ) -ρ c (• -ξ) -3ρ c (• -ξ) = 0, ∀x ≥ ξ. Therefore, setting w = v -ρ c (• -ξ) = (4 -∂ 2 x ) -1 [u -ϕ c (• -ξ)] one may rewrite g as (107) g = 2w + w xx -3w x on ] -∞, ξ], 2w + w xx + 3w x on [ξ, +∞[
and (106) follows by applying (105) with u replaced by u -ϕ c (• -ξ).

Lemma 8 (See [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF]).

Let u ∈ L 2 (R) and v = (4 -∂ 2 x ) -1 u ∈ H 2 (R). Denote by M = max R v(•) = v(ξ) and define the function h by (108) h(x) = -v xx (x) -6v x (x) + 16v(x), ∀x ≤ ξ. -v xx (x) + 6v x (x) + 16v(x), ∀x ≥ ξ.
Then, it holds

(109) F (u) -144M 3 = R h(x)g 2 (x)dx.
Gathering Lemmas 5, 7 and 8 and making use of (103) we derive the crucial relation that linked E(u), F (u) and the maximum

M of v = (4 -∂ 2 x ) -1 u. Lemma 9. Let ε > 0 and u ∈ L 2 (R) be such that v = (4 -∂ 2 x ) -1 u has got a unique point ξ of maximum on R with (110) u -ϕ c (• -ξ) H ≤ 3(2 + ε)ε, u -ϕ c (• -ξ) L ∞ ≤ 10 -5 c and u -6v ≤ ε 2 on Θ ξ .
Then, setting M = v(ξ), it holds

(111) M 3 - 1 4 E(u)M + 1 72 F (u) ≤ (2 + c) 2 8 ε 4 .
Proof. The key is to show that the function h defined in Lemma 8 satisfies h ≤ 18M + ε 2 on R. We notice that h may be rewritten as

h(x) = u(x) -6v x (x) + 12v(x), ∀x ≤ ξ. u(x) + 6v x (x) + 12v(x), ∀x ≥ ξ.
and that (92) together with the second inequality in (110) force

(112) |M -c/6| ≤ 10 -5 c .
Moreover, Lemma 6 ensures that v x > 0 on ]ξ -6.7, ξ[ and v x < 0 on ]ξ, ξ + 6.7[. We divide R into three intervals. For x ∈ R/Θ ξ , (91) with r = ξ and then (112) ensure that

h(x) ≤ |u(x)| + 6|v x (x)| + 12|v(x)| ≤ 19c 100 ≤ 18M. ( 113 
)
For ξ -6.7 < x < ξ, then v x ≥ 0 and using that u -6v ≤ ε 2 on Θ ξ , we get

h(x) ≤ 18M + ε 2 .
If ξ < x < ξ + 6.7, then v x ≤ 0 and using that u -6v ≤ ε 2 on Θ ξ , we get

h(x) ≤ 18M + ε 2 .
Therefore it holds, h ≤ 18M + ε 2 on R . Combining (105), (106), (109) and the first inequality in (110), one eventually gets

F (u) -144M 3 = R h(x)g 2 (x)dx ≤ 18M E(u) -12M 2 + ε 2 u -ϕ c (• -ξ) 2 H ≤ 18M E(u) -72M 3 + 9(2 + c) 2 ε 4 .
that completes the proof of the lemma.

Finally, we will need the following lemma that links the distance between F (u 0 ) and F (ϕ c ) to the distance between u 0 and ϕ c in L 2 (R).

Lemma 10. Let u 0 ∈ Y that satisfies Hypothesis 1. If for some 0 < γ < 1 it holds

u 0 -ϕ c H ≤ γ then (114) |E(u 0 ) -E(ϕ c )| ≤ 2γ(2 + c) and (115) |F (u 0 ) -F (ϕ c )| ≤ 6γ(2 + c) 2 ,
where ϕ c , ρ c are defined in (3), [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF].

Proof. By the triangle inequality and (5),

|E(u 0 ) -E(ϕ c )| ≤ u 0 -ϕ c H ( u 0 H + ϕ c H ) ≤ u 0 -ϕ c H ( u 0 -ϕ c H + 2 ϕ c H ) ≤ γ(γ + 2 √ 3 c) Now, |F (u 0 ) -F (ϕ c )| ≤ u 0 -ϕ c L 2 u 2 + 2uϕ c + ϕ 2 c L 2 ≤ u 0 -ϕ c L 2 u 0 L ∞ u 0 L 2 + ϕ c L ∞ (2 u 0 L 2 + ϕ c L 2 )
and Lemma 2 together with (10) then yield

|F (u 0 ) -F (ϕ c )| ≤ 2γ 4 √ γ(2 + c) + c(4γ + 3c) .
According to (102)-( 103) and Lemma 9, setting M = v(ξ(T )), we get

M 3 - 1 4 E(u)M + 1 72 F (u) ≤ (2 + c) 2 ε 4 8 .
The conservation of E and F together with Lemma 10 and (96) then lead to

M 3 - 1 4 E(ϕ c )M + 1 72 F (ϕ c ) ≤ 1 4 |E(u 0 ) -E(ϕ c )| + 1 72 |F (u 0 ) -F (ϕ c )| + (2 + c) 2 ε 4 8 ≤ ε 4 (2 + c) 2 (116)
Now, by ( 5) and ( 6) one can check that E(ϕ c ) = c 2 /3 and F (ϕ c ) = 2c 3 /3, so that (116) becomes

c 6 -M 2 M + c 3 ≤ ε 4 (2 + c) 2 .
Finally, since according to (112) M ≥ 0, we deduce that

c 6 -M ≤ 3 c (2 + c)ε 2
which together with Lemma 5 , Lemma 10 and (96) ensure that

u(T ) -ϕ c (x -ξ(T )) 2 H ≤ ε 2 4 √ 3c(2 + c) + 2(2 + c)ε 2 ≤ 4(2 + c) 2 ε 2 .
This completes the proof of (101) and thus of [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF]. Note that (16) then follows by using Lemma 2.

Stability of a train of well-ordered antipeakons-peakons

In this section, we generalize the stability result to the sum of well ordered trains of antipeakons-peakons (see fig 2 andfig 3). Let be given

N -+ N + ordered speeds c = (c -N-, .., c -1 , c 1 , .., c N+ ) ∈ R N-+N+ with (117) c -N-< .. < c -1 < 0 < c 1 < .. < c N+ .
We set

(118) c 1 = N+ j=-N- |c j | and σ( c) = min i∈[[1-N-,N+]] |c i -c i-1 |
where to simplify the notations we set (119) c 0 = 0 .

For α > 0 and L > 0 and c satisfying (117)-(118), we define the following neighborhood of all the sums of N -+ N + well-ordered antipeakons and peakons of speed c -N-, .., c -1 , c 1 , .., c N+ with spatial shifts z j that satisfied z j -z q ≥ L for j > q.

(120) We start by establishing the following lemma that linked the distance in L ∞ to the train of antipeakonspeakons with the distance in H. Indeed, applying Lemma 2 with ψ =

U (α, L, c) = u ∈ L 2 (R), inf zj -zq>L, j>q u - N+ j=-N - j =0 ϕ cj (• -z j ) H < α .
N+ j=-N - j =0
ϕ cj (• -z j ) and observing that

ψ L ∞ + ψ L ∞ ≤ 2 N+ j=-N - j =0 ϕ cj L ∞ ≤ 2 c 1 ,
we get the following lemma.

Lemma 11 (L

∞ approximations). Let (c j , z j ) ∈ R 2 , j ∈ [[N -, N + ]] \ {0}
, and u ∈ Y , satisfying Hypothesis 1, then

(121) u- N+ j=-N - j =0 ϕ cj (•-z j ) L ∞ (R) ≤ 2 u- N+ j=-N - j =0 ϕ cj (•-z j ) 2/3 H 1+ √ 2 u- N+ j=-N - j =0 ϕ cj (•-z j ) 2/3 H +2 c 1 .
In particular, if moreover u -

N+ j=-N - j =0 ϕ cj (• -z j ) H ≤ 1/2 then (122) u - N+ j=-N - j =0 ϕ cj (• -z j ) L ∞ (R) ≤ 4(1 + c 1 ) u - N+ j=-N - j =0 ϕ cj (• -z j )
2/3 H .

Control of the distance between the peakons.

In this subsection we want to prove that for a given c satisfying (117) , there exists α = α( c) and L = L( c) such that as soon as the solution u(t) stays in U (α, L, c) the different bumps of u that are individually close to a peakon or an antipeakon get away from each others as time is increasing. This is crucial in our analysis since we do not know how to manage strong interactions.

Lemma 12. (Decomposition of the solution around a sum of antipeakons and peakons). Let u 0 ∈ Y satisfying (17)-(19).

There exist α 0 ( c) > 0, L 0 ( c) > 0 and K( c) ≥ 1 such that for all 0 < L 0 < L if for some T > 0

(123) u ∈ U (α 0 , L/2, c) on [0, T ] then there exist N -+ N + C 1 -functions x -N-(•) < .. < x -1 (•) < x 1 (•) < .. < x N+ (•) defined on [0, T ] such that for all t ∈ [0, T ] we have, (124) R v(t, x) - N+ j=-N - j =0 ρ cj x -x j (t) ∂ x ρ ci x -x i (t) dx = 0, ∀i ∈ [[-N -, N + ]], (125) | ẋi (t) -c i | ≤ σ( c) 8 , ∀i ∈ [[-N -, N + ]]\{0}, and 
(126) x i (t) -x j (t) ≥ 3L/4, ∀(i, j) ∈ ([-N -, N + ]] \ {0}) 2 , i > j, where v = (4 -∂ 2 x ) -1 u and ρ ci = (4 -∂ 2 x ) -1 ϕ ci . Moreover, if (127) u ∈ U (α, L/2, c) on [0, t 0 ]
for some 0 < α < α 0 ( c), then

(128) u(t, •) - N+ i=-N - i =0 ϕ ci (• -x i (t)) H ≤ Kα, (129) v(t, •) - N+ i=-N - i =0 ρ ci (• -x i (t)) C 1 (R) ≤ Kα,
Proof. The strategy is to use a modulation argument to construct

N -+ N + C 1 -functions t → x i (t), i ∈ [[-N -, N + ]]
\{0} on [0, T ] satisfying the orthogonality conditions (124). The proofs of the above estimates are direct adaptations of similar estimates proved in Lemma 4. We refer to [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF][START_REF] Dika | Stability of train anti-peakons-peakons[END_REF] for details. Setting Ψ K = Ψ(•/K), we introduce for j ∈ {1, .., N + } and λ ≥ 0, (134)

J j,λ (t) = J j,λ,K t, u(t, x) = R 4v 2 (t, x) + 5v 2 x (t, x) + v 2 xx (t, x) -λu 3 (t, x) Ψ j,K (t) dx ,
where Ψ j,K (t, x) = Ψ K (x -y j (t)) with y j (t), j = 1, .., N + , defined by

(135) y 1 (t) = x 1 (0) + c 1 2 t - L 4 ,

and

(136) exist α 0 ( c) > 0 and L 0 ( c) > 0 such that if 0 < α < α 0 ( c) 1 and L ≥ L 0 > 0 then for any

y i (t) = x i-1 (t) + x i (t) 2 , i = 2, .., N + .
1 ≤ K √ L and 0 ≤ λ ≤ 1 2c1 , (137) J j,λ,K (t) -J j,λ,K (0) ≤ O(e -L 48K ), ∀j ∈ {1, ..., N + }, ∀t ∈ [0, T ] .
The proof of this proposition relies on the following virial type identities that are proven in the appendix.

Lemma 13. (Viral type identity). Let u

∈ C(R + ; H ∞ (R)
) be a solution of equation [START_REF] Constantin | Stability of peakons[END_REF]. For any smooth function g : R → R, it holds

(138) d dt R (4v 2 + 5v 2 x + v 2 xx )(t, x)gdx = 2 3 R u 3 (t, x)g dx -4 R u 2 (t, x)v(t, x)g dx + 5 R v(t, x)h(t, x)g dx + R v x (t)h x (t, x)g dx, (139) d dt R u 3 (t, x)gdx = 3 4 R u 4 (t, x)g dx + 9 4 R (h 2 -h 2 x )(t, x)g dx,

and

(140)

d dt R yg dx = R yug dx + 3 2 R (u 2 -u 2 x )g dx where y = (1 -∂ 2 x )u, v = (4 -∂ 2 x ) -1 u, and h = (1 -∂ 2 x ) -1 u 2 .

Proof of Proposition 4

We first note that combining (136) and (125), it holds for j = 1, ..., N + ,

(141) 3 2 c N+ ≥ ẏj (t) ≥ c 1 2 .
Now, using (134), ( 138) and (139) with g = Ψ j,λ,K (• -y j (t)), j ≥ 1, one gets

d dt J j,λ,K (t) = -ẏj (t) R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K (x -y j (t))dx + R ( 2 3 u -4v)u 2 Ψ j,K dx (142) + R (5vh + v x h x )Ψ j,K dx + λ ẏj (t) R u 3 Ψ j,K dx - 3 4 λ R u 4 Ψ j,K dx - 9 4 λ R (h 2 -h 2 x )Ψ j,K dx = -ẏj (t) R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K (x -y j (t))dx + F 1 + F 2 + ... + F 5 . ( 143 
)
We claim that for k = 1, 2, 3, it holds (144)

F k ≤ c 1 10 R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K (x -y j (t))dx + C K e -1 6K (σ( c)t+L/8) .
For all t ∈ [0, T ] and each

j ∈ [[1, N + ]] divide R into two regions D j = D j (t) and D c j with D j (t) = [x j-1 (t) + L/4, x j (t) -L/4] for j ∈ [[2, N + ]] and D 1 (t) = [x 1 (0) -L/2, x 1 (t) -L/4] .
First, in view of ( 125) and ( 135 

u 2 = (4v -v xx ) 2 ≤ 20v 2 + 5v 2 xx ≤ 5(4v 2 + 5v 2 xx + v 2 xx
), and proceeding as for the estimate (43) with the help of ( 128)-( 129) and the exponential decay of ϕ cj on D j , it holds

v(t, •) C 1 (Dj ) + u(t, •) L ∞ (Dj ) N+ j=-N - j =0 ϕ cj (• -x j (t)) L ∞ (Dj ) + u - N+ j=-N - j =0 ϕ cj (• -x j (t)) L ∞ (Dj ) + N+ j=-N - j =0 ρ cj (• -x j (t)) L ∞ (Dj ) + v - N+ j=-N - j =0 ρ cj (• -x j (t)) L ∞ (Dj ) ≤ O(e -L/8 ) + O( √ α) . ( 147 
)
Now to estimate F 1 , we note that combining (145)-( 147) and the exponential decay of Ψ j,K on D c j , we get

F 1 ≤ 4( u L ∞ (Dj ) + v L ∞ (Dj ) ) R u 2 Ψ j,K dx + 4( u L ∞ (D c j ) + v L ∞ (D c j ) ) Ψ j,K L ∞ (D c j ) u 2 L 2 (R) ≤ 20( u L ∞ (Dj ) + v L ∞ (Dj ) ) R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K dx + 20 K u 0 3 H e -1 6K (σ( c)t+L/8) ,
where we used (39) and that, thanks to ( 5) and [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF],

v L ∞ (R) ≤ 1 √ 2 v H 1 ≤ 1 2 √ 2 u H = 1 2 √ 2 u 0 H .
Therefore, for 0 < α < α 0 ( c) 1 small enough and L > L 0 > 0 large enough, it holds

F 1 ≤ c 1 10 R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K (x -y j (t))dx + C K e -1 6K (σ( c)t+L/8) .
Let us now tackle the estimate of F 2 . We first remark that from the definition of Ψ in Section 6.2, and in particular (132), we have for K ≥ 1,

(148) (1 -∂ 2 x )Ψ j,K ≥ (1 - 1 2K 2 )Ψ j,K ⇒ (1 -∂ 2 x ) -1 Ψ j,K ≤ 1 - 1 2K 2 -1 Ψ j,K
and, by Young's convolution estimates and ( 10), (149)

h L 2 ≤ 1 2 e -|•| L 2 u 2 L 1 ≤ 1 2 u 2 L 2 ≤ 2 u 2 H . We also notice that h(x) = 1 2 e -x x -∞ e x u 2 (x ) dx + 1 2 e x x -∞ e -x u 2 (x ) dx ,
and

h x (x) = - 1 2 e -x x -∞ e x u 2 (x ) dx + 1 2 e x x -∞ e -x u 2 (x ) dx , so that (150) |h x (x)| ≤ h(x) ∀x ∈ R.
and thus

(151) F 2 ≤ R (5v + |v x |)hΨ j,K .
Therefore, according to ( 146)-( 147) and ( 148)-( 151), we have

F 2 ≤ 6 v C 1 (Dj ) R hΨ j,K dx + Ψ j,K L ∞ (D c j ) h L 2 (5 v L 2 + v x L 2 ) ≤ 6 v C 1 (Dj ) R u 2 (1 -∂ 2 x ) -1 Ψ j,K dx + 2 Ψ j,K L ∞ (D c j ) u 2 H (5 v L 2 + v x L 2 ) ≤ 30 v C 1 (Dj ) 1 - 1 2K 2 -1 R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K dx + 6 Ψ j,K L ∞ (D c j ) u 3 H .
Using [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] and the exponential decay of of Ψ j,K on D c j with (145), we thus get

F 2 ≤ 30 1 - 1 2K 2 -1 v C 1 (Dj ) R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K dx + 6 u 0 3 H e -1 6K (σ( c)+L/8) ,
so that by (151) F 2 satisfies (144) for 0 < α < α 0 ( c) 1 small enough and L > L 0 1 large enough.

To estimate F 3 , remark that using (141) and ( 146) one may write

F 3 ≤ 15 2 λc N+ u L ∞ (Dj ) R (4v 2 + 5v 2 x + v 2 xx )Ψ j,K dx + 3 2 λc N+ Ψ j,K L ∞ (D c j ) u L ∞ (R) u 2 L 2 (R) .
Using that, by hypothesis 0 ≤ λ ≤ (2c 1 ) -1 , the exponential decay of Ψ j,K on D c j , ( 10) and (39), we deduce that F 3 satisfies (144) for 0 < α < α 0 ( c) 1 small enough and L > L 0 ( c) 1 large enough.

Finally, Ψ j,K ≥ 0, λ ≥ 0 and (150) ensure that F 4 + F 5 is non positive. Gathering (141)-( 144) we thus infer that

d dt J j,λ,K (t) ≤ C K u 0 3 H e -1 6K (σ( c)t+L/8) .
Integrating this inequality between 0 and t, (137) follows and this proves the proposition for smooth initial solutions. Finally, approximating the initial data as in (25), the strong continuity result with respect to initial data (33) in Proposition 2 ensures that (137) also hold for u 0 ∈ Y satisfying Hypothesis 1.

We will also need the following monotonicity result on E + γM at the right of the curve y 1 (•). We introduce the function φ defined by

(152) Φ(x) =    0 for x ≤ 0 x/2 for x ∈ [0, 2] 1 for x ≥ 2 Lemma 14. Let u ∈ C([0, T ]; H ∞ ∩ L ∞ (0, T ; Y )
be the solution to (4) satisfying Hypothesis 1 and (123) for some L > 0. Assume moreover that u satisfies

(153) x 0 (t) ≤ x 1 (0) -L/4 + c 1 t 2 , ∀t ∈ [0, T ],
where x 1 (•) is defined in Lemma 12. There exists

L 0 = L 0 ( c) > 0 such that if L ≥ L 0 then on [0, T ], it holds (154) R 4v 2 +5v 2 x +v 2 xx (t)Ψ(•-y 1 (t))+ c 1 2 9 yΦ(•-y 1 (t)) ≤ R 4v 2 0 +5v 2 0,x +v 2 0,xx Ψ(•-y 1 (0))+ c 1 2 9 y(0)Φ(•-y 1 (0))+O(e -L 48 )
where y 1 (•) is defined in (135) and Ψ is defined in (130).

Proof. Applying (138) with g(t, x) = Ψ(x -y 1 (t)) and (140) with g(t, x) = Φ(x -y 1 (t)) and recalling the definition (135) of y 1 (•), we get

(155) d dt E(u) + c 1 2 9 M (u) = - c 1 2 R Ψ (4v 2 + 5v 2 x + v 2 xx ) + c 1 2 9 Φ y + 3c 1 2 10 R (u 2 -u 2 x )φ + c 1 2 9 R uyΦ + J
where thanks to (144),

J = R ( 2 3 u -4v)u 2 Ψ dx + R (5vh + v x h x )Ψ dx ≤ c 1 2 4 R (4v 2 + 5v 2 x + v 2 xx )Ψ + C u 0 3 H e -1 6 (σ( c)+L/8) . ( 156 
)
We first observe that

(157) R (u 2 -u 2 x )Φ ≤ R u 2 Φ = R (4v -v xx ) 2 Φ ≤ 5 R 4v 2 + 5v 2 x + v 2 xx Φ ,
where, according to the definition (152) of Φ, it holds

(158) 3c 1 2 10 5Φ ≤ c 1 4 Ψ on R .
Second, (153) together with (135) and the definition (152) of Φ ensure that y(t, •) is non negative on the support of Φ (• -y 1 (t)) that is [y 1 (t), y 1 (t) + 2]. Therefore (147) leads to

c 1 2 9 R uyΦ ≤ c 1 2 9 u L ∞ (]y1(t),y1(t)+2[) R yΦ dx ≤ c 1 2 11 R yΦ dx . (159)
Therefore ( 157)-( 159) and( 128) we obtain

-ẏ1 (t) R Ψ (4v 2 + 5v 2 x + v 2 xx ) + c 1 2 9 Φ y + 3c 1 2 10 R (u 2 -u 2 x )Φ + c 1 2 9 R uyΦ ≤ - c 1 4 R Ψ (4v 2 + 5v 2 x + v 2 xx )dx that leads to d dt E(u) + c 1 2 9 M (u) ≤ C u 0 3 H e -1 6 (σ( c)+L/8) .
This proves (154) by integrating in time.

6.3. Control of the growth of y L 1 . The control of the growth of the mass of y(t) is more delicate than in the case of the stability of a single peakon. Indeed, in this last case we deeply use that u stays L ∞ -close to the peakon that is positive and thus the negative part of u stays small. In the present case, this is of course no more true because our train of antipeakon-peakons is no more positive. To overcome this difficulty we make use of the monotony argument for E(u) + γM (u) proven in Lemma 14.

Proposition 5. Let u 0 ∈ Y ∩ H ∞ (R) satisfying Hypothesis 1 and u ∈ C(R + ; H ∞ ) ∩ L ∞ loc (R + ; Y )

be the associated solution to DP given by Proposition 2. There exist

α 0 = α 0 ( c) and L 0 = L 0 ( c) such that if (160) u(t) ∈ U (α, L, c) , ∀t ∈ [0, T ] with 0 < α ≤ α 0 and L ≥ L 0 then (161) y(t, •) L 1 (R) ≤ e 17+2 -5 (c1∧|c-1|)t ( c 1 + 1) 3 (c 1 ∧ |c -1 |) 2 (1 + y 0 L 1 ) , ∀t ∈ [0, T ].
Proof. In view of Lemma 12, there exists

N -+ N + C 1 -functions x -N-(•) < .. < x -1 (•) < x 1 (•) < .. < x N+ (•)
defined on [0, T ] that satisfy (125)-( 126) and ( 128)-(129).

We separate two cases depending on the place of x 0 (0) with respect to x 1 (0). Case 1. x 0 (0) ≤ x 1 (0) -L/3. Then according to (125), (128), the definition (32) of x 0 (•) and a continuity argument, x 0 (t) ≤ x 1 (t) -L/3 and in particular ẋ0 (t) ≤ c 1 /2 for all t ∈ [0, T ]. This ensures that

x 0 (t) + L/12 ≤ y 1 (t) = x 1 (0) -L/4 + c 1 2 t, ∀t ∈ [0, T ],
where y 1 (•) is defined in (135). Therefore Lemma 14 leads to

R (4v 2 +5v 2 x +v 2 xx )Ψ(•-y 1 (t))+ c 1 2 9 R yφ(•-y 1 (t)) ≤ R (4v 2 +5v 2 x +v 2 xx )Ψ(•-y 1 (0))+ c 1 2 9 R y(0)φ(•-y 1 (0))+O(e -L 0 48 )
Making use of the conservation of E and of the definition of Ψ, if follows that for L large enough,

+∞ y1(t)+2 y(t, x) dx ≤ 2 9 c 1 E(u 0 ) + y 0 L 1 + O(e -L 0 48 ) ≤ 1 + 2 9 c 1 E(u 0 ) + y 0 L 1 , ∀t ∈ [0, T ] .
On the other hand, according to (28), u x ≥ -u on ]x 0 (t), +∞[ and by Lemma 11 ∀t ∈ [0, T ] we have,

u(t) ≤ N+ i=1 c i +O( √ α 0 ) on [y 1 (t)+2, +∞] and u(t) ≤ O( √ α 0 )+O(e -L0/8 ) ≤ O( √ α 0 ) on [x 0 (t), y 1 (t)+2] ,
where to get the last inequality we take L 0 > 0 such that O(e -L0/8 ) ≤ √ α 0 . Therefore, according to [START_REF] Dika | Stability of multipeakons[END_REF] and (38), we have

d dt R y + (t, x)dx = d dt +∞ q(t,x0) y(t, x)dx = -2 +∞ x0(t) u x (t, x)y(t, x)dx ≤ 2 y1(t)+2 x0(t) u(t, x)y(t, x)dx + 2 +∞ y1(t)+2 u(t, x)y(t, x)dx ≤ 2 c 1 + O( √ α 0 ) 1 + 2 9 c 1 E(u 0 ) + y 0 L 1 + O( √ α 0 ) R y + (t, x)dx. Hence, Grönwall's inequality yields ∀t ∈ [0, T ] (162) 
R y + (t, x)dx ≤ e C √ α0t y 0 L 1 + 2t c 1 + 1 1 + 2 9 c 1 E(u 0 ) + y 0 L 1 ,
for some universal constant C > 0. Since, according to Proposition 1,

M (u) = R y is conserved for positive times, it follows that (163) y(t, •) L 1 (R) ≤ 2e C √ α0t y 0 L 1 + 2t c 1 + 1 1 + 2 9 c 1 E(u 0 ) + y 0 L 1 .
Taking

α 0 ≤ (c 1 ∧ |c -1 |) 2 (C 2 10
) -2 we thus deduce that

y(t, •) L 1 (R) ≤ 2e 2 -10 (c1∧|c-1|)t y 0 L 1 + 2t c 1 + 1 1 + 2 9 c 1 E(u 0 ) + y 0 L 1 . Since for t ≥ 0, te 2 -10 (c1∧|c-1|)t ≤ te 2 -6 (c1∧|c-1|)t e 2 -5 (c1∧|c-1|)t ≤ e 2 -5 (c 1 ∧|c -1 |)t 2 -6 (c1∧|c-1|) e -1 , it follows that (164) y(t, •) L 1 (R) ≤ 2e 2 -5 (c1∧|c-1|)t y 0 L 1 + 2 7 c 1 + 1 (c 1 ∧ |c -1 |) 1 + 2 9 (c 1 ∧ |c -1 |) E(u 0 ) + y 0 L 1 .
Finally, taking α 0 ≤ 1, (160) ensures that E(u 0 ) ≤ ( c 1 + 1) 2 , and noticing that

c 1 + 1 c 1 ∧ |c -1 | ≥ 1,
we eventually get (161). Case 2: x 0 (0) ≥ x 1 (0) -L/3. Then by (126), we must have x 0 (0) ≥ x -1 (0) + L/3. In this case, we make use of the fact that the DP equation is invariant by the change of unknown u(t, x) → ũ(t, x) = -u(t, -x). Clearly ũ(0) also satisfies hypothesis 1 with x0 (t) = -x 0 (t). Morever, ũ satisfies (128) on [0, T ] with N -and N + respectively replaced by Ñ-= N + and Ñ+ = N -, c i replaced by ci = -c -i and x i (t) replaced by xi (t) = -x -i (t). In particular, it holds

x0 (0) = -x 0 (0) ≤ -x -1 -L/3 = x1 (0) -L/3,
and thus ũ satisfies the hypothesis of Case 1. Therefore ỹ = ũũxx = -y(t, -•) satisfies (164) with c -1 and c 1 respectively replaced by c-1 = -c 1 and c1 = -c -1 . This completes the proof of (161) .

Let us now state the adaptation of Proposition 3 in the present case. The role of x(•) will be now play by x 1 (•) that localizes the slowest peakon. The proof is essentially the same as the one of Proposition 3. However, in the present case (48) is not available anymore on R but we actually only need that it holds on [x -1 (t) + L/4, +∞[ that is verified since

N+ j=-N - j =0 ϕ cj ≥ O( √ α 0 ) + O(e -L0/8
) on this interval. Proposition 6. There exists α 0 ( c) > 0 and L 0 ( c) > 0 such that for any

u 0 ∈ Y ∩ H ∞ (R) satisfying Hypothesis 1, if the solution u ∈ C(R + ; H ∞ (R) emanating from u 0 satisfies for some 0 < α < α 0 , L ≥ L 0 and T > 0, (165) u ∈ U α, L/2, c on [0, T ],
then for all t ∈ [0, T ],

(166)

y -(t, •) L 1 (]x1(t)-1 16 c1t,+∞[) ≤ e -c1t/8 y 0 L 1 (R)
, where y -= max(-y, 0), and x 1 (•) is the C 1 -function constructed in Lemma 12. Moreover it holds

(167) u(t, •) -6v(t, •) ≤ e 27-c 1 t 32 ( c 1 + 1) 3 (c 1 ∧ |c -1 |) 2 (1 + y 0 L 1 ) on ]x 1 (t) -8, +∞[ , where v = (4 -∂ x ) -1 u .
Proof. As mentioned above we mainly proceed as in Proposition 3 but with x(•) replaced by x 1 (•). Hence, for t ∈ [0, T ], we separate two possible cases according to the distance between x 0 (t/2) and x 1 (t/2). Case 1:

(168) x 0 (t/2) < x 1 (t/2) -ln(3/2).
In this case, the same continuity argument as in the proof of Proposition 3 ensures that

(169) x 1 (t) -x 0 (t) ≥ ln(3/2) + c 1 16 t .
This proves that y -(t, •) = 0 on ]x 1 (t) -1 16 c 1 t, +∞[ and thus that (166) holds in this case. Case 2:

(170)

x 0 (t/2) ≥ x 1 (t/2) -ln(3/2).

Then, as in the proof of Proposition 3, (166) is a consequence of the two following estimates :

(171) (171) can be obtained exactly as (75) in Proposition 3. We thus focus on (172) where there is the main change. Indeed, we are not allowed to use (48) in order to prove the crucial estimate (81). The idea to overcome this difficulty is to notice that actually we only need such estimate from below on u in [x -1 (t) + L/4, +∞[. Indeed, let q t be the flow-map defined in (79). For L large enough, (126) and (170) ensure that x = q t/2 (t/2, x) ≥ x -1 (t/2) + L/2 as soon as x ∈ [x 0 (t/2) -ln 2, x 0 (t/2)]. Therefore, by (125), ( 129), (122) and a continuity argument, for τ ∈ [t/2, T ] it holds

q t/2 τ, x -x -1 (τ ) ≥ L/2, ∀x ∈ [x 0 (t/2) -ln 2, x 0 (t/2)] .
On the other hand, (129) and (122) ensure that for all τ ∈ [0, T ],

u(τ, x) ≥ -2 -5 c 1 on [x -1 (τ ) + L/4, +∞[ .
Combining the two above estimates with (28) we obtain as in Proposition 3 that for any τ ∈ [t/2, t] and any x ∈ [x 0 (t/2) -ln 2, x 0 (t/2)],

(173)

∂ x q t/2 (t, x) ≥ exp - t t/2 2 -5 c 1 ds ≥ e -2 -4 c1t .
Once we have the above estimate, the rest of the proof of (166) follows the same lines as in the proof of Proposition 3. Finally to prove (167), we take α 0 and L 0 that are suitable for Proposition 5 . (87) together with (166) , (161) ensure that for

x ≥ x 1 (t) -8 it holds 6v(x) -u(x) ≥ - 1 2 x1(t)- c 1 16 t -∞ e -|x-z| y -(z) dz - 1 2 +∞ x1(t)- c 1 16 t e -|x-z| y -(z) dz ≥ -e 0∧(8-c 1 16 t) e 2 -5 (c1∧|c-1|)t e 17 ( c 1 + 1) 3 (c 1 ∧ |c -1 |) 2 (1 + y 0 L 1 ) - 1 2 e -c1t/8 y 0 L 1 (R)
≥ -e 18 e 9-c 1 t 32

( c 1 + 1) 3 (c 1 ∧ |c -1 |) 2 (1 + y 0 L 1 ) .

An approximate solution.

A new difficulty with respect to the case of a single peakon will be that

t → N+ j=-N - j =0 ϕ cj (• -z 0 j -c j t)
is not an exact solution of the DP equation. The aim of the following lemma is to overcome this difficulty by proving that if L > 0 is large enough then this is an approximate solution with an error in L 2 (R) of order e -L/2 on a time interval of order ln(L 3/4 ).

Lemma 15. Let be given N

-∈ N * negative velocities c -N-< .. < c -1 < 0, N + ∈ N * positive velocities 0 < c 1 < .. < c N+ and z 0 -N-< ..z 0 -1 < z 0 1 < .. < z 0 N+ . There exists L 0 > 0 only depending on c such that for any L ≥ L 0 if (174) z 0 i -z 0 j ≥ L for i > j
then the solution u to (4) emanating from

u 0 = N + j=-N - j =0 ϕ cj (• -z 0 j ) satisfies sup t∈[0,2 5 (c1∧|c-1|) -1 ln(L 3/4 )] u(t) - N+ j=-N - j =0 ϕ cj (• -z 0 j -c j t) H ≤ e -L/2 .
Proof. We set u(t)

= N + j=-N - j =0
ϕ cj (• -z 0 j -c j t). Using that ϕ c (x -ct) is a solution to (4), one can check that u satisfies (175)

u t + uu x + 3 2 ∂ x (1 -∂ 2 x ) -1 (u 2 ) = F with F := i<j c i c j 1 + 3(1 -∂ 2 x ) -1 ∂ x ϕ(• -z 0 i -c i t)ϕ(• -z 0 j -c j t) .
On account of (174), straightforward calculations lead to

sup t∈[0,T ] ∂ x ϕ(• -z 0 i -c i t)ϕ(• -z 0 j -c j t) L 1 + ∂ 2 x ϕ(• -z 0 i -c i t)ϕ(• -z 0 j -c j t) M (L + 1)e -2L/3 . so that (176) sup t∈R+ F (t) L 1 + F x (t) M (L + 1)e -2L/3 .
Note also that for all t ≥ 0 it holds sup t∈[0,T ] (u -u xx )(t) M = c 1 . Now, since u(0) = u 0 clearly satisfies Hypothesis 1, the solution u to (4) emanating from u 0 = u(0) exists for all positive times in Y . For T > 0 we set

M T = sup t∈[0,T ] u -u xx M .
At this stage it s worth noticing that Proposition 5 ensures that (177)

M T ≤ e 17+2 -5 (c1∧|c-1|)T ( c 1 + 1) 4 (c 1 ∧ |c -1 |) 2 .
Setting w = u -u, using exterior regularization and proceeding as in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] (see also [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] for the DP equation pp : 480-482), we get on [0, T ]

d dt R |ρ n * w| + |ρ n * w x | (M T + c 1 ) R |ρ n * w| + |ρ n * w x | + R (|ρ n * F | + |ρ n * F x |) + R n (t)
where (ρ n ) n≥0 is defined in (24),

R n (t) → 0 as n → +∞ and |R n (t)| 1, n ≥ 1, t ∈ R + .
Therefore Gronwall inequality and since w(0) = w x (0) = 0, yields to

(178) R |ρ n * w(t)| + |ρ n * w x (t)| t 0 e C(M T + c 1)(t-s) R |ρ n * F (s)| + |ρ n * F x (s)| + |R n (s)| ds .
Letting n tends to +∞ and making use of (176) and then (177), we thus get that for L large enough

sup t∈[0,T ] w(t) H ≤ sup t∈[0,T ] w(t) L 2 ≤ sup t∈[0,T ] w(t) W 1,1 ≤ e C(1+M T + c 1 )T e -5L/8 . ( 179 
)
This estimate together with (177) ensure that there exists L 0 ( c) ≥ 1 such that for all L > L 0 , (180) u(t) -u(t)

H ≤ e -L/2
as soon as

(181) 0 ≤ t ≤ 2 5 (c 1 ∧ |c -1 |) -1 ln(L 3/4 ) .
Indeed, as soon as (180)-(181) are satisfied, (177) gives

M T ≤ e 17 ( c 1 + 1) 4 (c 1 ∧ |c -1 |) 2 L 3/4
so that (179) leads to

u(t) -u(t) H ≤ exp C 1 + C 2 L 3/4 ln(L 3/4 ) e -5L/8 .
where

C 1 = C 1 ( c) > 0 and C 2 = C 2 ( c) > 0.
This gives (180) for L large enough and proves the result by a continuity argument.

6.5. Two global estimates. The following generalization of the quadratic identity in Lemma 5 was proved in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF].

Lemma 16. (Global quadratic identity) Let u ∈ L 2 (R) and assume that z -N-< .. < z -1 < z 1 < .. < z N+ with z i -z j ≥ L/2 for i > j. Then it holds (182)

E(u)- N+ i=-N- E(ϕ ci ) = u - N+ i=-N- ϕ ci (• -z i ) 2 H +4 N+ i=-N- c i v(z i ) - c i 6 +O(e -L/2 ) i ∈ [[-N -, N + ]]\{0}.
where v = (4 -∂ 2 x ) -1 u.

Proof. First, according to the definition of the energy space (5) we notice that

u - N+ i=-N- ϕ ci (• -z i ) 2 H = E(u) + E   N+ i=-N- ϕ ci (• -z i )   -2 N+ i=-N- (1 -∂ 2 x )ϕ ci (• -z i ), v = E(u) + E   N+ i=-N- ϕ ci (• -z i )   -4 N+ i=-N- c i v(z i ). ( 183 
)
where we used that (1 -∂ 2

x )ϕ ci (• -z i ) = 2c i δ zi with δ zi the Dirac mass applied at point z i . However,

E   N+ i=-N- ϕ ci (• -z i )   = N i=1 N j=1 (1 -∂ 2 x )ϕ ci (• -z i ), ρ cj (• -z j ) = 2 N+ i=-N- N+ j=-N- c i ρ cj (z i -z j ) = 1 3 N+ i=-N- c 2 i + 2 N+ i=-N- c i N+ j=-N- j =i ρ cj (z i -z j ) . ( 184 
)
From the definition of ρ cj in ( 9) and the fact that z i -z j ≥ 2L/3 for i > j, it follows that

N+ j=-N- j =i ρ cj (z i -z j ) = N+ j=-N- j =i 1 4 e -2|•| * ϕ cj (• -z j ) (z i ) = N+ j=-N- j =i c j 3 e -|zi-zj | - c j 6 e -|zi-zj | ≤ c 1 e -2L/3 ≤ O(e -L/2 ) (185)
Gathering ( 183), ( 184), ( 185) with E(ϕ ci ) = c 2 i /3 then (182) holds for L > L 0 1 large enough.

The following lemma is an adaptation of Lemma 6 in the present case.

Lemma 17. Let u ∈ L ∞ (R) ∩ L 2 (R) such that (186) u - N+ j=-N - j =0 ϕ ci (• -z j ) L ∞ (R) ≤ 10 -5 N -+ N + (c 1 ∧ |c -1 |)
for some c -N-< .. < c -1 < 0 < c 1 < .. < c N+ and some Z ∈ R N-+N+ with z i -z j ≥ 2L/3 for all i > j. Then there exists L 0 > 0 only depending on c, such that for L > L 0 1 large enough, the function v = (4 -∂ 2

x ) -1 u has got a unique point of local maximum (resp. minimum) ξ i on Θ zi = [z i -6.7, z i + 6.7] for any

1 ≤ i ≤ N + (resp. -N -≤ i ≤ -1). Moreover, (187) u - N+ j=-N - j =0 ϕ cj (• -ξ j ) H ≤ u - N+ j=-N - j =0 ϕ cj (• -z j ) H + O(e -L/4
) .

and

(188)

ξ i ∈ V i = [z i -ln √ 2, z i + ln √ 2], ∀i ∈ [[-N -, N + ]] \ {0} .
Finally, for any (y 1 , .., y N+ ) ∈ R N+ , such that

z -1 + L/4 < y 1 < z 1 < y 2 < z 2 < •• < y N+ < z N+ with |y i -z j | ≥ L/4 for (i, j) ∈ [[1, N + ]] 2 it holds (189) sup x∈]yi,yi+1[\Θz i |u(x)|, |v(x)|, |v x (x)| ≤ c 1 ∧ |c -1 | 100 , i ∈ [[1, N + ]] ,
where we set y N++1 = +∞.

Proof. Since z i -z j ≥ 2L/3 for all i > j it holds (190)

N+ j=-N - j =0 ρ cj (x -z j ) = ρ ci (x -z i ) + c 1 O(e -L/4 ), ∀x ∈ [z i -L/3, z i + L/3] .
Therefore repeating the proof of Lemma 6 on each [z i -L/3, z i +L/3], we obtain that, for L large enough, the function v = (4 -∂ 2 x ) -1 u has got a unique point of maximum (resp. minimum) ξ i on Θ zi = [z i -6.7, z i + 6.7] for any 1 ≤ i ≤ N + (resp. -N -≤ i ≤ -1) and that moreover ξ i ∈ V i . In particular, ξ i -ξ j ≥ L/2 for i > j and thus applying (182) for the z i s and then the ξ i s, (187) follows.

6.6. Beginning of the proof of Theorem 2. Let c and A > 0 be fixed and let B = B( c, A) ≥ 1 to be fixed at the end of this section. Let α0 be the minimum and L0 be the maximum of respectively all the α 0 ( c) and all the L 0 ( c) appearing in the preceding statements of Section 6. We set (191)

ε 0 = min 10 -20 B K c 1 ∧ |c -1 | (1 + c 1 )(N -+ N + ) 2 , α0 .
where K is the constant depending on c that appear in Lemma 12. For α > 0 we also set (192) 8 ). Since α ≥ L -1/8 , we have ln(1/α 2 ) ≤ ln(L 1/4 ) and thus

T α = max 2 5 c 1 ∧ |c -1 |) (9 + ln( A 0 α 2 )), 0 with A 0 = e 27 ( c 1 + 1) 3 (c 1 ∧ |c -1 |) 2 (1 + A) . For 0 < ε < ε 0 and L > L0 , we set α = B(ε + L - 1 
T α ≤ 2 5 c 1 ∧ |c -1 | ln(L 3/4 ) ,
as soon as L ≥ A 4 0 ∨ e 36 . Therefore we set (193) L 0 = max(ε -8 0 , A 4 0 , L0 ) .

According to Lemma 15, for L ≥ L 0 , this ensures that the solution u to (4) emanating from

u 0 = N + j=-N - j =0 ϕ cj (•- z 0 j ) satisfies u(t) - N+ j=-N - j =0 ϕ cj (x -z 0 j -c j t) H ≤ e -L/2 ≤ L -1/8 , ∀t ∈ [0, T α ] .
On the other hand, according to the continuity with respect to initial data (see Proposition 2), for any ε > 0 there exists δ = δ(A, ε, c) > 0 such that for any u 0 ∈ Y satisfying Hypothesis 1 and ( 17)-( 18) with A and δ, it holds

u(t) -u(t) H ≤ ε, ∀t ∈ [0, T α ] , where u ∈ C(R + ; H 1 (R))
is the solution of the (D-P) equation emanating from u 0 . Gathering the two above estimates we thus infer that 

(194) u(t) - N+ j=-N - j =0 ϕ cj (x -z 0 j -c j t) H ≤ ε + L -1/8 , ∀t ∈ [0, T α ] . So let u 0 ∈ Y ∩ H ∞ (R) that
N+ j=-N - j =0 ϕ cj (x -z 0 j -c j t) L ∞ < 10 -5 N -+ N + (c 1 ∧ |c -1 |), ∀t ∈ [0, T α ],
Applying Lemma 17 with the z j = z 0 j + c j t we obtain the existence of the local maxima (or minima) ξ j (t). Note that (188) ensures that ξ i (t) -ξ j (t) ≥ 2L/3 for i > j and (189) ensures that ξ i (t) is the only point of maximum (resp. point of minimum) of v

(t) = (4 -∂ 2 x ) -1 u(t) on [ξ i (t) -L/4, ξ i (t) + L/4] for i ∈ [[1, N + ]] (resp. i ∈ [[N -, -1]]).
By a continuity argument it remains to prove that for any T ≥ T α , if 

(196) u(t) ∈ U 2B(ε + L -1/8 ), L/2 on [0, T ] then there exists ξ N-(T ) < ..ξ -1 (T ) < ξ 1 (T ) < ..ξ N+ (T ) with ξ i (T ) -ξ j (T ) ≥ 2L/3 for i > j such that (197) u(t) - N+ j=-N - j =0 ϕ cj (x -ξ j (T )) H ≤ B(ε + L -1/8
(T ) < ..x -1 (T ) < x 1 (T ) < ..x N+ (T ) with x i (T ) - x j (T ) ≥ 3L/4 for i > j such that (198) u(t) - N+ j=-N - j =0 ϕ cj (x -x j (t)) H ≤ KB(ε + L -1/8 ), ∀t ∈ [0, T ] .
and Lemma 11 together with (191)-(193) ensure that

u(t) - N+ j=-N - j =0 ϕ cj (x -x j (t)) L ∞ ≤ 10 -5 N -+ N + (c 1 ∧ |c -1 |), ∀t ∈ [0, T ] .
Applying Lemma 17 with the z j = x j (t) we obtain the existence of the local maximum (or minimum) ξ j (t). Note that (188) ensures that ξ i (t) -ξ j (t) ≥ 2L/3 for i > j and (189) ensures that ξ i (t) is the only point of global maximum (resp. point of global minimum) of v(t) = (4

-∂ 2 x ) -1 u(t) on [ξ i (t) -L/4, ξ i (t) + L/4] for i ∈ [[1, N + ]] (resp. i ∈ [[N -, - 1 
]]). Moreover, (187) and again Lemma 11 prove that for L ≥ L 0 large enough (199) u(t) -

N+ j=-N - j =0 ϕ cj (x -ξ j (t)) H ≤ 2 KB(ε + L -1/8 )
and

u(t) - N+ j=-N - j =0 ϕ cj (x -ξ j (t)) L ∞ ≤ 10 -5 N -+ N + (c 1 ∧ |c -1 |), ∀t ∈ [0, T ] .
Finally, Proposition 6 together with the definition (192) of T α and (188) then ensure that

(200) u(t, •) -6v(t, •) ≤ α 2 = (ε + L -1/8 ) 2 on [x 1 (t) -8, +∞[ ∀t ∈ [T α , T ] .
For the remaining of the proof we need the following localized versions of Lemmas 7-10, where the global functional E and F are replaced by their localized versions E i and F i . 6.7. Localized estimates. In the sequel we set

(201) K = √ L/8 . Let x -N-(•) < .. < x -1 (•) < x 1 (•) < .. < x N+ (•) be the N -+ N + C 1 -functions defined on [0, T ] (see (198)) and define the function Φ i = Φ i (t, x), i = 1, .., N + , by (202) 
Φ N+ (t) = Ψ N+, √ L/8 (t) = Ψ √ L/8 (• -y N+ (t)) Φ i (t) = Ψ i, √ L/8 (t) -Ψ i+1, √ L/8 (t) = Ψ √ L/8 (• -y i (t)) -Ψ √ L/8 (• -y i+1 (t)), i = 1, ..., N + -1,
where Ψ i,K and the y i 's are defined in Section 6. 

E i (t) = R (4v 2 + 5v 2 x + v 2 xx )Φ i (t) and F i (t) = R -v 3 xx + 12vv 2 xx -48v 2 v xx + 64v 3 Φ i (t) . (205) 
In the statement of the four following lemmas we fix the time. This corresponds to fix

x -N-< .. < x -1 < x 1 < .. < x N+ with x i -x j > 3L/4 for i > j such that (206) u(t) - N+ j=-N - j =0 ϕ cj (x -x j ) H ≤ KB(ε + L -1/8 )
and to fix (y 1 , .., y N+ ) ∈ R N+ , such that

x -1 + L/4 < y 1 < x 1 < y 2 < x 2 < •• < y N+ < x N+ < y N++1 = +∞ with |y i -x j | ≥ L/4 for (i, j) ∈ [[1, N + ]] 2 .
In particular, E i and F i do not depend on time. For i = 1, ..., N + , we set Ω i =]y i -L/8, y i+1 + L/8[, the interval in which the mass of each peakon ϕ ci (and smooth peakon ρ ci ) is concentrated. One can see that (207)

N+ j=-N - j =0 ρ cj (x -x j ) = ρ ci (x -x i ) + O(e -L/4 ), ∀x ∈ Ω i ,
and that ρ ci (x -x i ) = O(e -L/4 ) for all x ∈ R\Ω i . We will decompose Ω i as in Section 5 by setting (208) Θ i = [x i -6. 

g i (x) = 2v(x) + v xx (x) -3v x (x), ∀x < ξ i , 2v(x) + v xx (x) + 3v x (x), ∀x > ξ i .
Then it holds

(210) R g 2 i (x)Φ i (x)dx = E i (u) -12M 2 i + u 2 H O(L -1/2 ), and R g 2 i (x)Φ i (x)dx = E i (u -ϕ ci (• -ξ i )) -12 c i 6 -M i 2 + u -ϕ ci (• -ξ i ) 2 H O(L -1/2 ) ≤ O( u -ϕ ci (• -ξ i ) 2 H ) (211)
Proof. The proof is similar to the one of Lemma 4.3 in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] 

i (x) = -v xx -6v x + 16v, x < ξ i , -v xx + 6v x + 16v, x > ξ i .
Then, it holds

(213) R h i (x)g 2 i (x)Φ i (x)dx = F i (u) -144M 3 i Φ i (ξ i ) + u 3 H O(L -1/2 ).
Proof. The proof is similar to the one of Lemma 4. If ξ i -6.7 < x < ξ i , then v x ≥ 0 and using that u -6v ≤ α 2 , we get (220)

h i (x) ≤ 18M i + α 2 .
If ξ i < x < ξ i + 6.7, then v x ≤ 0 and using that u -6v ≤ α 2 , we get

h i (x) ≤ 18M i + α 2 .
Combining (217), (204), and (218), one deduce that

F i (u) -144M 3 i = R h i (x)g 2 i (x)Φ i (x)dx + u 3 H O(L -1/2 ) = Ωi h i (x)g 2 i (x)Φ i (x)dx + u 3 H O(L -1/2 ) ≤ 18M i E i (u) -12M 2 i + O(α 4 ) + u 3 H O(L -1/2 ),
that completes the proof of the lemma.

Lemma 21. Let u 0 ∈ Y satisfying Hypothesis 1 and (17)- [START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF]. It holds

E i (u 0 ) -E(ϕ ci ) + F i (u 0 ) -F (ϕ ci ) ≤ O(ε 4 ) + O(e - √ L ), i ∈ [[-N -, N + ]] \ {0}. (221)
Proof. It follows easily from ( 17)-( 19), (205), the exponential decay of ϕ ci and Φ i and the choice K = √ L/8 (see Lemma 4.7 in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] for details). 6.8. End of the proof of Theorem 2. For i ∈ [[1, N + ] we set M i = v T, ξ i (T ) and δ i = c i /6 -M i . It is worth recalling that Lemma 17 ensures that for 1 ≤ i ≤ N + , v(T, ξ i (T )) = max [yi(T ),yi+1(T )] v(T, •), where the y i 's are defined in (136). For a function f : R + -→ R, we set ∆ T 0 f = f (T ) -f (0). Summing (216) over i ∈ {1, ..., N + }, we get

N+ i=1 ∆ T 0 F i (u) ≤ 18 N+ i=1 M i ∆ T 0 E i (u) + N+ i=1 -72M 3 i + 18M i E i (u 0 ) -F i (u 0 ) + O(α 4 ) + O(L -1/2 )
that can be rewritten after some computations as (222)

N+ i=1 M 3 i - 1 4 M i E(ϕ ci ) + 1 72 F (ϕ ci ) ≤ 1 4 N+ i=1 M i ∆ T 0 E i (u) - 1 18 ∆ T 0 F i (u) + 1 4 N+ i=1 M i E i (u 0 ) -E(ϕ ci ) + 1 72 N+ i=1 F i (u 0 ) -F (ϕ ci ) + O(α 4 ) + O(L -1/2 ).
Using Abel transformation, the fact that E(ϕ ci ) = c 2 i /3, F (ϕ ci ) = 2c 3 i /3 and definition (134), (noticing that 0 ≤ 1/18M 1 < 2/3c 1 ) we obtain ) . Now, it is again crucial to note that (D-P) is invariant by the change of unknown u(t, x) → ũ(t, x) = -u(t, -x). As in the proof of Proposition 5 it is clear that ũ(0, •) = -u 0 (-•) satisfies Hypothesis 1 with x0 = -x 0 and then x0 (t) = -x 0 (t) for all t ≥ 0. ũ satisfies (198) on [0, T ] with N -and N + respectively replaced by Ñ-= N + and Ñ+ = N -, x i (t) replaced by xi (t) = -x -i and c i replaced by ci = -c -i . Also we notice that the definition of T α is symmetric in c 1 and -c -1 so that ũ also satisfies (200) with v replaced by ṽ and x 1 (t) replaced by x1 (t). Therefore, applying the above procedure for ũ we obtain as well that To conclude the proof we need the following estimate on the left-hand side member of (182). We start by applying the operator (4 -∂ 2 x ) -1 (•) on the both sides of equation ( 4) and using the fact that

(228) (4 -∂ 2 x ) -1 (1 -∂ 2 x ) -1 (•) = 1 3 (1 -∂ 2 x ) -1 (•) - 1 3 (4 -∂ 2 x ) -1 (•),
we infer that v = (4 -∂ Moreover in the same way one may write

d dt R v 2 xx gdx = 2 R v xx v xxt gdx = - R v xx (1 -∂ 2 x ) -1 ∂ 3 x (u 2 )gdx = R ∂ x (u 2 )v xx gdx - R v xx h x gdx = A 1 + A 2 ,
where since v xx = u -4v, it holds

A 1 = - R ∂ x (u 2 )ugdx + 4 R ∂ x (u 2 )vgdx = 2 3 R u 3 g dx -4 R u 2 v x gdx -4 R u 2 vg dx
and

A 2 = R v x (1 -∂ 2 x ) -1 ∂ 2 x (u 2 )gdx + R v x h x g dx = - R u 2 v x gdx + R v x hgdx + R v x h x g dx.
Gathering the above identities, (138) follows. We now concentrate on the proof of (139 

( a )Figure 1 .

 a1 Figure 1. (A) Peakon and antipeakon representative curves with speed c = ±1. They are even functions that admit a single maximum c (resp. maximum -c) at the origin. (B) Smooth peakon and smooth antipeakon representative curves with speed c = ±1. They are even C 2 functions that admit a single maximum c/6 (resp. minimum -c/6) at the origin.

  , according to Proposition 1, M (u) = R y is conserved for positive times, it holds R y + (t, x)dx = R y 0 (x)dx + R y -(t, x)dx and thus (51) y(t, •) L 1 (R) ≤ 1 + 2e 8α
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 4 A dynamic estimate on y -

( a )

 a Two antipeakons at speeds c i = 1, 4. (b) Two peakons at speeds c i = 2, 4.

Figure 2 .

 2 Figure 2. Summing two antipeakons and peakons profiles at time t = 1 with different speeds.

( a )

 a At time t = 1. (b) At time t = 3.

Figure 3 .

 3 Figure 3. Three well-ordered trains of antipeakons and peakons profiles at different speeds c i = 3, 6, 9.

6. 2 .Figure 4 .e 2 / 3 ,

 2423 Figure 4. Profiles of Ψ and its derivatives.

Proposition 4 .

 4 (Almost monotony of the functional energy J i,λ,K ) Let T > 0 and u ∈ C(R + ; H 1 ) be the solution of the DP equation emanating from u 0 ∈ Y , satisfying Hypothesis 1 with (17)-(18) on [0, T ]. There

Figure 5 .

 5 Figure 5. Profiles of |Ψ | (blue) with respect to 1 2 Ψ (black).

  3 in [10] using the fact that K = √ L/8 and thus |Φ | + |Φ | ≤ O(L -1/2

MF

  i E i (u 0 ) -E(ϕ ci ) + 1 72 N+ i=1 i (u 0 ) -F (ϕ ci ) + O(α 4 ) + O(L -1/2 ).Now, in view of Lemma (199) and (207)M i = c i 6 + O(e -L/4 ) + O(α),and thus for 0 < α < α 0 ( c) 1 small enough and L > L 0 1 large enough, it holds(224) 0 < M 1 < ... < M N+ and δ i < c i /4, with i = 1, ..., N + .Combining (221), (223), (224) and (137), we obtain (225)N+ i=1 |c i δ i | ≤ O(ε 2 + L -1/4

  |c -i (c -i /6 -M -i )| = Ñ+ i=1 |c i (c i /6 -Mi )| ≤ O(ε 2 + L -1/4 ) , with Mi = -M -i where M -i = v(T, ξ -i ) = min Ωi v(T, •).

Lemma 22 . 1 .

 221 For any u 0 ∈ L 2 (R) satisfying (18)-[START_REF] Wahlén | Global existence of weak solutions to the Camassa-Holm equation[END_REF], it holdsE(u 0 ) -N+ i=-N-E(ϕ ci ) ≤ O(ε 4 ) + O(e -L/2 ) (227)Proof. It follows easily from (18)-(19) and the exponential decay of ρ ci = (4 -∂ 2x ) -1 ϕ ci (see Lemma 4.7 in[START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF] for details).Gathering (225)-(226),Lemma 16 and (227) with δ ≤ ε 4 we obtain that there exists C > 0 only depending on c such thatu(T ) -N+ i=-Ni =0 ϕ ci (• -ξ i (T )) H ≤ C(ε + L -1/8), and (196) holds by choosing B = C ∨ 1. 7. Appendix 7.Proof of Lemma 13. Identity (138) is a simplified version of the one derived in [10] Appendix 4.4.

Since ∂ 2 xd dt R v 2 x gdx = 10 R v x v xt gdx = - 5 Rv( 1 5 R u 2 v x gdx - 5 R v x hgdx = 5 R u 2 v x gdx + 5 R vh x gdx + 5 R

 2105155555 (1 -∂ 2 x ) -1 (•) = -(•) + (1 -∂ 2 x ) -1 (•), (229) then leads to 5 -∂ 2 x ) -1 ∂ 2 x (u 2 )gdx = vhg dx .

  ), ∀t ∈ [0, T ] .and ξ i (T ) is the only point of global maximum (resp. point of global minimum) of v(t) on [ξ i (T )-L/4, ξ i (T )+ L/4] for i ∈ [[1, N + ]] (resp. i ∈ [[N -, -1]]). Now it is worth noticing that (196) together with the definitions (191)-(193) and Proposition 6 ensure that there exist x N-

  2 (130)-(135). It is easy to check that the Φ i 's are positive N++1 := +∞. It is worth noticing that, somehow, Φ i (t) takes care of only the ith bump of u(t). We will use the following localized version of E and F defined for i ∈ {1, .., N + }, by

	N+							
	functions and that	Φ i ≡ Ψ 1, √	L/8 . Since L ≥ L 0 ≥ 1, (201) and (131) ensure that Φ i satisfies for
	i=1							
	i ∈ {1, ..., N + },							
	(203)	1 -Φ i ≤ 2e -	√	L on y i +	L 8	, y i+1 -	L 8	,
	and							
	(204)	Φ i ≤ 2e -	√	L on R\ y i -	L 8	, y i+1 +	L 8	,
	where we set y							

  Lemma 19 (See[START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]). Let u ∈ L 2 (R) satisfying (206). Denote by M i = max x∈Θi v(x) = v(ξ i ) and define for i = 1, ..., N + the function h i by

	(212)	h

using (203) 

and

|Φ | + |Φ | ≤ O(L -1/2 ) since K = √ L/8.

The second identity follows as (106) in Lemma 7.

  ).Lemma 20 (Connection between the conservation laws Ei and F i ). Let u ∈ L 2 (R) satisfyingHypothesis 1 and (206).If (214) u -6v ≤ α 2 on [x 1 -8, +∞[and for i ∈ [[1, N + ]], F i (u) ≤ 18M i E i (u) -72M 3 i + O(α 4 ) + u 3 H O(L -1/2 ), i = 1, ..., N + . Proof. Recall that, according to Subsection 6.6, v = (4 -∂ 2 x ) -1 u has a got a unique global maximum ξ i on ξ i ∈]y i + L/8, y i+1 -L/8[ for i ∈ [[1, N + ]]. , it follows from (203) that Φ i (ξ i ) = 1 + O(e -It thus remains to show that the function h i defined in Lemma 19 satisfies h i ≤ 18M i + α 2 on Ω i . We divide Ω i into three intervals. If x ∈ Ω i \ Θ ξi , then using (214), it holds

	(215)		sup 8 ,yi+1+ L x∈]yi-L 8 [\Θξ i	(|u(x)|, |v(x)|, |v x (x)|) ≤	c i 100	,
	then it holds				
	(216)				
	this with K =	√	L/8, (210) and (213) one may deduce that		√	L ). Combining
	(217)				
	Now, in view of (204) and (39) it holds		
	(219)		h i (x) ≤ |u(x)| + 6|v x (x)| + 12|v(x)| ≤	19c i 100	≤ 18M i .

R g 2 i (x)Φ i (x)dx = E i (u) -12M 2 i + u 2 H O(L -1/2 ), and

(218)

R h i (x)g 2 i (x)Φ i (x)dx = F i (u) -144M 3 i + u 3 H O(L -1/2 ). R\Ωi h i (x)g 2 i (x)Φ i (x)dx = u 2 H ( u L ∞ + u H )O(e - √ L/8 ) = u 3 H O(e - √ L/8

) .

See[START_REF] Molinet | Asymptotic Stability for Some Non positive Perturbations of the Camassa-Holm Peakon with Application to the Antipeakon-peakon Profile[END_REF] for an asymptotic stability result in the class of functions with a positive momentum density.

(2+c)t y 0 L 1 (R) .

First, by integration by parts one may have

Second, substituting u 2 by h -h xx and integrating by parts we get

that proves (139). Finally, (140) can be deduced directly from [START_REF] Dika | Stability of multipeakons[END_REF] by integrating by parts in the following way :

Luc Molinet, Institut Denis Poisson, Université de Tours, Université d'Orléans, CNRS, Parc Grandmont, 37200 Tours, France.

E-mail address: Luc.Molinet@univ-tours.fr