
HAL Id: hal-02418537
https://hal.science/hal-02418537v1

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The clustered team orienteering problem
Ala-Eddine Yahiaoui, Aziz Moukrim, Mehdi Serairi

To cite this version:
Ala-Eddine Yahiaoui, Aziz Moukrim, Mehdi Serairi. The clustered team orienteering problem. Com-
puters and Operations Research, 2019, 111, pp.386-399. �10.1016/j.cor.2019.07.008�. �hal-02418537�

https://hal.science/hal-02418537v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


The Clustered Team Orienteering Problem

Ala-Eddine Yahiaouia, Aziz Moukrima, Mehdi Serairia

aSorbonne universités, Université de technologie de Compiègne
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Abstract

In this paper, we present a new variant of the Clustered Orienteering Prob-
lem (COP) that we refer to as the Clustered Team Orienteering Problem (Clu-
TOP). In this problem, customers are grouped into subsets called clusters. A
profit is associated with each cluster and is gained only if all of its customers
are served. A set of available vehicles with a limited travel time collaborates in
order to visit the customers of the clusters. The objective is to maximize the
total collected profit with respect to a travel time limit.

The first contribution of this paper consists of an exact method based on
a cutting planes approach. This method includes the consideration of a set of
valid inequalities. In particular an incompatibility-cluster-based valid inequality
is proposed. Moreover a pre-processing procedure is considered in order to
compute the incompatibilities between clusters. The second contribution is a
hybrid heuristic that combines an Adaptive Large Neighborhood Search (ALNS)
and an effective split procedure. These two components cooperate together
for the purpose of exploring both direct representation and giant tours search
spaces.

Experimental results show that the cutting plane based algorithm outper-
forms the state-of-the-art exact methods, in the particular case of a single vehicle
by solving 61 additional instances. Moreover, the hybrid heuristic succeeds in
finding 38 new best known solutions for the case of one vehicle. For the case
with multiple vehicles, new benchmark instances are generated based on those
introduced for the COP. Regarding the performance of the methods, the heuris-
tic method finds the optimal solution for almost all the instances solved by the
exact methods.

Keywords: team orienteering problem · cluster · cutting plane · adaptive large
neighborhood search · Split procedure

1. Introduction

In this paper, we propose a new variant of the vehicle routing problems
with profits, which we refer to as the Clustered Team Orienteering Problem
(CluTOP). In this variant, customers are grouped into subsets called clusters.
A profit is assigned to each cluster, which is gained only if all of the customers
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in the cluster are visited. A set of identical vehicles cooperates in order to
maximize the total collected profit w.r.t. the limited travel time imposed on
each vehicle.

A special case of the CluTOP is when all the clusters are formed by single
customers. This problem is known as the Team Orienteering Problem (TOP),
one of the most studied routing problems with profits in the literature [3]. The
TOP is inspired from the sport game of orienteering, in which a set of players of
the same team work together in order to collect as many rewards as possible from
a set of locations w.r.t. a time limit imposed for each player [5]. Many exact
and heuristic methods have been proposed for the problem. The reader can
refer to [3], [9], [12] and [19] for surveys on variants, applications and solution
methods as well.

The CluTOP is also a generalization of the Clustered Orienteering Problem
(COP) proposed in Angelelli et al. [1]. In this problem, a single vehicle is used to
serve the selected clusters. The authors in [1] proposed two approaches to solve
the COP. The first approach is based on a branch-and-cut algorithm. They pro-
posed two branching schemes and suitable valid inequalities in order to enhance
the solution process. The second approach consists of a Tabu Search heuristic.
Several insertion and removal operators were proposed. Three versions of this
heuristic were introduced and compared.

The concept of cluster has been used in several variants of vehicle routing
problems to denote a subset of customers. However, the signification of this
concept differs depending on the problem. In the Generalized Traveling Sales-
man Problem (GTSP) [11], for example, the customers are grouped into subsets
called clusters, and the salesman has to visit at least one customer from each
cluster. In the Clustered Traveling Salesman Problem [13], customers belong-
ing to the same cluster must be visited contiguously. An extension of these
two problems has been introduced in [7], in which a given vehicle can alternate
visits between the customers of different clusters, i.e. it is not mandatory to
consecutively visit customers of the same cluster. Recently, a new variant of
the OP called the Set Orienteering Problem (SOP) was proposed in [2]. In this
problem, a single vehicle can visit one customer per cluster at most. To the
best of our knowledge, this study is the first to address the CluTOP as defined
in our work.

The CluTOP can be used to model many applications in logistic systems
and transportation. Some interesting applications were introduced in [1] for the
COP, which are still relevant for the CluTOP. An example of these applications
is related to the distribution of mass products. In this application, each supply
chain contains a set of retailers (customers), and if a carrier agrees to supply
a chain with a product, it has to serve all the retailers belonging to this chain.
In case where retailers are located in the same area/city, it would be more
interesting to represent all these retailers using one vertex node in the graph
model (since there is no capacity constraint), which reduces the size of the
original problem. As a result, if the retailers belong to different supply chains,
the associated vertex node (customer) should belong to different clusters.

The main contributions of our work can be summarized as follows:
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• We propose an exact algorithm based on a cutting planes approach. This
algorithm includes the implementation of a pre-processing procedure to-
gether with the consideration of valid inequalities. These components
are introduced in order to reduce the computational-burden of the ex-
act method. Interestingly, these components are deduced by computing
cliques on particular graphs that represent incompatibility between cus-
tomers or clusters.

• We extend our heuristic initially proposed for the COP in [21]. This heuris-
tic explorers both direct representation and giant tours search spaces. In-
deed, an Adaptive Large Neighborhood Search (ALNS) generates giant
tours with good quality. The giant tours are then provided to the second
component, which is a split procedure, in order to extract solutions with
better profit. The split is based on a Beam Search algorithm that incor-
porates a knapsack-based procedure used to select in the most promising
nodes to be expanded in the beam search tree.

• In terms of computational experiments, tests were conducted on bench-
marks proposed by [1] to show the efficiency of our methods. Eighty addi-
tional instances were solved to optimality by the cutting plane, whereas,
the hybrid heuristic succeeded in improving the best solution for 38 in-
stances. Furthermore, we present the results of extensive computational
experiments on new proposed CluTOP instances where m ≥ 2. We report
the derivation of very near-optimal solutions for CluTOP instances.

The remainder of this paper is as follows. In Section 2, we describe the
new problem and we introduce a mathematical formulation together with valid
inequalities. In Section 3, we present our exact approach based on a cutting
plane scheme and describe the pre-processing procedure. Section 4 details our
hybrid-heuristic. Computational results are presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Mathematical formulation and valid cuts

2.1. Problem description and mathematical formulations

An instance of the CluTOP, ICluTOP , is modeled using a complete undi-
rected graph G = (V,E). The set of vertices is V = {1, . . . , n} ∪ {0}, i.e. a
vertex i, where i > 0, is associated with each customer in addition to the de-
pot (vertex 0). For each edge e = (i, j) ∈ E is defined a travel cost denoted,
as appropriate, ce or c(i,j). These costs are assumed to satisfy the triangle in-
equality and to be symmetric. A set of K clusters S = {S1, S2, . . . , SK} form
a cover of V \{0} where ∪Kk=1Sk = V \{0}. We note that it is possible to have
shared customers between several clusters. A profit Pk is associated with each
cluster Sk and collected only if all the customers of the cluster Sk are served.
A set of m vehicles is available to serve customers during a limited travel time
Tmax. It is worth mentioning that any vehicle can visit customers from several
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Figure 1: Example of a CluTOP solution

clusters, and the customers of a given cluster can be visited by several vehicles.
Furthermore, there is no requirement as to the order of the visits, i.e. a vehicle
can alternate visits between customers belonging to different clusters.

Figure 1 shows an example of a feasible solution for a CluTOP instance with
11 customers. In this example, there are four clusters S1, S2, S3 and S4 which
are represented in the figure by a triangle, rectangle, pentagon and hexagon,
respectively. Customers are represented by nodes. If a customer belongs to a
cluster, the frame that represents this cluster is added inside the node. In this
solution, only the customers of clusters S1, S3 and S4 are served.

Before proceeding further, let first consider the following notation. Given
U a subset of V , we denote the set of edges with one endpoint in U and one
endpoint in V \U by δ(U). E(U) is used to denote the edges with both endpoints
in U . For the ease of notation, when U = {i} we will write δ(i) instead of δ({i}).
Finally, ζ(i) represents the set of clusters to which customer i belongs.

We present a mathematical formulation for the new problem. For that pur-
pose, we introduce the following decision variables :

• zk : equal to 1 if all customers in cluster Sk ∈ S are served, 0 otherwise.

• yir : equal to 1 if vertex i ∈ V is served by vehicle r ∈ {1, . . . ,m}, 0
otherwise.

• xer : equal to 1 if edge e ∈ E is traversed by vehicle r ∈ {1, . . . ,m}, 0
otherwise.

The mathematical model, hereafter denoted by (ILP0), is written as follows:

max
∑
Sk∈S

Pkzk (1)

m∑
r=1

yir ≤ 1 ∀i ∈ V \{0} (2)
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∑
e∈δ(i)

xer = 2yir ∀i ∈ V, r ∈ {1, . . . ,m} (3)

∑
e∈E

cexer ≤ Tmax ∀r ∈ {1, . . . ,m} (4)

∑
e∈E(U)

m∑
r=1

xer ≤
∑

i∈U\{t}

m∑
r=1

yir ∀U ⊆ V \{0}, ∀t ∈ U (5)

zk ≤
m∑
r=1

yir ∀Sk ∈ S, ∀i ∈ Sk (6)

zk ∈ {0, 1} ∀Sk ∈ S (7)

xer ∈ {0, 1} ∀e ∈ E, ∀r ∈ {1, . . . ,m} (8)

yir ∈ {0, 1} ∀i ∈ V, ∀r ∈ {1, . . . ,m} (9)

The objective function (1) maximizes the total collected profit. Constraints
(2) ensure that a customer is visited by one vehicle at most. It should be spec-
ified that this constraint is not defined for the depot. Therefore, the depot can
be visited by the m vehicles. Constraints (3) are the flow conservation con-
straints. Constraints (4) guarantee that the travel time of each vehicle does
not exceed Tmax. Constraints (5) are subtour elimination constraints (SECs).
Constraints (6) together with the objective function state that the profit of a
cluster is gained only if all of its customers are served. Constraints(7)-(9) define
the integrality constraints.

2.2. Valid inequalities

The aim of valid inequalities is to reduce the search space in order to enhance
the performance of the resolution of MIP. In this section, we propose valid
inequalities based on symmetry breaking and bounding approaches. We also
introduce valid inequalities that take advantage of the properties of the CluTOP
instance such as inaccessible customers and incompatibility between customers
or clusters.

To begin with, we introduce a valid inequality, that states that a customer
should not be visited if no cluster among those where it belongs is selected.

m∑
r=1

yir ≤
∑

Sk∈ζ(i)

zk ∀i ∈ V \{0} (10)
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2.2.1. Cuts based on incompatibilities

In this section we compute incompatibilities between components of a CluTOP
instance such as customers and clusters. We use undirected graphs to represent
the computed incompatibilities and we derive valid inequalities for the ILP0.
Before proceeding further we recall that:

• A clique in an undirected graph is a subset of vertices that are pairwise
adjacent;

• A clique is maximal if it cannot be extended to a bigger one by adding
more vertices.

In the following, we propose a set of valid inequalities based on computing
subsets of mutually incompatible vertices.

Definition 2.1. Two customers i and j are said to be incompatible if and only
if they cannot be visited by the same vehicle due to the travel time constraint,
i.e. c(0,i) + c(i,j) + c(j,0) > Tmax. We note that c(i,j) = c(j,i) ∀(i, j) ∈ E since
travel times are symmetric.

In order to represent the different incompatibilities that can exist between
each pair of customers, we define the customer-incompatibility graph Ginc =
(V,Einc). The set of arcs Einc is constructed as follows. Let i, j ∈ V \{0},
(i, j) ∈ Einc if and only if i and j are incompatible. Clearly, a clique extracted
from the graph Ginc includes a set of customers that cannot be served by the
same vehicle. Hence, the following proposition holds:

Proposition 2.1. Let C denote the set of maximal cliques of the incompatibility
graph Ginc. The following inequalities:∑

i∈C
yir ≤ 1 ∀C ∈ C,∀r ∈ {1, . . . ,m} (11)

are valid for ILP0

In the following, we extend the concept of incompatibility between customers
to cover the case of clusters.

Definition 2.2. Two clusters Sk and Sl are said incompatible if and only if it
is impossible to serve all their customers by using the m available vehicles.

In order to compute the cliques of incompatible clusters, we define the graph
of incompatibility Ginccl = (S,Einccl ) where Einccl is constructed as follows. Let
Sk, Sl ∈ S, (Sk, Sl) ∈ Einccl if and only if Sk and Sl are incompatible. Clearly,
a clique extracted from Ginccl includes a set of clusters that cannot be served by
using the m available vehicles. Hence the following proposition holds:

Proposition 2.2. Let Ccl be the set of maximal cliques of the incompatibility
graph Ginccl . The following inequalities are valid for ILP0.∑

Sk∈C
zk ≤ 1 C ∈ Ccl (12)
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2.2.2. Symmetry breaking cuts

In order to reduce the search space, we propose to consider symmetry break-
ing constraints that eliminate many equivalent solutions. In our model, equiv-
alent solutions occur for example by interchanging any pair of routes. To avoid
such configurations, we consider constraints that impose a lexicographical or-
der within the routes. In this paper, we introduce a specific criterion for the
CluTOP. We propose associating a score pi with each customer i. This score
is calculated as pi =

∑K
k=1 ρik where ρik is the contribution of customer i to

cluster Sk, and it is calculated as ρik = Pk
|Sk| if i ∈ Sk and ρik = 0 otherwise.

The symmetry breaking cut is:∑
i∈V \{0}

yi(r+1)pi −
∑

i∈V \{0}

yirpi ≤ 0 r = {1, . . . ,m− 1} (13)

2.2.3. Bounding cuts

We propose two bounding valid inequalities. The first is based on computing
an upper bound on the total profit while the second is based on computing a
lower bound on the number of selected clusters.

Definition 2.3. Two clusters Sk and Sl are said to be compatible if and only if
a feasible solution exists using the m available vehicles, where all their customers
are served.

Let Φ be a collection of subsets of mutually compatible clusters and φ∗ ∈ Φ
such that: ∑

l:Sl∈φ∗
Pl = max

φ∈Φ

∑
k:Sk∈φ

Pk

Clearly,
∑
l:Sl∈φ∗ Pl is a valid upper bound on the total profit that might be

collected. Therefore, the following valid inequality holds:

K∑
k=1

Pkzk ≤
∑

l:Sl∈φ∗
Pl (14)

Interestingly, computing φ∗ turns out to be the maximum weighted inde-
pendent set in the graph Ginccl , where the weight of vertex Sk is set to Pk.

The second bounding valid inequality is described as follows. Let LBcl be a
lower bound value on the number of clusters that should be served on a feasible
solution of ICluTOP with at least Pr as total profit. Therefore, the following
constraint holds: ∑

Sk∈S
zk ≥ LBcl (15)
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3. Cutting plane algorithm

In this section, we describe our exact algorithm. This algorithm is based on
cutting plane approach that includes a preprocessing procedure and a heuristic
approach that aims to repair unfeasible solutions.

3.1. Global scheme

We start by describing the global scheme of our algorithm. In order to solve
CluTOP, we are interested in solving ILP0. Moreover, we include the valid
inequalities (10)-(13). Our algorithm is based on the cutting plane approach.
Indeed, a MIP-solver is used to solve to optimality a relaxation version of ILP0
(called ILP1) where subtour elimination constraints are relaxed. Clearly, an
integer solution (S∗ILP1) is obtained . If this solution does not contain any
subtour, then the solution is optimal for ILP0, otherwise the set of subtours
are extracted and necessary subtour elimination constraints are generated and
added to ILP1. This process is iteratively applied until either an optimal solu-
tion without subtours is found or the time limit has been reached.

In order to verify if any subtours exist, we use a Depth-First Search algo-
rithm (DFS) to detect connected components in an undirected graph. The DFS
should detect two types of connected components. The first type is the com-
ponents that contain the depot, hereafter refered to as main tours. The other
connected components are considered as subtours (tours separated from the de-
pot). Once the subtours are extracted, suitable subtour elimination constraints
are generated and added to the model. In our work, we use more general SECs
called Generalized Subtour Elimination Constraints (GSECs) proposed in [11].
The GSECs are defined as follows:∑

e∈δ(U)

xer ≥ 2yir, ∀U ⊂ V, 0 ∈ U,∀i ∈ V \U, r ∈ {1, . . . ,m} (16)

∑
e∈E(U)

xer ≤
∑
i∈U

yir − yjr, ∀U ⊂ V, 0 ∈ U,∀j ∈ V \U, r ∈ {1, . . . ,m} (17)

∑
e∈E(U)

xer ≤
∑
i∈U

yir − yjr, ∀U ⊆ V \{0},∀j ∈ U, r ∈ {1, . . . ,m} (18)

Moreover for a better performance the cutting plane algorithm includes the
following features:

• A pre-processing procedure that aims to reduce the number of decision
variables and to initialize and fill the customer and cluster incompatibility
graphs with more edges.

• A local repair solution heuristic that aims to repair S∗ILP1 if it contains
any subtour.
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Furthermore, the adopted branching rules for the resolution of ILP1, prior-
itize zi first, then yir and finally xer. This can be motivated by the fact that
the objective function in CluTOP aims to maximize the collected profit from
the visited clusters [8].

The global scheme of our model is described in Algorithm 1.

Algorithm 1: Global Scheme

Input: instance I
Output: solution for I

1 Construct the model ILP0
2 Calculate a feasible solution for I (see Section 4)
3 Execute the pre-processing procedure(see Section 3.3)
4 Add the computed valid inequalities and relax constraints (5) to obtain

the model ILP1
5 repeat
6 Compute S∗ILP1 the optimal solution of ILP1
7 if S∗ILP1 does not contain any subtour then
8 Set S∗ILP1 as optimal for CluTOP

9 else
10 Calculate all subtours and add the corresponding GSECs to

ILP1
11 From S∗ILP1 construct a partial solution using only the main

tours
12 Repair the partial solution (See Section 3.2)

13 until (S∗ILP1 is optimal for CluTOP or time expired)

3.2. Solution repair

Recall that if S∗ILP1 is not optimal for ILP0, then it is composed of two
types of tours: the main tours and the subtours which are not related to the
depot. A trivial feasible solution X can be constructed from S∗ILP1 using only
main tours. Unfortunately, this partial solution is often of poor quality. This
is mainly due to the nature of CluTOP in which the profit of a given cluster
is collected only if all of its customers are served. As a result, if at least one
customer of a given cluster belongs to one of the subtours, the whole profit of
the cluster will be discarded. In this section, we propose a greedy procedure
to repair the solution X extracted from S∗ILP1. First, the clusters of S∗ILP1 are
sorted according to a non-increasing order of the following criterion: Pk

N(Sk)+1 ,

where N(Sk) is the number of customers of cluster Sk located in subtours.
This criterion favors, on the one hand, clusters with higher profits, and on the
other hand, those with a small number of customers located in subtours. The
insertion of customers in the current solution X is carried out iteratively cluster
by cluster. The customers of a given cluster are inserted one by one using a
best insertion approach. If the procedure fails to insert at least one customer
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of a given cluster, then all its customers will be omitted from the solution X
except those shared with already inserted clusters.

3.3. Pre-processing phase

In this section, we describe the pre-processing procedure that aims to fix
some decision variables and to compute incompatibility graphs.

Below, we denote by:

• UB(I) : the value of the upper bound delivered by the cutting plane
procedure within a small time budget for a CluTOP instance I,

• LB(I) : the value delivered by the hybrid heuristic described in section 4.

3.3.1. Inaccessible components

Definition 3.1. A customer i is considered to be inaccessible if the tour that
starts and ends at the depot and exclusively serves this customer has a length
greater than Tmax, i.e. c(0,i) + c(i,0) > Tmax.

Definition 3.2. A cluster is said to be inaccessible if it is impossible to visit
all of its customers using all available vehicles.

On the basis of these definitions, we should fix some of the decision variables
yir and zk as proposed in the following two equations. The first is related to
the inaccessible customers, while the second concerns the inaccessible clusters.

yir = 0 ∀i ∈ V \{0}, and c(0,i) + c(i,0) > Tmax,∀r = 1 . . .m (19)

zk = 0 ∀k = 1, . . . ,K and Sk is inaccessible (20)

At this point it should be specified that checking whether a customer is inacces-
sible or not requires O(1)-time. However, in the case of a cluster, this procedure
requires solving a multiple travel salesman problem (MTSP). This problem is
NP-complete even in the case where only one salesman is available. For this rea-
son, we consider a trivial relaxation instead of MTSP. This relaxation is based
on exploring inaccessible customers. Indeed, if a customer is inaccessible then
all clusters that share it could be considered as inaccessible.

3.3.2. Mandatory clusters

The basic idea to compute mandatory clusters is as follows. Given an in-
stance I of CluTOP, an instance Īk is derived from I by ignoring the cluster Sk.
The cluster Sk is considered as mandatory if UB(Ik) < LB(I). Therefore, the
variable zk should be fixed to 1.
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3.3.3. Useful pre-computations

In addition to these pre-processing features, we perform some pre-computations
such as the incompatibility graphs and some specific lower and upper bounds
that are useful to generate the considered cuts.

In the following we describe the computation of the incompatibility-graphs.
The customers-incompatibility graph is calculated as follows: for each vertex in
the graph, we calculate the maximal clique containing this vertex using meta-
heuristic proposed in [6].

However, the construction of clusters-incompatibility graph requires more
computational effort. Recall that computing incompatibility between a pair
of clusters needs to solve mTSP problem. Solving such problem several times
can be very time consuming. We therefore propose to proceed heuristically to
deduce incompatibilities. To do this, let us introduce the following proposition.

Proposition 3.1. Let Ginckl be the subgraph induced in Ginc by the subset Sk∪Sl.
Let Ckl be a maximum clique extracted from Ginclk . If |Ckl| > m, then Sk and Sl
are incompatible.

To solve the Maximum Clique Problem (MCP), we propose to use the exact
method proposed in [15]. Although this problem is NP-hard, algorithms used
are quite fast when dealing with small instances (up to 60 vertices in our case).

To further enhance the density of the incompatibility graph between clusters,
we propose the following improvement. Given an instance I, two clusters Sk
and Sl, the aim is to solve the sub-instance in which we consider only the
customers of these two clusters. We denote this sub-instance by Ikl. Therefore
the following proposition holds:

Proposition 3.2. If UB(Ikl) < Pk + Pl then Sk and Sl are incompatible.

This second phase is only applied on couple of clusters that have not been
yet proved to be incompatible during the first phase. During experiments, it
was showed that solving CluTOP on a couple of clusters is quite fast compared
to solving the whole instance.

Algorithm 2 details the pre-processing phase.

4. Heuristic Scheme

In this section, we describe a generalization of our heuristic presented in
[21] initially designed for the COP. It is based on the order first-cluster second
approach [18] and consists of two phases: the first one is the ordering phase in
which a giant tour covering all the customers is constructed. The second phase
is a splitting procedure that extracts the optimal solution from a given giant
tour while respecting the predefined sequencing of its customers.

4.1. Split procedure principle

Given a giant tour π = (π1, π2, . . . , πn). that covers all the customers, the
splitting procedure aims at find a subset of clusters that maximizes the total
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Algorithm 2: Preprocessing

Input: instance I, Lower bound LB
Output: C The set of valid inequalities; the set of inaccessible

customers and clusters; the set of mandatory clusters
1 Initialize C by the symmetry breaking and bounding valid

inequalities(See Sections 2.2.2 and 2.2.3)
2 Calculate inaccessible customers and clusters (See Section 3.3.1)
3 Calculate mandatory clusters (See Section 3.3.2)

4 Calculate Ginc(V,Einc) the incompatibility graph of customers
5 Calculate maximal cliques in Ginc(V,Einc) and derive the valid

inequalities based on incompatibilities between customers Add these
valid inequalities to the set C

6 Initialize Ginccl (S,Einccl ) the graph of incompatibility between clusters
7 foreach ((Sk, Sl) ∈ S2) do
8 Extract the graph Ginckl the sub graph induced in Ginc by the subset

Sk ∪ Sl
9 Qkl ← calculate maximum clique in Ginckl

10 if (|Qkl| > m) then Add (Sk, Sl) to Einccl

11 else if (UB(Ikl) < Pk + Pl) then
12 Add (Sk, Sl) to Einccl

13 Calculate maximal cliques in Ginckl and derive the valid inequalities
based on incompatibilities between clusters

14 Add these valid inequalities to the set C

collected profit with respect to the order of the giant tour and the time limit.
The procedure relies on a branch-and-bound scheme in which, we embedded
a knapsack-based upper bound to fathom inferior nodes and a feasibility test
to discard unfeasible nodes. The branching scheme consists in enumerating
all of the subsets of clusters. Starting from the root node with an arbitrarily
ordered list of potential clusters, a descendant node is derived either by selecting
or discarding the first cluster in the list. By applying this process on all the
potential clusters, this leads to a binary search tree with at most 2K+1 − 1
nodes. In the following, for each node η in the search tree, we use the sets Sηp ,
Sηs and Sηr to denote the potential clusters, the selected clusters and removed
clusters, respectively. Exhaustive enumeration of all subsets of clusters may
be both costly and inefficient. To minimize this drawback, we propose to use
a beam search technique. This technique helps to keep computational times
under a known value. The main idea is to explore the search tree in Breath
First Search (BFS), and to pickup a limited number of nodes to expand at each
level. Unfortunately, this new scheme does not guarantee that the solution found
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is optimal. Hence, we propose to use the upper bound described in Section 4.1.3
as a selection criterion so that only promising nodes will be selected at each level
of the tree. Another important aspect is the number of nodes selected at each
level. This parameter was fixed after preliminary experimentation at K nodes
per level.

4.1.1. Feasibility check

A feasibility check (FC) is performed every time a potential cluster is added
to the set of selected clusters Sηs . A given node is feasible if all the customers
of its selected clusters can be visited using m vehicles at most. To do this, we
consider the partial sequence πη = (π1, . . . , π|πη|) extracted from the giant tour
π by keeping only customers of the selected clusters.

The procedure FC can be described as follows. At each iteration i, the ith

customer in the partial sequence πη, is inserted at the end of the last route.
If this insertion fails, either because the travel time exceeds Tmax or no route
has yet been initialized, the customer is inserted in a new initialized route.
This process is reiterated until all customers of the sequence πη are served.
Thanks to the triangular inequality, the number of visited customers per route is
maximized and the number of used vehicles (mσ) is then minimized. Therefore,
if mπη > m, then the partial solution is unfeasible and the node should be
pruned. The complexity of this procedure is O(n).

4.1.2. TOP-based Relaxation

In [21], we presented a relaxation scheme for the COP. The generalization
for the case of the CluTOP is trivial. The definition as well as the proposition
and its proof are all given so that the paper will be self contained.

Definition 4.1. Given a CluTOP instance I with its undirected graph G=(V,E),
we define a TOP instance ITOP defined by the same graph G=(V,E). The
pseudo profit pj of each customer in j ∈ ITOP is calculated as showed in Sec-
tion 2.2.2. The maximal travel time of ITOP is the same as instance I, which is
Tmax. We also define the following notation:

• P ∗(I) is used to denote the optimal objective value of instance I.

• Let S′ ⊆ S be a subset of clusters. We denote the sum of their profits by
PCluTOP (S′). Hence, PCluTOP (S′) =

∑
k:Sk∈S′ Pk.

• Let V ′ ∈ V be a subset of customers in ITOP . We denote the sum of their
profits by PTOP (V ′). Hence, PTOP (V ′) =

∑
j∈V ′ pj .

Proposition 4.1. The optimal objective value of the associated instance ITOP
represents an upper bound on the profit of I (P ∗(ITOP ) ≥ P ∗(I)).

Proof. Let S∗ be the set of clusters of the optimal solution of CluTOP instance
I. The total collected profit is calculated as PCluTOP (S∗) =

∑
i:Sk∈S∗ Pk =

P ∗(I). On the other hand, let V ∗ be the set of customers of S∗. It is obvious that
the optimal solution of ICluTOP is feasible for ITOP and its profit is PTOP (V ∗) =
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∑
j∈V ∗ pj . We also denote the optimal objective value for ITOP by P ∗(ITOP ).

We have,

PTOP (V ∗) =
∑

j∈V ∗
pj =

∑
j∈V ∗

∑
k:j∈Sk

Pk

|Sk|

=
∑

j∈V ∗

∑
k:j∈Sk andSk∈S∗

Pk

|Sk|
+

∑
j∈V ∗

∑
k:j∈Sk andSk /∈S∗

Pi

|Si|

= PCluTOP (S∗) +
∑

j∈V ∗

∑
k:j∈Sk andSk /∈S∗

Pk

|Sk|

= P ∗(I) +
∑

j∈V ∗

∑
k:j∈Sk andSi /∈S∗

Pk

|Sk|
(21)

As a result, the optimal solution for I is feasible for the ITOP . Furthermore,
P ∗(I) ≤ PTOP (V ∗) ≤ P ∗(ITOP ).

4.1.3. Knapsack-based upper bound

We propose in this paper an upper bound based on the Fractional Knapsack
Problem. We first extend Proposition 4.1 to cover the case of giant tours π =
(π1, π2, . . . , πn). Since a giant tour π imposes an order of visits among the
customers of I, it can be seen as a derived instance I ′ in which only edges that
respects this order are considered. The following corollary holds.

Corollary 4.1. The optimal objective value of the associated instance ITOP
w.r.t a given giant tour π represents an upper bound on the profit of I w.r.t π.

Given now a node η in the search tree, we assume that the partial solution
retrieved by the procedure FC is feasible. Otherwise the node should be pruned.
We consider the following Knapsack instance IFKSP in which we associate an
item with each potential customer. A customer is considered as potential if it
belongs to at least one of the potential clusters Sηp and does not belong to any
of the selected clusters Sηs .

The profit of an item πj is calculated using Definition 4.1. Note that to calcu-
late these profits in a node η, we consider only contributions related to potential
clusters Sηp and we discard contributions related to removed clusters Sηr . As a

result, the profit of πj is calculated as follows: pηπj =
∑
i:πj∈Si and Si∈Sηp

Pi
|Sηi |

,

where |Sηi | is the number of potential customers belonging to cluster Si in node
η.

The weight wηπj of the item πj is the minimal insertion cost. Let Iηj be
the set of all the insertion positions of πj , where each position is defined by
one predecessor and one successor of πj in π, i.e. Iηj = {(πl, πr)|l < j <
r, πl, πr ∈ Sηs ∪ Sηp}. Thus, the minimal insertion cost is calculated as wηπj =

min{c(πl, πj) + c(πj , πr) − c(πl, πr)|(πl, πr) ∈ Iηj } where c(πl, πr) is the travel
time between customers πl and πr.

To model the size of the knapsack W η, we proceed as follows. We consider
the sub-sequence formed by the customers of the selected clusters Sηs . Know-
ing that the node is feasible, i.e. all the customers in the sub-sequence can be
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visited using at most m vehicles, the aim is to find the set of tours that min-
imizes the total distance. This can be seen as solving a Distance Constrained
VRP with a limited fleet on a given permutation of customers. This problem
can be efficiently solved by applying a modified version of the split procedure
proposed in [4] for VRP. In our study we use an effcient implementation pro-
posed by Vidal in [20] with O(nm) time and space complexity. Assuming now
that Cη is the total distance, W η is simply modeled as the residual distance,
i.e. W η = mTmax − Cη.

Proposition 4.2. Given a giant tour π and a node η in the search tree, the
optimal objective value of the IFKSP is an upper bound on the optimal objective
value of the I.

Proof. Given a giant tour π covering all the customers of I and a node η. We
construct a knapsack instance IFKSP in which, each item πj has a weight wηj
and a profit pηπj .

Assume πη is the optimal partial sequence in the node η and δη(πj) is the
insertion cost of the customer πj in πη. According to the definition of the
minimal cost insertion, it is obvious that wηj ≤ δη(πj) for any potential customer
πj in Sηp . Consequently, the optimal solution for the IFKSP is an upper bound
on the profit of ITOP while considering π and η. According to Corollary 4.1,
IFKSP is also an upper bound on ICluTOP while considering π and η.

4.1.4. Local search procedure

We propose to improve the splitting procedure by integrating a Local Search
heuristic (LS). The LS uses some relevant information in the nodes of the beam
search in order to efficiently explore the search space. When LS is called in a
node η, it is applied only on the selected and the potential set of clusters Sηs ∪Sηp .
In this way, the LS focuses on a reduced part of the search space, and hopefully,
it succeeds easily and quickly finding a new global best solution. An initial
solution is constructed from the customers of the selected clusters using the
splitting procedure for the Distance Constrained VRP with a Limited Fleet [20]
(see Section 4.1.3). After that, a potential cluster is randomly selected and its
unrouted customers are inserted in the solution using a best insertion approach
without considering the time limit constraint. The Lin-Kernighan heuristic [14]
is then applied on each tour separately. If it fails to find a TSP solution with
a travel time equal or less than Tmax for at least one tour, the insertion of the
potential clusters is considered as unfeasible. This process is repeated on all of
the potential clusters.

Algorithm 3 provides a pseudo code of the split procedure. We use in Al-
gorithm 3 two priority queues where the Knapsack upper bound is used as a
priority criterion (See Section 4.1.3) (line 1), the first is called currList that
contains the nodes of the current level, while the second list tmpList contains
the nodes to be explored in the next level of the tree. The lower bound LB is
initialized by the current best solution of the global heuristic.
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Algorithm 3: SPLIT

Input: giant tour GT , Lower bound LB
Output: best solution Xbest

Data: Priority queue of size K: currList, tmpList
Nodes: e, e1, e2

1 Initialization: Order ← array of K clusters arbitrarily ordered
L← 1 (current level)
e← rootNode
currList.enqueue(e)

2 while (currList 6= ∅ and L ≤ K) do
3 e← currList.dequeue()
4 Expand e into two nodes e1 and e2 by branching on cluster

Order[L] (Section 4.1)
5 foreach (e ∈ {e1, e2}) do
6 if (e is infeasible) then continue (Section 4.1.1)
7 if (Knapsack UB of (e) ≤ LB) then continue (Section 4.1.3)
8 tmpList.enqueue(e)
9 Extract solution X from e

10 Apply LS on X (Section 4.1.4)
11 if (Eval(X) > Eval(Xbest)) then
12 Xbest ← X
13 if (Eval(X) > LB) then LB ← Eval(X)

14 if (currList = ∅) then
15 currList← tmpList
16 tmpList← ∅
17 Increment L

18 Select the best node e in currList and Extract solution Xbest

19 return Xbest

4.2. Global Algorithm

The ALNS scheme was first proposed by [17] for routing and scheduling prob-
lems. Since then, the ALNS has been widely used to solve different variants of
VRPs and has proven to be an efficient framework. The main characteristic
of this metaheuristic is the use of several insertion and removal operators dur-
ing the search process. An operator is a heuristic capable of exploring a large
neighborhood in a short time. At each iteration, a pair of insertion and removal
operators are randomly chosen. In this way, the ALNS is able to explore sev-
eral neighborhoods during the search process. At the same time, statistics are
gathered in order to estimate the contribution of each operator to the solution
progress. These statistics are then used to promote the most effective opera-
tors. This characteristic offers the ALNS the flexibility to tackle a wide range
of instances.

Our ALNS scheme includes one destruction operator that selects a random
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number of clusters and removes their customers from the solution. Note that
customers shared with other clusters remain in the solution. The number of
clusters to remove dmax (line 6) is adjusted during the search. It is incremented
after each iteration without improvement (line 12) and reset to the initial value
once a new best solution is found (line 12). After experimental tests, the initial
value is set to 3.

Regarding the solution repair (line 8-9), unrouted clusters are iteratively in-
serted into the current solution one by one until no cluster is left or no further
insertions are possible. Once a cluster is randomly selected, its unrouted cus-
tomers are identified (some of its customers shared with other clusters would
already be in the solution) and inserted using one of the following insertion
operators.

1. Best Insertion Operator. All insertion positions are evaluated and the best
move is selected.

2. Random Best Insertion Operator. A customer is randomly selected and
inserted in the position with the minimum cost.

3. 2-Regret Insertion Operator. For each customer, the two insertion posi-
tions with the minimum cost are identified and the gap is calculated. The
customer with the maximum gap is inserted in its best position.

We use a local search operator called 2-opt to improve the travel time of the
current solution (line 7). This operator is called at each iteration between the
removal and the insertion operator.

In our ALNS, each insertion operator is associated with a value called weight.
The selection of an insertion operator depends on its weight: the larger is the
weight, the more probable that it will be selected. These weights, initialized by
the same value, are dynamically adjusted during the search process according
to the performance of each operator (line 14). The goal is to assign larger
weights to the most effective operators. The update of each weight depends on
the quality of the obtained solution. If the selected operator yields a new best
solution, it is assigned a larger score, whereas it is assigned a low score if the
new solution is worse than the current one. A medium score is assigned if the
new solution is better than the current one but still not better than the best
solution. For more details about the update procedure, the reader is referred
to Pisinger and Ropke [17]. Algorithm 4 describes the global scheme of our
heuristic.

The number of iterations of the ALNS is fixed at n (line 5-14). The best
solution found by the ALNS is used to construct a giant tour (line 15). The
construction is done by concatenating the tours and then inserting the customers
of the unrouted clusters in random positions of the giant tour. The latter is
provided to the splitting procedure in the purpose of improving the quality of
the best solution (line 16). This process (ALNS + SPLIT) is iterated until one
of the two stop conditions is verified: either log(n ∗K) iterations are performed
without improvement, or the total number of iterations exceeds the value n.
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Algorithm 4: Global scheme

Input: Solution X
Output: Solution Xbest

1 Xbest ← X
2 repeat
3 Initialize dmax
4 X ′ ← X
5 for (i = 1; i ≤ n; i+ +) do
6 Remove dmax clusters from X ′

7 Apply 2-opt on X
8 Select an insertion operator i
9 Apply i on X ′

10 if (Eval(X ′) > Eval(X)) then
11 X ← X ′

12 Increment dmax

13 else Reset dmax
14 Update weights using the adaptive weight adjustment procedure

15 Construct a giant tour GT from X
16 X ← SPLIT (GT,Eval(Xbest))(See Algorithm 3)
17 if (Eval(X) > Eval(Xbest)) then Xbest ← X

18 until (stop condition is reached)
19 return Xbest

5. Computational tests

In this section, we present a detailed description of the tests we made in
order to evaluate the performance of our algorithms. Our algorithms are coded
in C++ using the Standard Template Library (STL) for data structures. Ex-
periments were conducted on a Linux OS 64-bit computer with Intel Xeon(R)
E2-2670 16-core CPU@2.60 GHz and 128 gigabytes RAM. The cutting plane is
implemented using Cplex 12.6 and Concert technology.

We tested our algorithms on two different problem sets. The first set (Set
A) concerns the instance introduced in [1] for the case of a single vehicle. We
note that methods proposed in [1] were tested on a 64-bit computer with Intel
Xeon W3680 six-core CPU@3.33 GHz. The second set (Set B) is related to the
multiple vehicles instances. In the following, we provide a detailed description
of these sets and we report the results of our computational experiments.

5.1. Set A: single vehicle problem set

In this section, we focus on the single vehicle case of the CluTOP . We
propose a general comparison between our methods and the methods from the
literature presented in [1].

To do this, we use benchmark instances introduced in [1].
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5.1.1. Description of the instances

The benchmark is derived from 57 instances of TSPLIB with a number
of vertices ranging from 42 to 532. For each base instance of TSPLIB, a set
of derived instances for the COP is constructed according to different values
assigned to the following parameters:

1. Number of clusters: the number of clusters K takes values of 10, 15, 20
or 25. Clusters were generated in order to have approximately the same
number of customers. We note that three additional values (50, 75 and
100) were considered for the largest TSPLIB instance (att532).

2. Profits of clusters : the profits of clusters are generated as follows . First,
a profit is assigned to each customer and the profit of a given cluster is
then calculated as the sum of the profits of its customers. Two patterns
are used to generate the profits of the customers [10]. In the first one the
profit of each customer is equal to one. In the second pattern, the profit
of each customer is generated using the formula 1+(7141j+73)mod(100),
where j is the index of the customer.

3. Tmax: Given TSP ∗ the optimal value of TSP over all vertices of the base
instance, the value of Tmax is set at θ ∗ TSP ∗, where θ takes two possible
values: q2 = 1

2 and q3 = 3
4 .

As a result, 16 different instances are derived from each TSP benchmark
instance except for att532 where 24 new instances were derived. As a result,
924 instances are used to evaluate the proposed methods. The instances can be
found at the following URL: http://or-brescia.unibs.it/. For a detailed descrip-
tion of instance generation, the reader can refer to Angelelli et al. [1].

5.1.2. Performance of the exact method

We conducted a set of comparisons of our exact algorithm with the two
branch-and-cut algorithms namely COP-BASIC and COP-CUT of Angelelli et
al. [1]. In Table 1, we present the results of the three exact methods. For each
method, we report:

• #Opt : the number of times for which it yields the optimal solution within
a time limit of 3600 seconds.

• OptGap : the average percentage deviation optimal gap that is computed
as UB−LB

UB , where UB and LB are the upper bound and the lower bound
found by each method respectively.

• CPU : average CPU time in seconds.

From Table 1, we observe that:

• The cutting plane algorithm succeeds in optimally solving more instances
than COP-BASIC and COP-CUT, with 643 instances. COP-BASIC solved
602 instances and COP-CUT solved 558. Interestingly, our algorithm
reached the optimilaty gap of 0.043, while requiring less computational
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time. This gap jumps to 0.09 and 0.12 for COP-BASIC and COP-CUT,
respectively.

• The three algorithms succeed to solve all the instances with a number of
customers less than 100 except for class pr76, where COP-BASIC fails
to close one (1) instance, whereas the cutting plane fails to close one (1)
instance from the class kroC100.

• Regarding larger instances, we can observe that the performance of the ex-
act methods depends on the class of instances. For the classes of instances
ch130, ch150, kroA150 and kroB150, COP-BASIC and COP-CUT strug-
gle to find the optimal solution, whereas our cutting plane succeeds to
close a large number of them. On the other hand, the performance of our
algorithm decreases for the classes pr226, pr264 compared to COP-BASIC
and COP-CUT.

Table 1: Performance of the cutting plane

Class
COP-BASIC COP-CUT Cutting plane

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

dantzig42 16 0 8.13 16 0 0.61 16 0 2.90
swiss42 16 0 6.58 16 0 0.95 16 0 4.08
att48 16 0 13.18 16 0 8.45 16 0 34.80
gr48 16 0 11.88 16 0 4.86 16 0 12.46
hk48 16 0 10.87 16 0 5.54 16 0 12.42
eil51 16 0 16.71 16 0 6.76 16 0 16.56
berlin52 16 0 12.02 16 0 2.30 16 0 9.96
brazil58 16 0 16.44 16 0 5.47 16 0 26.67
st70 16 0 52.68 16 0 57.70 16 0 95.71
eil76 16 0 20.16 16 0 18.17 16 0 25.83
pr76 16 0 94.41 15 0.005 501.65 16 0 196.43
gr96 16 0 34.80 16 0 23.26 16 0 37.23
rat99 16 0 232.35 16 0 93.09 16 0 159.30
kroA100 14 0.037 1112.48 16 0 279.00 16 0 240.96
kroB100 11 0.070 1386.00 16 0 468.64 16 0 272.45
kroC100 11 0.072 1967.99 16 0 602.79 15 0.005 746.34
kroD100 14 0.021 1613.80 16 0 647.23 16 0 581.61
kroE100 13 0.028 1107.84 15 0.021 562.51 16 0 179.06
rd100 10 0.038 1702.83 16 0 537.00 16 0 225.11
eil101 16 0 93.98 16 0 50.94 16 0 115.96
lin105 16 0 104.36 16 0 59.40 16 0 72.66
pr107 16 0 171.29 16 0 61.62 15 0.019 332.52
gr120 10 0.048 1854.87 15 0.018 948.18 15 0.006 688.78
pr124 16 0 139.67 16 0 78.51 16 0 100.51
bier127 16 0 283.76 16 0 97.43 16 0 92.16
ch130 5 0.117 2717.58 12 0.026 1844.03 15 0.0042 767.34
pr136 11 0.046 2024.14 16 0 765.13 16 0 326.29
gr137 16 0 144.86 16 0 62.89 16 0 149.90
pr144 16 0 229.02 16 0 119.39 16 0 135.73
ch150 1 0.372 3438.73 0 0.444 3600.71 9 0.0584 2098.01
kroA150 2 0.325 3488.52 3 0.328 3232.80 10 0.0583 1713.36
kroB150 1 0.333 3591.24 1 0.346 3571.16 11 0.0563 1913.78
pr152 16 0 266.37 16 0 129.95 16 0 559.19
u159 13 0.013 923.46 16 0 442.11 14 0.0109 1185.79
si175 16 0 844.04 16 0 424.51 16 0 315.50
brg180 16 0 597.49 16 0 141.47 16 0 155.60
rat195 5 0.075 3020.09 7 0.081 3003.96 10 0.0447 1757.66
d198 16 0 179.49 14 0.014 1035.47 12 0.0332 1431.59
kroA200 0 0.625 3600.76 0 0.746 3600.97 6 0.1473 2562.21

continued on next page
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Class
COP-BASIC COP-CUT Cutting plane

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

kroB200 2 0.456 3471.47 0 0.642 3600.41 6 0.1767 2550.03
gr202 13 0.013 814.35 13 0.014 1255.61 16 0 557.13
ts225 0 0.369 3600.52 0 0.712 3600.40 0 0.2729 3600.73
tsp225 1 0.262 3504.62 3 0.148 3335.69 10 0.0681 2461.35
pr226 10 0.110 1782.04 14 0.019 1485.83 5 0.1441 3066.90
gr229 16 0 299.62 13 0.021 1645.25 16 0 1063.57
gil262 0 0.614 3601.48 0 0.918 3601.64 4 0.1986 3084.40
pr264 8 0.066 2499.76 10 0.175 2105.14 2 0.3496 3155.57
a280 1 0.176 3415.74 1 0.235 3464.00 2 0.1768 3357.49
pr299 1 0.176 3569.61 2 0.548 3554.80 1 0.2837 3449.92
lin318 1 0.153 3543.92 0 0.531 3600.58 1 0.1547 3430.73
Mean 558 0.092 1344.76 602 0.120 1166.92 643 0.0454 982.64

According to the performance of the three exact methods, we identify three
categories of classes of instances. The first category (Category 1) is composed of
the classes where our exact method outperforms COP-BASIC and COP-CUT,
namely ch150, kroA150, kroB150, kroA200, kroB200, and tsp225. Indeed, our
exact method solved 52 instances. On the other hand COP-BASIC and COP-
CUT failed to solve 89 out of 96 instances. Interestingly, Angelleli et al. pointed
out the poor performance of their methods on classes kroA200, kroB200. They
highlighted the fact that their methods failed to achieve good feasible solutions.
At this point, it is noteworthy to indicate that our exact method and COP-CUT
yield no null profit-feasible solutions on all the instances of Category 1. How-
ever, COP-BASIC failed to retrieve such feasible solutions 16 times. The second
category (Category 2) contains the classes pr226, pr264. For these classes, COP-
BASIC or/and COP-CUT outperform our cutting plane. Actually, COP-CUT
(respc. COP-BASIC) solved 24 (resp. 18) out of 32 instances to optimality,
whereas our exact method solved only 7 instances. This is mainly related to
the distribution of customers in these instances, which is in the form of sub-
structures like meshes or even a set of co-linear points. Pferschy et al. pointed
out in [16] that these type of instances are hard to solve using the cutting plane
approach, since they are relatively unstable in terms of computational times,
number of iterations, and the number of subtours generated in each iteration
as well. Finally, the third category (Category 3) is composed of all the other
classes where all the methods of Angelleli et al. [1] on the one hand, and our
exact method on the other, present the same either good or poor performance.

In order to provide more detailed picture of the performance of the different
exact methods on Category 1 and Category 2, in Table 2, we present a more
detailed comparison between them. In this table, we report the average percent-
age gap of the upper bound (resp. lower bound) delivered by our exact method
with respect to those obtained by COP-BASIC and COP-CUT. These values
are given in columns UBGAP (resp. LBGAP ).
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Table 2: GAP Cutting plane vs. the literature

Class
UB GAP LB GAP

C-P vs. C-B C-P vs. C-C C-P vs. C-B C-P vs. C-C

ch150 −0.447 −0.454 0.257 0.131

kroA150 −0.447 −0.458 0.618 0.080

kroB150 −0.386 −0.433 0.135 0.092

kroA200 −0.504 −0.678 0.622 0.321

kroB200 −0.484 −0.503 0.435 0.124

tsp225 −0.037 −0.095 0.056 0.181

pr226 0.041 −0.018 −0.111 −0.043

pr264 0.155 0.174 −0.032 −0.193

On the basis of Table 2, we observe that:

• The poor performance of the exact methods presented in Angelleli et al.
[1] is explained not only by the quality of the feasible solution (as sug-
gested by [1]) but also by the weakness of the upper bound. Indeed, our
exact method improved the feasible solution delivered by COP-BASIC and
COP-CUT by 35.4% and 15.5%, respectively. Surprisingly, the improve-
ment of the quality of the upper bounds is much larger reaching 67.8%
compared to COP-CUT upper bound.

• The weak results of our method on the instances in Category 2 is due to
the poor performance of both the lower and upper bound compared to
Angelleli et al. [1].

5.1.3. Performance of the heuristic method

We propose in the following to verify the performance of the hybrid heuristic.
We compared our method with a tabu search based heuristic called COP-TABU,
which was proposed in [1]. Three variants of COP-TABU have been imple-
mented: COP-TABU-Basic, COP-TABU-Multistart and COP-TABU-Reactive.
Tests were conducted on all the 57 classes of the benchmark [1] (924 instances).
We consider a multistart version of our heuristic, where the number of starts is
fixed after experimentation at 5. Table 3 summarizes the obtained results. In
this table, for each method, we provide:

• #BEST : The number of times it yields the best known solution.

• GAP : The gap to the best solution. The GAP for each instance is calcu-
lated using the following expression:

GAP =
Zbest − Zmax

Z
× 100 (22)

22



where Zbest is the best solution found by the heuristic and Zmax is the
best solution in the literature, including our method.

• CPU : The total CPU time.

Table 3: Performance of our heuristic

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Hybrid Heuristic

#BEST GAP CPU #BEST GAP CPU #BEST GAP CPU #BEST GAP CPU

dantzig42 16 0 13.27 16 0 17.77 16 0 38.95 16 0 9.12
swiss42 13 0.719 15.38 14 0.281 23.09 15 0.013 31.93 16 0 6.70
att48 16 0 18.24 16 0 26.08 15 0.062 38.76 16 0 22.42
gr48 11 5.709 13.74 12 3.184 26.02 16 0 37.96 16 0 9.54
hk48 15 1.250 20.58 16 0 30.76 15 0.315 37.68 16 0 12.87
eil51 11 2.181 15.92 11 2.181 24.46 15 0.242 36.83 14 0.326 10.61
berlin52 15 0.548 38.88 15 0.120 53.39 15 0.120 60.41 16 0 29.50
brazil58 13 0.573 58.99 14 0.115 75.72 16 0 83.97 16 0 49.60
st70 11 1.303 23.18 11 1.012 38.95 12 0.639 48.01 16 0 18.00
eil76 9 6.407 24.5 10 4.050 33.74 15 0.125 45.84 16 0 12.18
pr76 11 1.014 21.4 13 0.105 30.88 15 0.009 54.76 16 0 29.94
gr96 12 0.612 44.07 13 0.116 51.35 14 0.025 68.19 16 0 31.46
rat99 12 1.752 32.99 12 0.127 52.03 15 0.034 63.65 15 0.151 34.02
kroA100 11 6.013 44.65 14 0.123 50.98 14 0.429 52.62 15 0.082 22.03
kroB100 15 0.714 47.96 16 0 58.94 16 0 62.2 16 0 21.02
kroC100 10 3.687 37.55 15 0.269 48.74 14 0.452 59.42 16 0 23.73
kroD100 10 1.879 36.85 11 1.247 56.7 13 0.520 69.57 16 0 32.41
kroE100 12 2.889 46.59 12 1.374 48.83 14 0.270 62.77 16 0 21.97
rd100 12 1.431 36.51 13 1.030 47.81 15 0.568 82.29 16 0 28.31
eil101 7 2.495 32.97 12 0.729 44.62 16 0 79 16 0 32.81
lin105 11 1.393 36.06 13 0.461 52.48 14 0.348 105.21 16 0 68.60
pr107 13 6.350 72.19 15 0.203 86.35 15 0.160 135.39 16 0 204.68
gr120 10 2.917 50.87 11 2.856 66.36 14 0.185 105.25 15 0.054 54.16
pr124 14 1.180 80.33 16 0 88.26 16 0 150.15 16 0 87.29
bier127 12 0.873 63.05 14 0.108 94.57 15 0.005 149.64 16 0 69.41
ch130 7 4.016 49.79 9 2.949 64.58 12 1.376 106.57 16 0 44.22
pr136 12 1.588 59.86 14 0.949 71.37 15 0.694 121.5 16 0 57.12
gr137 15 0.156 82.07 16 0 104.45 16 0 181.54 16 0 62.47
pr144 16 0 168.25 16 0 175.28 16 0 247.29 16 0 124.72
ch150 8 2.684 34.19 8 2.543 53.97 14 0.554 101.37 16 0 59.81
kroA150 9 1.002 36.84 13 0.228 50.6 14 0.074 102.11 15 0.046 54.30
kroB150 8 2.456 40.06 10 2.127 56.69 14 0.621 107.93 16 0 51.66
pr152 15 0.545 120.08 16 0 164.81 16 0 248.1 16 0 126.88
u159 6 3.300 113.36 9 2.373 125.51 8 1.447 184.68 15 0.281 162.81
si175 16 0 47.69 16 0 63.36 16 0 126.8 16 0 1022.91
brg180 12 0.656 54.29 13 0.578 72.18 15 0.091 127.74 16 0 605.49
rat195 12 0.531 68.18 10 0.209 78.52 14 0.401 172 16 0 162.70
d198 15 0.062 172.56 16 0 217.29 16 0 368.98 16 0 147.69
kroA200 11 1.130 55.09 12 1.093 76.17 14 1.052 139.43 16 0 100.08
kroB200 8 2.610 71.45 10 1.978 87.73 13 0.129 142.43 15 0.034 103.26
gr202 11 1.256 88.17 12 1.001 121.27 16 0 236.24 16 0 147.79
ts225 12 0.259 162.94 12 0.158 189.13 15 0.019 234.81 16 0 204.00
tsp225 9 1.583 87.78 9 0.495 102.99 11 0.142 180.26 16 0 191.03
pr226 12 0.872 244.84 12 0.787 268.33 15 0.042 331.1 16 0 314.10
gr229 15 0.023 109.99 15 0.023 121.07 15 0.023 170.85 16 0 96.69
gil262 6 8.133 57.09 6 4.324 84.2 10 2.469 135.48 14 0.051 183.41
pr264 11 4.230 151.96 10 4.243 208.51 14 0.323 304.7 16 0 256.35
a280 11 0.159 99.98 12 0.156 150.54 10 0.255 191.39 14 0.402 690.45
pr299 11 0.782 105.14 11 0.774 125.98 13 0.298 205.23 16 0 515.12
lin318 8 0.997 247.01 9 0.858 260.81 11 0.480 311.25 15 0.020 733.50
rd400 11 0.954 100.44 12 0.375 147.13 13 0.351 203.08 15 0.542 557.71
fl417 11 1.055 518.97 12 0.397 577.53 13 0.079 708.57 16 0 672.82
gr431 12 0.788 236.75 15 0.009 252.35 16 0 280.53 16 0 429.84
pr439 11 0.685 180.16 13 0.074 221.23 14 0.058 324.17 15 0.002 531.14
pcb442 12 0.295 151.28 11 0.512 199.82 13 0.495 274.18 14 0.244 840.38

continued on next page
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Table 3 – continued from previous page

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Hybrid Heuristic

#BEST GAP CPU #BEST GAP CPU #BEST GAP CPU #BEST GAP CPU

d493 7 1.157 418.35 9 1.208 419.66 12 1.051 515.84 16 0 949.26
att532 16 1.768 1707.99 19 1.461 2180.37 25 0.938 2244.39 23 0.273 3590.19
Total 658 1.473 153.719 722 0.816 174.37 819 0.302 223.88 902 0.045 301.73

On the basis of Table 3, we conclude that our heuristic algorithm outperforms
all COP-TABU versions in terms of total number of best solutions and the gap
to the best. It delivers 38 new BKS to reach 902 BKS. On the other hand
the three tabu versions heuristics yield 658, 722 and 819 BKS. Moreover, our
heuristic exhibits a relatively small gap to the best of 0.045 compared to 0.302
for COP-TABU (Reactive). Finally, we observe that our method substantially
improves the results of several classes of instances namely: ch150, u159, tsp225,
gil262 and d493.

5.2. Set B: multiple vehicles problem set

5.2.1. Description of the instances

Since there are no instances for CluTOP in the literature, we generated a
new set of instances to evaluate the effectiveness of our methods in the case
of multiple vehicles. We proceeded in the same way as in Chen et al. [5].
The authors generated new instances of the TOP from instances of the OP by
dividing the Tmax by the number of vehicles in such a way that each vehicle
has a time limit equal to Tmax

m . As a result, from each benchmark instance in
[1], we derived two instances with a number of vehicles two or three, knowing
that Tmax values in [1] were calculated as θ ∗TSP , where θ takes two values: 1

2
and 3

4 . Hence, the total number of the new instances is 924 for each number of
vehicles.

5.2.2. Performance of the exact method

Table 4 shows the performance of the cutting plane when considering one,
two and three vehicles. From Table 4, we observe that the instances become
more difficult to solve when considering multiple vehicles. For instance, in the
case of a single vehicle, all of the instances with less than 100 customers were
solved to optimality by the cutting plane, whereas for two and three vehicles,
the number of solved instances per class is remarkably low. For example, the
instances of class rat99 were all solved to optimality in the case of a single
vehicle, but only eight of them were solved when the number of vehicles is equal
to two or three.

Like in Section 5.1, performance evaluation of the cutting plane in the case
of multiple vehicles was restricted to instances with up to 318 vertices and 25
clusters. Therefore, 800 instances were considered for each class. In this section,
we attempted to study the impact of the number of vehicles on the behavior of
the exact method.

Table 4 shows the performance of the cutting plane when considering one,
two and three vehicles. From Table 4, we observe that the instances become
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more difficult to solve when considering multiple vehicles. For instance, in the
case of a single vehicle, all of the instances with less than 100 customers were
solved to optimality by the cutting plane, whereas for two and three vehicles,
the number of solved instances per class is remarkably low. For example, the
instances of class rat99 were all solved to optimality in the case of a single
vehicle, but only eight of them were solved when the number of vehicles is equal
to two or three.

Our exact method exhibits a percentage gap of 26% for two vehicles, 30.1%
for three vehicles compared to 4.5% with a single vehicle. Moreover, we observe
the same trend for the number of solved instances and computational times.
Regarding the case of three vehicles, the cutting plane succeeded to solve more
instances than the case with two vehicles. This is mainly due to the fact that the
routing sub-problem becomes relatively easier since the Tmax is divided by the
number of vehicles. Furthermore, many instances have an objective value equal
to zero or they at least contain the profit of a very small number of clusters.

Table 4: Performance of the cutting plane with respect to the number vehicles

Class
Single vehicle Two vehicles Three vehicles

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

dantzig42 16 0 2.90 16 0 60.25 16 0 0.4
swiss42 16 0 4.08 16 0 71.8 16 0 129.3
att48 16 0 34.80 16 0 377.6 16 0 10.29
gr48 16 0 12.46 11 0.060 1323.46 16 0 1.13
hk48 16 0 12.42 12 0.065 1208.14 16 0 2.23
eil51 16 0 16.56 15 0.004 702.63 10 0.097 1619.76
berlin52 16 0 9.96 16 0 700.98 16 0 703.23
brazil58 16 0 26.67 15 0.005 793.99 16 0 165.53
st70 16 0 95.71 8 0.214 1800.12 16 0 59.91
eil76 16 0 25.83 8 0.069 2271.91 8 0.241 1909.14
pr76 16 0 196.43 10 0.058 1853.91 8 0.128 1802.68
gr96 16 0 37.23 7 0.079 2353.22 13 0.030 1270.34
rat99 16 0 159.30 8 0.114 1991.96 8 0.140 1805.56
kroA100 16 0 240.96 8 0.280 1808.33 12 0.061 941.89
kroB100 16 0 272.45 8 0.255 1812.47 15 0.012 458.12
kroC100 15 0.005 746.34 8 0.307 1803.14 14 0.023 550.91
kroD100 16 0 581.61 8 0.276 1803.88 14 0.090 488.04
kroE100 16 0 179.06 8 0.394 1800.26 16 0 0.14
rd100 16 0 225.11 8 0.207 1832.97 12 0.173 995.38
eil101 16 0 115.96 5 0.123 3198.43 0 0.386 3600.03
lin105 16 0 72.66 10 0.038 1737.53 8 0.131 1800.17
pr107 15 0.019 332.52 16 0.000 6.81 16 0 0.15
gr120 15 0.006 688.78 2 0.341 3169.59 8 0.367 1800.31
pr124 16 0 100.51 14 0.016 1132.63 13 0.018 1144.92
bier127 16 0 92.16 3 0.170 3257.18 0 0.289 3600.16
ch130 15 0.0042 767.34 4 0.328 2823.47 6 0.348 2594.12
pr136 16 0 326.29 1 0.356 3544.06 8 0.309 1800.65
gr137 16 0 149.90 6 0.170 2587.61 9 0.130 1784.16
pr144 16 0 135.73 8 0.127 1843.67 14 0.041 934.23
ch150 9 0.0584 2098.01 4 0.414 2758.08 8 0.453 1800.74
kroA150 10 0.0583 1713.36 4 0.381 2722.32 8 0.547 1807.96
kroB150 11 0.0563 1913.78 6 0.396 2569.58 8 0.539 1800.4
pr152 16 0 559.19 8 0.205 1800.49 16 0 0.49
u159 14 0.0109 1185.79 0 0.264 3600.14 3 0.218 2999.66
si175 16 0 315.50 2 0.095 3187.11 0 0.192 3600.07
brg180 16 0 155.60 10 0.024 2589.05 2 0.149 3328.89
rat195 10 0.0447 1757.66 0 0.334 3600.18 0 0.447 3600.15

continued on next page
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Class
Single vehicle Two Vehicles 3 Vehicles

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

d198 12 0.0332 1431.59 8 0.191 1801.94 16 0 2.27
kroA200 6 0.1473 2562.21 2 0.594 3171.66 8 0.583 1802.31
kroB200 6 0.1767 2550.03 2 0.622 3164.14 8 0.601 1802.45
gr202 16 0 557.13 0 0.397 3600.87 2 0.351 3436.75
ts225 0 0.2729 3600.73 0 0.742 3601.16 8 0.496 1908.84
tsp225 10 0.0681 2461.35 0 0.499 3600.76 0 0.607 3600.47
pr226 5 0.1441 3066.90 8 0.179 2014.41 16 0 210.16
gr229 16 0 1063.57 0 0.605 3601.41 0 0.686 3602.57
gil262 4 0.1986 3084.40 0 0.827 3600.66 8 0.711 1801.03
pr264 2 0.3496 3155.57 8 0.281 1817.96 10 0.049 1358.66
a280 2 0.1768 3357.49 0 0.461 3600.39 0 0.518 3600.16
pr299 1 0.2837 3449.92 0 0.509 3600.8 2 0.402 3151.43
lin318 1 0.1547 3430.73 0 0.517 3600.81 0 0.746 3600.41
Total 643 0.0454 982.64 337 0.252 2265.52 463 0.226 1615.77
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Figure 2: Optimality Gap with respect to
the number of clusters and the number of
vehicles.

Figure 3: Optimality Gap with respect to
the number of profit generation and the
number of vehicles.

Figure 4: Optimality Gap with respect to
θ and the number of vehicles.

Figure 5: Computational time with re-
spect to the number of clusters and the
number of vehicles.

Figure 6: Computational time with re-
spect to profit generation and the number
of vehicles.

Figure 7: Computational time with re-
spect to θ and the number of vehicles.

We investigate now the impact of the use of multiple vehicles on the per-
formance of the cutting plane. Figures 2 to 7 depict some performance mea-
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surements of the cutting plane with respect to the number of vehicles. We
investigated the variations of the optimality gap and computational time with
respect to the number of clusters, the profit generation pattern and the value of
θ. Globally, we note that instances with several vehicles become more difficult
than the case with a single vehicle.

5.2.3. Performance of the heuristic method

In this last section, we discuss the performance of our proposed heuristic in
the case of multiple vehicles. In Table 5, we provide the following measurements
for our heuristic:

• UBGap: Average deviation gap with respect to an upper bound;

• OptGap: Average deviation gap with respect to the optimal solution value;

• #Opt: Number of times it yields the optimal solution;

• CPU : Computational times;

The results depicted in Table 5 confirm the robustness of our heuristic
method in the case of multiple vehicles. Computational times remain rela-
tively stable and very close to the instances with a single vehicle. We observe
that UBGap drastically increases in the case of multiple vehicles compared to
a single vehicle. This is mainly due to the poorness of the upper bounds rather
than to the performance of the heuristic since the gap to the optimal solution
(OptGap) is 0.02. In addition, the heuristic method succeeds in finding almost
all the optimal solutions found by the exact method: 328/337 with two vehicles,
460/463 with three vehicles and 673/679 in the case of a single vehicle.

Table 5: Multiple vehicles

UBGap(%) OptGap(%) #Opt CPU(s)

1 vehicle 0.888 0.02 673/679 301.73

2 vehicles 11.201 0.141 328/337 390.07

3 vehicles 11.6 0.258 460/463 310.411

Figures 8 to 10 depict the performance of the heuristic with respect to the
number of vehicles and the number of clusters. According to fig. 8, the gap
to the upper bound does not show any clear behavior since the gap remains
relatively high regardless of the number of clusters for two and three vehicles.
This is mainly due to the poorness of the upper bounds as described earlier.
Regarding computational times, we can observe that the number of vehicles
does not affect the behavior of the heuristic for instances with up to 25 clusters
(fig. 9). Interestingly, for instances with 532 vertices (att532), we notice that
the behavior of the heuristic incurs some changes especially for 50, 75 and 100
clusters, as shown in fig. 10. Computational times of the heuristic tend to
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stabilize in the case of two and three vehicles, but continues to increase in the
case of a single vehicle.

Figure 8: Average gap to the best upper
bound.

Figure 9: Computational times with re-
spect to the number of clusters.

Figure 10: Computational times with respect to the number of clusters on instances with 532
vertices.

6. Conclusion and future work

In this paper, we introduced a new variant of the TOP, called the Clus-
tered Team Orienteering Problem (CluTOP). In the CluTOP, customers are
grouped into subsets called clusters, to which we assign profits representing the
value of service. the CluTOP also generalizes the Clustered Orienteering Prob-
lem (COP) where only a single vehicle is used. We proposed an exact and a
heuristic methods to solve the CluTOP. Results for a single vehicle show the
competitiveness of both of our methods compared to the literature, with new
solved instances by the exact methods and new best known solutions by the
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heuristic one. In future studies, our aim is to propose different extensions for
the CluTOP by considering new additional constraints like time windows or
vehicle capacity.
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