Ala-Eddine Yahiaoui
email: ala-eddine.yahiaoui@hds.utc.fr

Aziz Moukrim
email: aziz.moukrim@hds.utc.fr

Mehdi Serairi
email: mehdi.serairi@hds.utc.fr

The Clustered Team Orienteering Problem

Keywords: team orienteering problem, cluster, cutting plane, adaptive large neighborhood search, Split procedure

Introduction

In this paper, we propose a new variant of the vehicle routing problems with profits, which we refer to as the Clustered Team Orienteering Problem (CluTOP). In this variant, customers are grouped into subsets called clusters. A profit is assigned to each cluster, which is gained only if all of the customers in the cluster are visited. A set of identical vehicles cooperates in order to maximize the total collected profit w.r.t. the limited travel time imposed on each vehicle.

A special case of the CluTOP is when all the clusters are formed by single customers. This problem is known as the Team Orienteering Problem (TOP), one of the most studied routing problems with profits in the literature [START_REF] Archetti | Vehicle routing problems with profits[END_REF]. The TOP is inspired from the sport game of orienteering, in which a set of players of the same team work together in order to collect as many rewards as possible from a set of locations w.r.t. a time limit imposed for each player [START_REF] Chao | The team orienteering problem[END_REF]. Many exact and heuristic methods have been proposed for the problem. The reader can refer to [START_REF] Archetti | Vehicle routing problems with profits[END_REF], [START_REF] Feillet | Traveling salesman problems with profits[END_REF], [START_REF] Gunawan | Orienteering problem: A survey of recent variants, solution approaches and applications[END_REF] and [START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF] for surveys on variants, applications and solution methods as well.

The CluTOP is also a generalization of the Clustered Orienteering Problem (COP) proposed in Angelelli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF]. In this problem, a single vehicle is used to serve the selected clusters. The authors in [START_REF] Angelelli | The clustered orienteering problem[END_REF] proposed two approaches to solve the COP. The first approach is based on a branch-and-cut algorithm. They proposed two branching schemes and suitable valid inequalities in order to enhance the solution process. The second approach consists of a Tabu Search heuristic. Several insertion and removal operators were proposed. Three versions of this heuristic were introduced and compared.

The concept of cluster has been used in several variants of vehicle routing problems to denote a subset of customers. However, the signification of this concept differs depending on the problem. In the Generalized Traveling Salesman Problem (GTSP) [START_REF] Fischetti | A branchand-cut algorithm for the symmetric generalized traveling salesman problem[END_REF], for example, the customers are grouped into subsets called clusters, and the salesman has to visit at least one customer from each cluster. In the Clustered Traveling Salesman Problem [START_REF] Jongens | The symmetric clustered traveling salesman problem[END_REF], customers belonging to the same cluster must be visited contiguously. An extension of these two problems has been introduced in [START_REF] Defryn | A fast two-level variable neighborhood search for the clustered vehicle routing problem[END_REF], in which a given vehicle can alternate visits between the customers of different clusters, i.e. it is not mandatory to consecutively visit customers of the same cluster. Recently, a new variant of the OP called the Set Orienteering Problem (SOP) was proposed in [START_REF] Archetti | The set orienteering problem[END_REF]. In this problem, a single vehicle can visit one customer per cluster at most. To the best of our knowledge, this study is the first to address the CluTOP as defined in our work.

The CluTOP can be used to model many applications in logistic systems and transportation. Some interesting applications were introduced in [START_REF] Angelelli | The clustered orienteering problem[END_REF] for the COP, which are still relevant for the CluTOP. An example of these applications is related to the distribution of mass products. In this application, each supply chain contains a set of retailers (customers), and if a carrier agrees to supply a chain with a product, it has to serve all the retailers belonging to this chain. In case where retailers are located in the same area/city, it would be more interesting to represent all these retailers using one vertex node in the graph model (since there is no capacity constraint), which reduces the size of the original problem. As a result, if the retailers belong to different supply chains, the associated vertex node (customer) should belong to different clusters.

The main contributions of our work can be summarized as follows:

• We propose an exact algorithm based on a cutting planes approach. This algorithm includes the implementation of a pre-processing procedure together with the consideration of valid inequalities. These components are introduced in order to reduce the computational-burden of the exact method. Interestingly, these components are deduced by computing cliques on particular graphs that represent incompatibility between customers or clusters.

• We extend our heuristic initially proposed for the COP in [START_REF] Yahiaoui | Hybrid heuristic for the clustered orienteering problem[END_REF]. This heuristic explorers both direct representation and giant tours search spaces. Indeed, an Adaptive Large Neighborhood Search (ALNS) generates giant tours with good quality. The giant tours are then provided to the second component, which is a split procedure, in order to extract solutions with better profit. The split is based on a Beam Search algorithm that incorporates a knapsack-based procedure used to select in the most promising nodes to be expanded in the beam search tree.

• In terms of computational experiments, tests were conducted on benchmarks proposed by [START_REF] Angelelli | The clustered orienteering problem[END_REF] to show the efficiency of our methods. Eighty additional instances were solved to optimality by the cutting plane, whereas, the hybrid heuristic succeeded in improving the best solution for 38 instances. Furthermore, we present the results of extensive computational experiments on new proposed CluTOP instances where m ≥ 2. We report the derivation of very near-optimal solutions for CluTOP instances.

The remainder of this paper is as follows. In Section 2, we describe the new problem and we introduce a mathematical formulation together with valid inequalities. In Section 3, we present our exact approach based on a cutting plane scheme and describe the pre-processing procedure. Section 4 details our hybrid-heuristic. Computational results are presented in Section 5. Finally, concluding remarks are given in Section 6.

Mathematical formulation and valid cuts

Problem description and mathematical formulations

An instance of the CluTOP, I CluT OP , is modeled using a complete undirected graph G = (V, E). The set of vertices is V = {1, . . . , n} ∪ {0}, i.e. a vertex i, where i > 0, is associated with each customer in addition to the depot (vertex 0). For each edge e = (i, j) ∈ E is defined a travel cost denoted, as appropriate, c e or c (i,j) . These costs are assumed to satisfy the triangle inequality and to be symmetric. A set of K clusters S = {S 1 , S 2 , . . . , S K } form a cover of V \{0} where ∪ K k=1 S k = V \{0}. We note that it is possible to have shared customers between several clusters. A profit P k is associated with each cluster S k and collected only if all the customers of the cluster S k are served. A set of m vehicles is available to serve customers during a limited travel time T max . It is worth mentioning that any vehicle can visit customers from several clusters, and the customers of a given cluster can be visited by several vehicles. Furthermore, there is no requirement as to the order of the visits, i.e. a vehicle can alternate visits between customers belonging to different clusters. Figure 1 shows an example of a feasible solution for a CluTOP instance with 11 customers. In this example, there are four clusters S 1 , S 2 , S 3 and S 4 which are represented in the figure by a triangle, rectangle, pentagon and hexagon, respectively. Customers are represented by nodes. If a customer belongs to a cluster, the frame that represents this cluster is added inside the node. In this solution, only the customers of clusters S 1 , S 3 and S 4 are served.

Before proceeding further, let first consider the following notation. Given U a subset of V , we denote the set of edges with one endpoint in U and one endpoint in V \U by δ(U). E(U) is used to denote the edges with both endpoints in U . For the ease of notation, when U = {i} we will write δ(i) instead of δ({i}). Finally, ζ(i) represents the set of clusters to which customer i belongs.

We present a mathematical formulation for the new problem. For that purpose, we introduce the following decision variables :

• z k : equal to 1 if all customers in cluster S k ∈ S are served, 0 otherwise.

• y ir : equal to 1 if vertex i ∈ V is served by vehicle r ∈ {1, . . . , m}, 0 otherwise.

• x er : equal to 1 if edge e ∈ E is traversed by vehicle r ∈ {1, . . . , m}, 0 otherwise.

The mathematical model, hereafter denoted by (ILP0), is written as follows:

max S k ∈S P k z k (1) m r=1 y ir ≤ 1 ∀i ∈ V \{0} (2)
e∈δ(i)

x er = 2y ir ∀i ∈ V, r ∈ {1, . . . , m}

e∈E c e x er ≤ T max ∀r ∈ {1, . . . , m}

e∈E(U) m r=1 x er ≤ i∈U \{t} m r=1 y ir ∀U ⊆ V \{0}, ∀t ∈ U (5) z k ≤ m r=1 y ir ∀S k ∈ S, ∀i ∈ S k (4)
z k ∈ {0, 1} ∀S k ∈ S (6)
x er ∈ {0, 1} ∀e ∈ E, ∀r ∈ {1, . . . , m}

y ir ∈ {0, 1} ∀i ∈ V, ∀r ∈ {1, . . . , m} (8)
The objective function (1) maximizes the total collected profit. Constraints (2) ensure that a customer is visited by one vehicle at most. It should be specified that this constraint is not defined for the depot. Therefore, the depot can be visited by the m vehicles. Constraints (3) are the flow conservation constraints. Constraints (4) guarantee that the travel time of each vehicle does not exceed T max . Constraints [START_REF] Chao | The team orienteering problem[END_REF] are subtour elimination constraints (SECs). Constraints [START_REF] Dang | Subgraph extraction and metaheuristics for the maximum clique problem[END_REF] together with the objective function state that the profit of a cluster is gained only if all of its customers are served. Constraints(7)-(9) define the integrality constraints.

Valid inequalities

The aim of valid inequalities is to reduce the search space in order to enhance the performance of the resolution of MIP. In this section, we propose valid inequalities based on symmetry breaking and bounding approaches. We also introduce valid inequalities that take advantage of the properties of the CluTOP instance such as inaccessible customers and incompatibility between customers or clusters.

To begin with, we introduce a valid inequality, that states that a customer should not be visited if no cluster among those where it belongs is selected.

m r=1 y ir ≤ S k ∈ζ(i) z k ∀i ∈ V \{0} (10)

Cuts based on incompatibilities

In this section we compute incompatibilities between components of a CluT OP instance such as customers and clusters. We use undirected graphs to represent the computed incompatibilities and we derive valid inequalities for the ILP 0. Before proceeding further we recall that:

• A clique in an undirected graph is a subset of vertices that are pairwise adjacent;

• A clique is maximal if it cannot be extended to a bigger one by adding more vertices.

In the following, we propose a set of valid inequalities based on computing subsets of mutually incompatible vertices. Definition 2.1. Two customers i and j are said to be incompatible if and only if they cannot be visited by the same vehicle due to the travel time constraint, i.e. c (0,i) + c (i,j) + c (j,0) > T max . We note that c (i,j) = c (j,i) ∀(i, j) ∈ E since travel times are symmetric.

In order to represent the different incompatibilities that can exist between each pair of customers, we define the customer-incompatibility graph G inc = (V, E inc). The set of arcs E inc is constructed as follows. Let i, j ∈ V \{0}, (i, j) ∈ E inc if and only if i and j are incompatible. Clearly, a clique extracted from the graph G inc includes a set of customers that cannot be served by the same vehicle. Hence, the following proposition holds:

are valid for ILP 0

In the following, we extend the concept of incompatibility between customers to cover the case of clusters.

S k ∈C z k ≤ 1 C ∈ C cl (12)

Symmetry breaking cuts

In order to reduce the search space, we propose to consider symmetry breaking constraints that eliminate many equivalent solutions. In our model, equivalent solutions occur for example by interchanging any pair of routes. To avoid such configurations, we consider constraints that impose a lexicographical order within the routes. In this paper, we introduce a specific criterion for the CluTOP. We propose associating a score p i with each customer i. This score is calculated as p i = K k=1 ρ ik where ρ ik is the contribution of customer i to cluster S k , and it is calculated as

ρ ik = P k |S k | if i ∈ S k
and ρ ik = 0 otherwise. The symmetry breaking cut is:

i∈V \{0} y i(r+1) p i - i∈V \{0} y ir p i ≤ 0 r = {1, . . . , m -1} (13)

Bounding cuts

We propose two bounding valid inequalities. The first is based on computing an upper bound on the total profit while the second is based on computing a lower bound on the number of selected clusters. Definition 2.3. Two clusters S k and S l are said to be compatible if and only if a feasible solution exists using the m available vehicles, where all their customers are served.

Let Φ be a collection of subsets of mutually compatible clusters and φ * ∈ Φ such that:

l:S l ∈φ * P l = max φ∈Φ k:S k ∈φ P k
Clearly, l:S l ∈φ * P l is a valid upper bound on the total profit that might be collected. Therefore, the following valid inequality holds:

K k=1 P k z k ≤ l:S l ∈φ * P l (14)
Interestingly, computing φ * turns out to be the maximum weighted independent set in the graph G inc cl , where the weight of vertex S k is set to P k . The second bounding valid inequality is described as follows. Let LB cl be a lower bound value on the number of clusters that should be served on a feasible solution of I CluT OP with at least P r as total profit. Therefore, the following constraint holds:

S k ∈S z k ≥ LB cl (15)

Cutting plane algorithm

In this section, we describe our exact algorithm. This algorithm is based on cutting plane approach that includes a preprocessing procedure and a heuristic approach that aims to repair unfeasible solutions.

Global scheme

We start by describing the global scheme of our algorithm. In order to solve CluTOP, we are interested in solving ILP 0. Moreover, we include the valid inequalities (10)- [START_REF] Jongens | The symmetric clustered traveling salesman problem[END_REF]. Our algorithm is based on the cutting plane approach. Indeed, a MIP-solver is used to solve to optimality a relaxation version of ILP 0 (called ILP 1) where subtour elimination constraints are relaxed. Clearly, an integer solution (S * ILP 1) is obtained . If this solution does not contain any subtour, then the solution is optimal for ILP 0, otherwise the set of subtours are extracted and necessary subtour elimination constraints are generated and added to ILP 1. This process is iteratively applied until either an optimal solution without subtours is found or the time limit has been reached.

In order to verify if any subtours exist, we use a Depth-First Search algorithm (DFS) to detect connected components in an undirected graph. The DFS should detect two types of connected components. The first type is the components that contain the depot, hereafter refered to as main tours. The other connected components are considered as subtours (tours separated from the depot). Once the subtours are extracted, suitable subtour elimination constraints are generated and added to the model. In our work, we use more general SECs called Generalized Subtour Elimination Constraints (GSECs) proposed in [START_REF] Fischetti | A branchand-cut algorithm for the symmetric generalized traveling salesman problem[END_REF]. The GSECs are defined as follows:

e∈δ(U) x er ≥ 2y ir , ∀U ⊂ V, 0 ∈ U, ∀i ∈ V \U, r ∈ {1, . . . , m} (16)
e∈E(U) x er ≤ i∈U y ir -y jr , ∀U ⊂ V, 0 ∈ U, ∀j ∈ V \U, r ∈ {1, . . . , m} (17)
e∈E(U)

x er ≤ i∈U y ir -y jr , ∀U ⊆ V \{0}, ∀j ∈ U, r ∈ {1, . . . , m} (18)
Moreover for a better performance the cutting plane algorithm includes the following features:

• A pre-processing procedure that aims to reduce the number of decision variables and to initialize and fill the customer and cluster incompatibility graphs with more edges.

• A local repair solution heuristic that aims to repair S * ILP 1 if it contains any subtour. Furthermore, the adopted branching rules for the resolution of ILP 1, prioritize z i first, then y ir and finally x er . This can be motivated by the fact that the objective function in CluTOP aims to maximize the collected profit from the visited clusters [START_REF] El-Hajj | Solving the team orienteering problem with cutting planes[END_REF].

The global scheme of our model is described in Algorithm 1.

Algorithm Repair the partial solution (See Section 3.2)

13 until (S * ILP 1 is optimal for CluTOP or time expired)

Solution repair

Recall that if S * ILP 1 is not optimal for ILP 0, then it is composed of two types of tours: the main tours and the subtours which are not related to the depot. A trivial feasible solution X can be constructed from S * ILP 1 using only main tours. Unfortunately, this partial solution is often of poor quality. This is mainly due to the nature of CluTOP in which the profit of a given cluster is collected only if all of its customers are served. As a result, if at least one customer of a given cluster belongs to one of the subtours, the whole profit of the cluster will be discarded. In this section, we propose a greedy procedure to repair the solution X extracted from S * ILP 1 . First, the clusters of S * ILP 1 are sorted according to a non-increasing order of the following criterion:

P k N (S k)+1 ,
where N (S k) is the number of customers of cluster S k located in subtours. This criterion favors, on the one hand, clusters with higher profits, and on the other hand, those with a small number of customers located in subtours. The insertion of customers in the current solution X is carried out iteratively cluster by cluster. The customers of a given cluster are inserted one by one using a best insertion approach. If the procedure fails to insert at least one customer of a given cluster, then all its customers will be omitted from the solution X except those shared with already inserted clusters.

Pre-processing phase

In this section, we describe the pre-processing procedure that aims to fix some decision variables and to compute incompatibility graphs.

Below, we denote by:

• U B(I) : the value of the upper bound delivered by the cutting plane procedure within a small time budget for a CluTOP instance I,

• LB(I) : the value delivered by the hybrid heuristic described in section 4.

Inaccessible components Definition 3.1.

A customer i is considered to be inaccessible if the tour that starts and ends at the depot and exclusively serves this customer has a length greater than T max , i.e. c (0,i) + c (i,0) > T max .

Definition 3.2. A cluster is said to be inaccessible if it is impossible to visit all of its customers using all available vehicles.

On the basis of these definitions, we should fix some of the decision variables y ir and z k as proposed in the following two equations. The first is related to the inaccessible customers, while the second concerns the inaccessible clusters.

y ir = 0 ∀i ∈ V \{0}, and c (0,i) + c (i,0) > T max , ∀r = 1 . . . m (19)
z k = 0 ∀k = 1, . . . , K and S k is inaccessible [START_REF] Vidal | Split algorithm in o (n) for the capacitated vehicle routing problem[END_REF] At this point it should be specified that checking whether a customer is inaccessible or not requires O(1)-time. However, in the case of a cluster, this procedure requires solving a multiple travel salesman problem (MTSP). This problem is NP-complete even in the case where only one salesman is available. For this reason, we consider a trivial relaxation instead of MTSP. This relaxation is based on exploring inaccessible customers. Indeed, if a customer is inaccessible then all clusters that share it could be considered as inaccessible.

Mandatory clusters

The basic idea to compute mandatory clusters is as follows. Given an instance I of CluTOP, an instance Īk is derived from I by ignoring the cluster S k . The cluster S k is considered as mandatory if U B(I k) < LB(I). Therefore, the variable z k should be fixed to 1.

Useful pre-computations

In addition to these pre-processing features, we perform some pre-computations such as the incompatibility graphs and some specific lower and upper bounds that are useful to generate the considered cuts.

In the following we describe the computation of the incompatibility-graphs. The customers-incompatibility graph is calculated as follows: for each vertex in the graph, we calculate the maximal clique containing this vertex using metaheuristic proposed in [START_REF] Dang | Subgraph extraction and metaheuristics for the maximum clique problem[END_REF].

However, the construction of clusters-incompatibility graph requires more computational effort. Recall that computing incompatibility between a pair of clusters needs to solve mTSP problem. Solving such problem several times can be very time consuming. We therefore propose to proceed heuristically to deduce incompatibilities. To do this, let us introduce the following proposition. To solve the Maximum Clique Problem (MCP), we propose to use the exact method proposed in [START_REF] Patric | A fast algorithm for the maximum clique problem[END_REF]. Although this problem is NP-hard, algorithms used are quite fast when dealing with small instances (up to 60 vertices in our case).

To further enhance the density of the incompatibility graph between clusters, we propose the following improvement. Given an instance I, two clusters S k and S l , the aim is to solve the sub-instance in which we consider only the customers of these two clusters. We denote this sub-instance by I kl . Therefore the following proposition holds: Proposition 3.2. If U B(I kl) < P k + P l then S k and S l are incompatible.

This second phase is only applied on couple of clusters that have not been yet proved to be incompatible during the first phase. During experiments, it was showed that solving CluTOP on a couple of clusters is quite fast compared to solving the whole instance.

Algorithm 2 details the pre-processing phase.

Heuristic Scheme

In this section, we describe a generalization of our heuristic presented in [START_REF] Yahiaoui | Hybrid heuristic for the clustered orienteering problem[END_REF] initially designed for the COP. It is based on the order first-cluster second approach [START_REF] Prins | Orderfirst split-second methods for vehicle routing problems: A review[END_REF] and consists of two phases: the first one is the ordering phase in which a giant tour covering all the customers is constructed. The second phase is a splitting procedure that extracts the optimal solution from a given giant tour while respecting the predefined sequencing of its customers.

Split procedure principle

Given a giant tour π = (π 1 , π 2 , . . . , π n). that covers all the customers, the splitting procedure aims at find a subset of clusters that maximizes the total

S k ∪ S l 9 Q kl ← calculate maximum clique in G inc kl 10 if (|Q kl | > m) then Add (S k , S l) to E inc cl 11 else if (U B(I kl) < P k + P l) then 12 Add (S k , S l) to E inc cl 13 Calculate maximal cliques in G inc
kl and derive the valid inequalities based on incompatibilities between clusters 14 Add these valid inequalities to the set C collected profit with respect to the order of the giant tour and the time limit. The procedure relies on a branch-and-bound scheme in which, we embedded a knapsack-based upper bound to fathom inferior nodes and a feasibility test to discard unfeasible nodes. The branching scheme consists in enumerating all of the subsets of clusters. Starting from the root node with an arbitrarily ordered list of potential clusters, a descendant node is derived either by selecting or discarding the first cluster in the list. By applying this process on all the potential clusters, this leads to a binary search tree with at most 2 K+1 -1 nodes. In the following, for each node η in the search tree, we use the sets S η p , S η s and S η r to denote the potential clusters, the selected clusters and removed clusters, respectively. Exhaustive enumeration of all subsets of clusters may be both costly and inefficient. To minimize this drawback, we propose to use a beam search technique. This technique helps to keep computational times under a known value. The main idea is to explore the search tree in Breath First Search (BFS), and to pickup a limited number of nodes to expand at each level. Unfortunately, this new scheme does not guarantee that the solution found is optimal. Hence, we propose to use the upper bound described in Section 4.1.3 as a selection criterion so that only promising nodes will be selected at each level of the tree. Another important aspect is the number of nodes selected at each level. This parameter was fixed after preliminary experimentation at K nodes per level.

Feasibility check

A feasibility check (F C) is performed every time a potential cluster is added to the set of selected clusters S η s . A given node is feasible if all the customers of its selected clusters can be visited using m vehicles at most. To do this, we consider the partial sequence π η = (π 1 , . . . , π |π η |) extracted from the giant tour π by keeping only customers of the selected clusters.

The procedure F C can be described as follows. At each iteration i, the i th customer in the partial sequence π η , is inserted at the end of the last route. If this insertion fails, either because the travel time exceeds T max or no route has yet been initialized, the customer is inserted in a new initialized route. This process is reiterated until all customers of the sequence π η are served. Thanks to the triangular inequality, the number of visited customers per route is maximized and the number of used vehicles (m σ) is then minimized. Therefore, if m π η > m, then the partial solution is unfeasible and the node should be pruned. The complexity of this procedure is O(n).

TOP-based Relaxation

In [START_REF] Yahiaoui | Hybrid heuristic for the clustered orienteering problem[END_REF], we presented a relaxation scheme for the COP. The generalization for the case of the CluT OP is trivial. The definition as well as the proposition and its proof are all given so that the paper will be self contained. Definition 4.1. Given a CluT OP instance I with its undirected graph G=(V,E), we define a T OP instance I T OP defined by the same graph G=(V,E). The pseudo profit p j of each customer in j ∈ I T OP is calculated as showed in Section 2.2.2. The maximal travel time of I T OP is the same as instance I, which is T max . We also define the following notation:

• P * (I) is used to denote the optimal objective value of instance I.

• Let S ⊆ S be a subset of clusters. We denote the sum of their profits by P CluT OP (S). Hence, P CluT OP (S) = k:S k ∈S P k .

• Let V ∈ V be a subset of customers in I T OP . We denote the sum of their profits by P T OP (V). Hence, P T OP (V) = j∈V p j .

Proposition 4.1. The optimal objective value of the associated instance I T OP represents an upper bound on the profit of I (P * (I T OP) ≥ P * (I)).

Proof. Let S * be the set of clusters of the optimal solution of CluT OP instance I. The total collected profit is calculated as P CluT OP (S *) = i:S k ∈S * P k = P * (I). On the other hand, let V * be the set of customers of S * . It is obvious that the optimal solution of I CluT OP is feasible for I T OP and its profit is P T OP (V *) = j∈V * p j . We also denote the optimal objective value for I T OP by P * (I T OP). We have,

P T OP (V *) = j∈V * p j = j∈V * k:j∈S k P k |S k | = j∈V * k:j∈S k and S k ∈S * P k |S k | + j∈V * k:j∈S k and S k / ∈S * P i |S i | = P CluT OP (S *) + j∈V * k:j∈S k and S k / ∈S * P k |S k | = P * (I) + j∈V * k:j∈S k and S i / ∈S * P k |S k | (21)
As a result, the optimal solution for I is feasible for the I T OP . Furthermore, P * (I) ≤ P T OP (V *) ≤ P * (I T OP).

Knapsack-based upper bound

We propose in this paper an upper bound based on the Fractional Knapsack Problem. We first extend Proposition 4.1 to cover the case of giant tours π = (π 1 , π 2 , . . . , π n). Since a giant tour π imposes an order of visits among the customers of I, it can be seen as a derived instance I in which only edges that respects this order are considered. The following corollary holds. Given now a node η in the search tree, we assume that the partial solution retrieved by the procedure F C is feasible. Otherwise the node should be pruned. We consider the following Knapsack instance I F KSP in which we associate an item with each potential customer. A customer is considered as potential if it belongs to at least one of the potential clusters S η p and does not belong to any of the selected clusters S η s . The profit of an item π j is calculated using Definition 4.1. Note that to calculate these profits in a node η, we consider only contributions related to potential clusters S η p and we discard contributions related to removed clusters S η r . As a result, the profit of π j is calculated as follows: p η πj = i:πj ∈Si and Si∈S

η p Pi |S η i | , where |S η i
| is the number of potential customers belonging to cluster S i in node η.

The weight w η πj of the item π j is the minimal insertion cost. Let I η j be the set of all the insertion positions of π j , where each position is defined by one predecessor and one successor of π j in π, i.e. I η j = {(π l , π r)|l < j < r, π l , π r ∈ S η s ∪ S η p }. Thus, the minimal insertion cost is calculated as w η πj = min{c(π l , π j) + c(π j , π r) -c(π l , π r)|(π l , π r) ∈ I η j } where c(π l , π r) is the travel time between customers π l and π r .

To model the size of the knapsack W η , we proceed as follows. We consider the sub-sequence formed by the customers of the selected clusters S η s . Knowing that the node is feasible, i.e. all the customers in the sub-sequence can be visited using at most m vehicles, the aim is to find the set of tours that minimizes the total distance. This can be seen as solving a Distance Constrained VRP with a limited fleet on a given permutation of customers. This problem can be efficiently solved by applying a modified version of the split procedure proposed in [START_REF] Beasley | Route first-cluster second methods for vehicle routing[END_REF] for VRP. In our study we use an effcient implementation proposed by Vidal in [START_REF] Vidal | Split algorithm in o (n) for the capacitated vehicle routing problem[END_REF] with O(nm) time and space complexity. Assuming now that C η is the total distance, W η is simply modeled as the residual distance, i.e. W η = mT max -C η . Proposition 4.2. Given a giant tour π and a node η in the search tree, the optimal objective value of the I F KSP is an upper bound on the optimal objective value of the I.

Proof. Given a giant tour π covering all the customers of I and a node η. We construct a knapsack instance I F KSP in which, each item π j has a weight w η j and a profit p η πj . Assume π η is the optimal partial sequence in the node η and δ η (π j) is the insertion cost of the customer π j in π η . According to the definition of the minimal cost insertion, it is obvious that w η j ≤ δ η (π j) for any potential customer π j in S η p . Consequently, the optimal solution for the I F KSP is an upper bound on the profit of I T OP while considering π and η. According to Corollary 4.1, I F KSP is also an upper bound on I CluT OP while considering π and η.

Local search procedure

We propose to improve the splitting procedure by integrating a Local Search heuristic (LS). The LS uses some relevant information in the nodes of the beam search in order to efficiently explore the search space. When LS is called in a node η, it is applied only on the selected and the potential set of clusters S η s ∪S η p . In this way, the LS focuses on a reduced part of the search space, and hopefully, it succeeds easily and quickly finding a new global best solution. An initial solution is constructed from the customers of the selected clusters using the splitting procedure for the Distance Constrained VRP with a Limited Fleet [START_REF] Vidal | Split algorithm in o (n) for the capacitated vehicle routing problem[END_REF] (see Section 4.1.3). After that, a potential cluster is randomly selected and its unrouted customers are inserted in the solution using a best insertion approach without considering the time limit constraint. The Lin-Kernighan heuristic [START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem[END_REF] is then applied on each tour separately. If it fails to find a TSP solution with a travel time equal or less than T max for at least one tour, the insertion of the potential clusters is considered as unfeasible. This process is repeated on all of the potential clusters.

Algorithm 3 provides a pseudo code of the split procedure. We use in Algorithm 3 two priority queues where the Knapsack upper bound is used as a priority criterion (See Section 4.1.3) (line 1), the first is called currList that contains the nodes of the current level, while the second list tmpList contains the nodes to be explored in the next level of the tree. The lower bound LB is initialized by the current best solution of the global heuristic.

Global Algorithm

The ALNS scheme was first proposed by [START_REF] Pisinger | Large neighborhood search[END_REF] for routing and scheduling problems. Since then, the ALNS has been widely used to solve different variants of VRPs and has proven to be an efficient framework. The main characteristic of this metaheuristic is the use of several insertion and removal operators during the search process. An operator is a heuristic capable of exploring a large neighborhood in a short time. At each iteration, a pair of insertion and removal operators are randomly chosen. In this way, the ALNS is able to explore several neighborhoods during the search process. At the same time, statistics are gathered in order to estimate the contribution of each operator to the solution progress. These statistics are then used to promote the most effective operators. This characteristic offers the ALNS the flexibility to tackle a wide range of instances.

Our ALNS scheme includes one destruction operator that selects a random number of clusters and removes their customers from the solution. Note that customers shared with other clusters remain in the solution. The number of clusters to remove d max (line 6) is adjusted during the search. It is incremented after each iteration without improvement (line 12) and reset to the initial value once a new best solution is found (line 12). After experimental tests, the initial value is set to 3.

Regarding the solution repair (line 8-9), unrouted clusters are iteratively inserted into the current solution one by one until no cluster is left or no further insertions are possible. Once a cluster is randomly selected, its unrouted customers are identified (some of its customers shared with other clusters would already be in the solution) and inserted using one of the following insertion operators.

1. Best Insertion Operator. All insertion positions are evaluated and the best move is selected. 2. Random Best Insertion Operator. A customer is randomly selected and inserted in the position with the minimum cost. 3. 2-Regret Insertion Operator. For each customer, the two insertion positions with the minimum cost are identified and the gap is calculated. The customer with the maximum gap is inserted in its best position.

We use a local search operator called 2-opt to improve the travel time of the current solution (line 7). This operator is called at each iteration between the removal and the insertion operator.

In our ALNS, each insertion operator is associated with a value called weight. The selection of an insertion operator depends on its weight: the larger is the weight, the more probable that it will be selected. These weights, initialized by the same value, are dynamically adjusted during the search process according to the performance of each operator (line 14). The goal is to assign larger weights to the most effective operators. The update of each weight depends on the quality of the obtained solution. If the selected operator yields a new best solution, it is assigned a larger score, whereas it is assigned a low score if the new solution is worse than the current one. A medium score is assigned if the new solution is better than the current one but still not better than the best solution. For more details about the update procedure, the reader is referred to Pisinger and Ropke [START_REF] Pisinger | Large neighborhood search[END_REF]. Algorithm 4 describes the global scheme of our heuristic.

The number of iterations of the ALNS is fixed at n (line 5-14). The best solution found by the ALNS is used to construct a giant tour (line 15). The construction is done by concatenating the tours and then inserting the customers of the unrouted clusters in random positions of the giant tour. The latter is provided to the splitting procedure in the purpose of improving the quality of the best solution (line 16). This process (ALNS + SPLIT) is iterated until one of the two stop conditions is verified: either log(n * K) iterations are performed without improvement, or the total number of iterations exceeds the value n.

if (Eval(X) > Eval(X best)) then X best ← X 18 until (stop condition is reached) 19 return X best

Computational tests

In this section, we present a detailed description of the tests we made in order to evaluate the performance of our algorithms. Our algorithms are coded in C++ using the Standard Template Library (STL) for data structures. Experiments were conducted on a Linux OS 64-bit computer with Intel Xeon(R) E2-2670 16-core CPU@2.60 GHz and 128 gigabytes RAM. The cutting plane is implemented using Cplex 12.6 and Concert technology.

We tested our algorithms on two different problem sets. The first set (Set A) concerns the instance introduced in [START_REF] Angelelli | The clustered orienteering problem[END_REF] for the case of a single vehicle. We note that methods proposed in [START_REF] Angelelli | The clustered orienteering problem[END_REF] were tested on a 64-bit computer with Intel Xeon W3680 six-core CPU@3.33 GHz. The second set (Set B) is related to the multiple vehicles instances. In the following, we provide a detailed description of these sets and we report the results of our computational experiments.

Set A: single vehicle problem set

In this section, we focus on the single vehicle case of the CluT OP . We propose a general comparison between our methods and the methods from the literature presented in [START_REF] Angelelli | The clustered orienteering problem[END_REF].

To do this, we use benchmark instances introduced in [1].

Description of the instances

The benchmark is derived from 57 instances of TSPLIB with a number of vertices ranging from 42 to 532. For each base instance of TSPLIB, a set of derived instances for the COP is constructed according to different values assigned to the following parameters:

1. Number of clusters: the number of clusters K takes values of 10, 15, 20 or 25. Clusters were generated in order to have approximately the same number of customers. We note that three additional values (50, 75 and 100) were considered for the largest TSPLIB instance (att532). 2. Profits of clusters : the profits of clusters are generated as follows . First, a profit is assigned to each customer and the profit of a given cluster is then calculated as the sum of the profits of its customers. Two patterns are used to generate the profits of the customers [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF]. In the first one the profit of each customer is equal to one. In the second pattern, the profit of each customer is generated using the formula 1 + (7141j + 73)mod(100), where j is the index of the customer. 3. T max : Given T SP * the optimal value of TSP over all vertices of the base instance, the value of T max is set at θ * T SP * , where θ takes two possible values: q2 = 1 2 and q3 = 3 4 . As a result, 16 different instances are derived from each TSP benchmark instance except for att532 where 24 new instances were derived. As a result, 924 instances are used to evaluate the proposed methods. The instances can be found at the following URL: http://or-brescia.unibs.it/. For a detailed description of instance generation, the reader can refer to Angelelli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF].

Performance of the exact method

We conducted a set of comparisons of our exact algorithm with the two branch-and-cut algorithms namely COP-BASIC and COP-CUT of Angelelli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF]. In Table 1, we present the results of the three exact methods. For each method, we report:

• #Opt : the number of times for which it yields the optimal solution within a time limit of 3600 seconds.

• OptGap : the average percentage deviation optimal gap that is computed as

U B-LB U B
, where U B and LB are the upper bound and the lower bound found by each method respectively.

• CP U : average CPU time in seconds.

From Table 1, we observe that:

• The cutting plane algorithm succeeds in optimally solving more instances than COP-BASIC and COP-CUT, with 643 instances. COP-BASIC solved 602 instances and COP-CUT solved 558. Interestingly, our algorithm reached the optimilaty gap of 0.043, while requiring less computational time. This gap jumps to 0.09 and 0.12 for COP-BASIC and COP-CUT, respectively.

• The three algorithms succeed to solve all the instances with a number of customers less than 100 except for class pr76, where COP-BASIC fails to close one (1) instance, whereas the cutting plane fails to close one (1) instance from the class kroC100.

• Regarding larger instances, we can observe that the performance of the exact methods depends on the class of instances. For the classes of instances ch130, ch150, kroA150 and kroB150, COP-BASIC and COP-CUT struggle to find the optimal solution, whereas our cutting plane succeeds to close a large number of them. On the other hand, the performance of our algorithm decreases for the classes pr226, pr264 compared to COP-BASIC and COP-CUT. According to the performance of the three exact methods, we identify three categories of classes of instances. The first category (Category 1) is composed of the classes where our exact method outperforms COP-BASIC and COP-CUT, namely ch150, kroA150, kroB150, kroA200, kroB200, and tsp225. Indeed, our exact method solved 52 instances. On the other hand COP-BASIC and COP-CUT failed to solve 89 out of 96 instances. Interestingly, Angelleli et al. pointed out the poor performance of their methods on classes kroA200, kroB200. They highlighted the fact that their methods failed to achieve good feasible solutions. At this point, it is noteworthy to indicate that our exact method and COP-CUT yield no null profit-feasible solutions on all the instances of Category 1. However, COP-BASIC failed to retrieve such feasible solutions 16 times. The second category (Category 2) contains the classes pr226, pr264. For these classes, COP-BASIC or/and COP-CUT outperform our cutting plane. Actually, COP-CUT (respc. COP-BASIC) solved 24 (resp. 18) out of 32 instances to optimality, whereas our exact method solved only 7 instances. This is mainly related to the distribution of customers in these instances, which is in the form of substructures like meshes or even a set of co-linear points. Pferschy et al. pointed out in [START_REF] Pferschy | Generating subtour elimination constraints for the tsp from pure integer solutions[END_REF] that these type of instances are hard to solve using the cutting plane approach, since they are relatively unstable in terms of computational times, number of iterations, and the number of subtours generated in each iteration as well. Finally, the third category (Category 3) is composed of all the other classes where all the methods of Angelleli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF] on the one hand, and our exact method on the other, present the same either good or poor performance.

In order to provide more detailed picture of the performance of the different exact methods on Category 1 and Category 2, in Table 2, we present a more detailed comparison between them. In this table, we report the average percentage gap of the upper bound (resp. lower bound) delivered by our exact method with respect to those obtained by COP-BASIC and COP-CUT. These values are given in columns U BGAP (resp. LBGAP). On the basis of Table 2, we observe that:

• The poor performance of the exact methods presented in Angelleli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF] is explained not only by the quality of the feasible solution (as suggested by [START_REF] Angelelli | The clustered orienteering problem[END_REF]) but also by the weakness of the upper bound. Indeed, our exact method improved the feasible solution delivered by COP-BASIC and COP-CUT by 35.4% and 15.5%, respectively. Surprisingly, the improvement of the quality of the upper bounds is much larger reaching 67.8% compared to COP-CUT upper bound.

• The weak results of our method on the instances in Category 2 is due to the poor performance of both the lower and upper bound compared to Angelleli et al. [START_REF] Angelelli | The clustered orienteering problem[END_REF].

Performance of the heuristic method

We propose in the following to verify the performance of the hybrid heuristic. We compared our method with a tabu search based heuristic called COP-TABU, which was proposed in [START_REF] Angelelli | The clustered orienteering problem[END_REF]. Three variants of COP-TABU have been implemented: COP-TABU-Basic, COP-TABU-Multistart and COP-TABU-Reactive. Tests were conducted on all the 57 classes of the benchmark [START_REF] Angelelli | The clustered orienteering problem[END_REF] (924 instances). We consider a multistart version of our heuristic, where the number of starts is fixed after experimentation at 5. Table 3 summarizes the obtained results. In this table, for each method, we provide:

• #BEST : The number of times it yields the best known solution.

• GAP : The gap to the best solution. The GAP for each instance is calculated using the following expression:

GAP = Z best -Z max Z × 100 (22)
where Z best is the best solution found by the heuristic and Z max is the best solution in the literature, including our method.

• CP U : The total CPU time. On the basis of Table 3, we conclude that our heuristic algorithm outperforms all COP-TABU versions in terms of total number of best solutions and the gap to the best. It delivers 38 new BKS to reach 902 BKS. On the other hand the three tabu versions heuristics yield 658, 722 and 819 BKS. Moreover, our heuristic exhibits a relatively small gap to the best of 0.045 compared to 0.302 for COP-TABU (Reactive). Finally, we observe that our method substantially improves the results of several classes of instances namely: ch150, u159, tsp225, gil262 and d493.

Set B: multiple vehicles problem set 5.2.1. Description of the instances

Since there are no instances for CluTOP in the literature, we generated a new set of instances to evaluate the effectiveness of our methods in the case of multiple vehicles. We proceeded in the same way as in Chen et al. [START_REF] Chao | The team orienteering problem[END_REF]. The authors generated new instances of the TOP from instances of the OP by dividing the T max by the number of vehicles in such a way that each vehicle has a time limit equal to Tmax m . As a result, from each benchmark instance in [START_REF] Angelelli | The clustered orienteering problem[END_REF], we derived two instances with a number of vehicles two or three, knowing that T max values in [START_REF] Angelelli | The clustered orienteering problem[END_REF] were calculated as θ * T SP , where θ takes two values: 1 2 and 3 4 . Hence, the total number of the new instances is 924 for each number of vehicles.

Performance of the exact method

Table 4 shows the performance of the cutting plane when considering one, two and three vehicles. From Table 4, we observe that the instances become more difficult to solve when considering multiple vehicles. For instance, in the case of a single vehicle, all of the instances with less than 100 customers were solved to optimality by the cutting plane, whereas for two and three vehicles, the number of solved instances per class is remarkably low. For example, the instances of class rat99 were all solved to optimality in the case of a single vehicle, but only eight of them were solved when the number of vehicles is equal to two or three.

Like in Section 5.1, performance evaluation of the cutting plane in the case of multiple vehicles was restricted to instances with up to 318 vertices and 25 clusters. Therefore, 800 instances were considered for each class. In this section, we attempted to study the impact of the number of vehicles on the behavior of the exact method.

Table 4 shows the performance of the cutting plane when considering one, two and three vehicles. From Table 4, we observe that the instances become more difficult to solve when considering multiple vehicles. For instance, in the case of a single vehicle, all of the instances with less than 100 customers were solved to optimality by the cutting plane, whereas for two and three vehicles, the number of solved instances per class is remarkably low. For example, the instances of class rat99 were all solved to optimality in the case of a single vehicle, but only eight of them were solved when the number of vehicles is equal to two or three.

Our exact method exhibits a percentage gap of 26% for two vehicles, 30.1% for three vehicles compared to 4.5% with a single vehicle. Moreover, we observe the same trend for the number of solved instances and computational times. Regarding the case of three vehicles, the cutting plane succeeded to solve more instances than the case with two vehicles. This is mainly due to the fact that the routing sub-problem becomes relatively easier since the T max is divided by the number of vehicles. Furthermore, many instances have an objective value equal to zero or they at least contain the profit of a very small number of clusters. We investigate now the impact of the use of multiple vehicles on the performance of the cutting plane. Figures 2 to 7 depict some performance mea-surements of the cutting plane with respect to the number of vehicles. We investigated the variations of the optimality gap and computational time with respect to the number of clusters, the profit generation pattern and the value of θ. Globally, we note that instances with several vehicles become more difficult than the case with a single vehicle.

Performance of the heuristic method

In this last section, we discuss the performance of our proposed heuristic in the case of multiple vehicles. In Table 5, we provide the following measurements for our heuristic:

• U BGap: Average deviation gap with respect to an upper bound;

• OptGap: Average deviation gap with respect to the optimal solution value;

• #Opt: Number of times it yields the optimal solution;

• CP U : Computational times;

The results depicted in Table 5 confirm the robustness of our heuristic method in the case of multiple vehicles. Computational times remain relatively stable and very close to the instances with a single vehicle. We observe that U BGap drastically increases in the case of multiple vehicles compared to a single vehicle. This is mainly due to the poorness of the upper bounds rather than to the performance of the heuristic since the gap to the optimal solution (OptGap) is 0.02. In addition, the heuristic method succeeds in finding almost all the optimal solutions found by the exact method: 328/337 with two vehicles, 460/463 with three vehicles and 673/679 in the case of a single vehicle. 8, the gap to the upper bound does not show any clear behavior since the gap remains relatively high regardless of the number of clusters for two and three vehicles. This is mainly due to the poorness of the upper bounds as described earlier.

Regarding computational times, we can observe that the number of vehicles does not affect the behavior of the heuristic for instances with up to 25 clusters (fig. 9). Interestingly, for instances with 532 vertices (att532), we notice that the behavior of the heuristic incurs some changes especially for 50, 75 and 100 clusters, as shown in fig. 10. Computational times of the heuristic tend to stabilize in the case of two and three vehicles, but continues to increase in the case of a single vehicle.

Conclusion and future work

In this paper, we introduced a new variant of the TOP, called the Clustered Team Orienteering Problem (CluTOP). In the CluTOP, customers are grouped into subsets called clusters, to which we assign profits representing the value of service. the CluTOP also generalizes the Orienteering Problem (COP) where only a single vehicle is used. We proposed an exact and a heuristic methods to solve the CluTOP. Results for a single vehicle show the competitiveness of both of our methods compared to the literature, with new solved instances by the exact methods and new best known solutions by the heuristic one. In future studies, our aim is to propose different extensions for the CluTOP by considering new additional constraints like time windows or vehicle capacity.

Figure 1 :

 1 Figure 1: Example of a CluTOP solution

Proposition 2 . 1 .

 21 Let C denote the set of maximal cliques of the incompatibility graph G inc . The following inequalities: i∈C y ir ≤ 1 ∀C ∈ C, ∀r ∈ {1, . . . , m}

Proposition 3 . 1 .

 31 Let G inc kl be the subgraph induced in G inc by the subset S k ∪S l . Let C kl be a maximum clique extracted from G inc lk . If |C kl | > m, then S k and S l are incompatible.

Corollary 4 . 1 .

 41 The optimal objective value of the associated instance I T OP w.r.t a given giant tour π represents an upper bound on the profit of I w.r.t π.

Algorithm 4 : 3 Initialize d max 4 X ← X 5 for 6 Remove d max clusters from X 7 Apply 2 -opt on X 8 Select an insertion operator i 9 Apply i on X 10 if 11 X ← X 12 Increment d max 13 else 16 X

 4345672891011121316 Global schemeInput: Solution X Output: Solution X best 1 X best ← X 2 repeat (i = 1; i ≤ n; i + +) do (Eval(X) > Eval(X)) then Reset d max 14Update weights using the adaptive weight adjustment procedure 15 Construct a giant tour GT from X ← SP LIT (GT, Eval(X best))(See Algorithm 3)

17

 17

Figure 2 :

 2 Figure 2: Optimality Gap with respect to the number of clusters and the number of vehicles.

Figure 3 :

 3 Figure 3: Optimality Gap with respect to the number of profit generation and the number of vehicles.

Figure 4 :

 4 Figure 4: Optimality Gap with respect to θ and the number of vehicles.

Figure 5 :

 5 Figure 5: Computational time with respect to the number of clusters and the number of vehicles.

Figure 6 :

 6 Figure 6: Computational time with respect to profit generation and the number of vehicles.

Figure 7 :

 7 Figure 7: Computational time with respect to θ and the number of vehicles.

Figure 8 :

 8 Figure 8: Average gap to the best upper bound.

Figure 9 :

 9 Figure 9: Computational times with respect to the number of clusters.

Figure 10 :

 10 Figure 10: Computational times with respect to the number of clusters on instances with 532 vertices.

 Definition 2.2. Two clusters S k and S l are said incompatible if and only if it is impossible to serve all their customers by using the m available vehicles.

	In order to compute the cliques of incompatible clusters, we define the graph
	of incompatibility G inc cl = (S, E inc cl) where E inc cl is constructed as follows. Let S k , S l ∈ S, (S k , S l) ∈ E inc cl if and only if S k and S l are incompatible. Clearly, a clique extracted from G inc cl includes a set of clusters that cannot be served by
	using the m available vehicles. Hence the following proposition holds:
	Proposition 2.2. Let C cl be the set of maximal cliques of the incompatibility
	graph G inc cl . The following inequalities are valid for ILP 0.

 Execute the pre-processing procedure(see Section 3.3) 4 Add the computed valid inequalities and relax constraints (5) to obtain the model ILP 1 5 repeat

	1: Global Scheme
	Input: instance I
	Output: solution for I
	1 Construct the model ILP 0
	2 Calculate a feasible solution for I (see Section 4)
	3

6 Compute S * ILP 1 the optimal solution of ILP 1 7 if S * ILP 1 does not contain any subtour then 8 Set S * ILP 1 as optimal for CluTOP 9 else 10 Calculate all subtours and add the corresponding GSECs to ILP 1 11 From S * ILP 1 construct a partial solution using only the main tours 12

Algorithm 2 :

 2 Preprocessing Input: instance I, Lower bound LB Output: C The set of valid inequalities; the set of inaccessible customers and clusters; the set of mandatory clusters 1 Initialize C by the symmetry breaking and bounding valid inequalities(See Sections 2.2.2 and 2.2.3) 2 Calculate inaccessible customers and clusters (See Section 3.3.1) 3 Calculate mandatory clusters (See Section 3.3.2) 4 Calculate G inc (V, E inc) the incompatibility graph of customers 5 Calculate maximal cliques in G inc (V, E inc) and derive the valid inequalities based on incompatibilities between customers Add these valid inequalities to the set C

6 Initialize G inc cl (S, E inc cl) the graph of incompatibility between clusters 7 foreach ((S k , S l) ∈ S 2) do 8 Extract the graph G inc kl the sub graph induced in G inc by the subset

 Expand e into two nodes e 1 and e 2 by branching on cluster Order[L] (Section 4.1)

	Algorithm 3: SPLIT
		Input: giant tour GT , Lower bound LB
		Output: best solution X best
		Data: Priority queue of size K: currList, tmpList
		Nodes: e, e 1 , e 2
	1 Initialization: Order ← array of K clusters arbitrarily ordered
		L ← 1 (current level)
		e ← rootN ode
		currList.enqueue(e)
	2 while (currList = ∅ and L ≤ K) do
	3	e ← currList.dequeue()

4 5 foreach (e ∈ {e 1 , e 2 }) do 6 if (e is infeasible) then continue (Section 4.1.1) 7 if (Knapsack UB of (e) ≤ LB) then continue (Section 4.1.3) 8 tmpList.enqueue(e) 9 Extract solution X from e 10 Apply LS on X (Section 4.1.4)

11

if (Eval(X) > Eval(X best)) then 12 X best ← X 13 if (Eval(X) > LB) then LB ← Eval(X)

14 if (currList = ∅) then 15 currList ← tmpList 16 tmpList ← ∅ 17 Increment L 18 Select the best node e in currList and Extract solution X best 19 return X best

Table 1 :

 1 Performance of the cutting plane

	Class		COP-BASIC	COP-CUT			Cutting plane
		#OP T OptGap CP U	#OP T OptGap CP U	#OP T OptGap CP U
	dantzig42	16	0	8.13	16	0	0.61	16	0	2.90
	swiss42	16	0	6.58	16	0	0.95	16	0	4.08
	att48	16	0	13.18	16	0	8.45	16	0	34.80
	gr48	16	0	11.88	16	0	4.86	16	0	12.46
	hk48	16	0	10.87	16	0	5.54	16	0	12.42
	eil51	16	0	16.71	16	0	6.76	16	0	16.56
	berlin52	16	0	12.02	16	0	2.30	16	0	9.96
	brazil58	16	0	16.44	16	0	5.47	16	0	26.67
	st70	16	0	52.68	16	0	57.70	16	0	95.71
	eil76	16	0	20.16	16	0	18.17	16	0	25.83
	pr76	16	0	94.41	15	0.005	501.65	16	0	196.43
	gr96	16	0	34.80	16	0	23.26	16	0	37.23
	rat99	16	0	232.35	16	0	93.09	16	0	159.30
	kroA100	14	0.037	1112.48	16	0	279.00	16	0	240.96
	kroB100	11	0.070	1386.00	16	0	468.64	16	0	272.45
	kroC100	11	0.072	1967.99	16	0	602.79	15	0.005	746.34
	kroD100	14	0.021	1613.80	16	0	647.23	16	0	581.61
	kroE100	13	0.028	1107.84	15	0.021	562.51	16	0	179.06
	rd100	10	0.038	1702.83	16	0	537.00	16	0	225.11
	eil101	16	0	93.98	16	0	50.94	16	0	115.96
	lin105	16	0	104.36	16	0	59.40	16	0	72.66
	pr107	16	0	171.29	16	0	61.62	15	0.019	332.52
	gr120	10	0.048	1854.87	15	0.018	948.18	15	0.006	688.78
	pr124	16	0	139.67	16	0	78.51	16	0	100.51
	bier127	16	0	283.76	16	0	97.43	16	0	92.16
	ch130	5	0.117	2717.58	12	0.026	1844.03	15	0.0042	767.34
	pr136	11	0.046	2024.14	16	0	765.13	16	0	326.29
	gr137	16	0	144.86	16	0	62.89	16	0	149.90
	pr144	16	0	229.02	16	0	119.39	16	0	135.73
	ch150	1	0.372	3438.73	0	0.444	3600.71	9	0.0584 2098.01
	kroA150	2	0.325	3488.52	3	0.328	3232.80	10	0.0583 1713.36
	kroB150	1	0.333	3591.24	1	0.346	3571.16	11	0.0563 1913.78
	pr152	16	0	266.37	16	0	129.95	16	0	559.19
	u159	13	0.013	923.46	16	0	442.11	14	0.0109 1185.79
	si175	16	0	844.04	16	0	424.51	16	0	315.50
	brg180	16	0	597.49	16	0	141.47	16	0	155.60
	rat195	5	0.075	3020.09	7	0.081	3003.96	10	0.0447 1757.66
	d198	16	0	179.49	14	0.014	1035.47	12	0.0332 1431.59
	kroA200	0	0.625	3600.76	0	0.746	3600.97	6	0.1473 2562.21
				continued on next page			
					20					

Table 2 :

 2 GAP Cutting plane vs. the literature

	Class	UB GAP	LB GAP
		C-P vs. C-B C-P vs. C-C C-P vs. C-B C-P vs. C-C
	ch150	-0.447	-0.454	0.257	0.131
	kroA150	-0.447	-0.458	0.618	0.080
	kroB150	-0.386	-0.433	0.135	0.092
	kroA200	-0.504	-0.678	0.622	0.321
	kroB200	-0.484	-0.503	0.435	0.124
	tsp225	-0.037	-0.095	0.056	0.181
	pr226	0.041	-0.018	-0.111	-0.043
	pr264	0.155	0.174	-0.032	-0.193

Table 3 :

 3 Performance of our heuristic

	Class	COP-TABU-Basic	COP-TABU-Multistart	COP-TABU-Reactive	Hybrid Heuristic
		#BEST GAP	CP U	#BEST GAP	CP U	#BEST GAP	CP U	#BEST GAP	CP U
	dantzig42	16	0	13.27	16	0	17.77	16	0	38.95	16	0	9.12
	swiss42	13	0.719 15.38	14	0.281 23.09	15	0.013 31.93	16	0	6.70
	att48	16	0	18.24	16	0	26.08	15	0.062 38.76	16	0	22.42
	gr48	11	5.709 13.74	12	3.184 26.02	16	0	37.96	16	0	9.54
	hk48	15	1.250 20.58	16	0	30.76	15	0.315 37.68	16	0	12.87
	eil51	11	2.181 15.92	11	2.181 24.46	15	0.242 36.83	14	0.326 10.61
	berlin52	15	0.548 38.88	15	0.120 53.39	15	0.120 60.41	16	0	29.50
	brazil58	13	0.573 58.99	14	0.115 75.72	16	0	83.97	16	0	49.60
	st70	11	1.303 23.18	11	1.012 38.95	12	0.639 48.01	16	0	18.00
	eil76	9	6.407	24.5	10	4.050 33.74	15	0.125 45.84	16	0	12.18
	pr76	11	1.014	21.4	13	0.105 30.88	15	0.009 54.76	16	0	29.94
	gr96	12	0.612 44.07	13	0.116 51.35	14	0.025 68.19	16	0	31.46
	rat99	12	1.752 32.99	12	0.127 52.03	15	0.034 63.65	15	0.151 34.02
	kroA100	11	6.013 44.65	14	0.123 50.98	14	0.429 52.62	15	0.082 22.03
	kroB100	15	0.714 47.96	16	0	58.94	16	0	62.2	16	0	21.02
	kroC100	10	3.687 37.55	15	0.269 48.74	14	0.452 59.42	16	0	23.73
	kroD100	10	1.879 36.85	11	1.247	56.7	13	0.520 69.57	16	0	32.41
	kroE100	12	2.889 46.59	12	1.374 48.83	14	0.270 62.77	16	0	21.97
	rd100	12	1.431 36.51	13	1.030 47.81	15	0.568 82.29	16	0	28.31
	eil101	7	2.495 32.97	12	0.729 44.62	16	0	79	16	0	32.81
	lin105	11	1.393 36.06	13	0.461 52.48	14	0.348 105.21	16	0	68.60
	pr107	13	6.350 72.19	15	0.203 86.35	15	0.160 135.39	16	0	204.68
	gr120	10	2.917 50.87	11	2.856 66.36	14	0.185 105.25	15	0.054 54.16
	pr124	14	1.180 80.33	16	0	88.26	16	0	150.15	16	0	87.29
	bier127	12	0.873 63.05	14	0.108 94.57	15	0.005 149.64	16	0	69.41
	ch130	7	4.016 49.79	9	2.949 64.58	12	1.376 106.57	16	0	44.22
	pr136	12	1.588 59.86	14	0.949 71.37	15	0.694 121.5	16	0	57.12
	gr137	15	0.156 82.07	16	0	104.45	16	0	181.54	16	0	62.47
	pr144	16	0	168.25	16	0	175.28	16	0	247.29	16	0	124.72
	ch150	8	2.684 34.19	8	2.543 53.97	14	0.554 101.37	16	0	59.81
	kroA150	9	1.002 36.84	13	0.228	50.6	14	0.074 102.11	15	0.046 54.30
	kroB150	8	2.456 40.06	10	2.127 56.69	14	0.621 107.93	16	0	51.66
	pr152	15	0.545 120.08	16	0	164.81	16	0	248.1	16	0	126.88
	u159	6	3.300 113.36	9	2.373 125.51	8	1.447 184.68	15	0.281 162.81
	si175	16	0	47.69	16	0	63.36	16	0	126.8	16	0	1022.91
	brg180	12	0.656 54.29	13	0.578 72.18	15	0.091 127.74	16	0	605.49
	rat195	12	0.531 68.18	10	0.209 78.52	14	0.401	172	16	0	162.70
	d198	15	0.062 172.56	16	0	217.29	16	0	368.98	16	0	147.69
	kroA200	11	1.130 55.09	12	1.093 76.17	14	1.052 139.43	16	0	100.08
	kroB200	8	2.610 71.45	10	1.978 87.73	13	0.129 142.43	15	0.034 103.26
	gr202	11	1.256 88.17	12	1.001 121.27	16	0	236.24	16	0	147.79
	ts225	12	0.259 162.94	12	0.158 189.13	15	0.019 234.81	16	0	204.00
	tsp225	9	1.583 87.78	9	0.495 102.99	11	0.142 180.26	16	0	191.03
	pr226	12	0.872 244.84	12	0.787 268.33	15	0.042 331.1	16	0	314.10
	gr229	15	0.023 109.99	15	0.023 121.07	15	0.023 170.85	16	0	96.69
	gil262	6	8.133 57.09	6	4.324	84.2	10	2.469 135.48	14	0.051 183.41
	pr264	11	4.230 151.96	10	4.243 208.51	14	0.323 304.7	16	0	256.35
	a280	11	0.159 99.98	12	0.156 150.54	10	0.255 191.39	14	0.402 690.45
	pr299	11	0.782 105.14	11	0.774 125.98	13	0.298 205.23	16	0	515.12
	lin318	8	0.997 247.01	9	0.858 260.81	11	0.480 311.25	15	0.020 733.50
	rd400	11	0.954 100.44	12	0.375 147.13	13	0.351 203.08	15	0.542 557.71
	f l417	11	1.055 518.97	12	0.397 577.53	13	0.079 708.57	16	0	672.82
	gr431	12	0.788 236.75	15	0.009 252.35	16	0	280.53	16	0	429.84
	pr439	11	0.685 180.16	13	0.074 221.23	14	0.058 324.17	15	0.002 531.14
	pcb442	12	0.295 151.28	11	0.512 199.82	13	0.495 274.18	14	0.244 840.38
						continued on next page					

Table 4 :

 4 Performance of the cutting plane with respect to the number vehicles

	Class		Single vehicle		Two vehicles		Three vehicles
		#OP T OptGap CP U	#OP T OptGap CP U	#OP T OptGap CP U
	dantzig42	16	0	2.90	16	0	60.25	16	0	0.4
	swiss42	16	0	4.08	16	0	71.8	16	0	129.3
	att48	16	0	34.80	16	0	377.6	16	0	10.29
	gr48	16	0	12.46	11	0.060	1323.46	16	0	1.13
	hk48	16	0	12.42	12	0.065	1208.14	16	0	2.23
	eil51	16	0	16.56	15	0.004	702.63	10	0.097	1619.76
	berlin52	16	0	9.96	16	0	700.98	16	0	703.23
	brazil58	16	0	26.67	15	0.005	793.99	16	0	165.53
	st70	16	0	95.71	8	0.214	1800.12	16	0	59.91
	eil76	16	0	25.83	8	0.069	2271.91	8	0.241	1909.14
	pr76	16	0	196.43	10	0.058	1853.91	8	0.128	1802.68
	gr96	16	0	37.23	7	0.079	2353.22	13	0.030	1270.34
	rat99	16	0	159.30	8	0.114	1991.96	8	0.140	1805.56
	kroA100	16	0	240.96	8	0.280	1808.33	12	0.061	941.89
	kroB100	16	0	272.45	8	0.255	1812.47	15	0.012	458.12
	kroC100	15	0.005	746.34	8	0.307	1803.14	14	0.023	550.91
	kroD100	16	0	581.61	8	0.276	1803.88	14	0.090	488.04
	kroE100	16	0	179.06	8	0.394	1800.26	16	0	0.14
	rd100	16	0	225.11	8	0.207	1832.97	12	0.173	995.38
	eil101	16	0	115.96	5	0.123	3198.43	0	0.386	3600.03
	lin105	16	0	72.66	10	0.038	1737.53	8	0.131	1800.17
	pr107	15	0.019	332.52	16	0.000	6.81	16	0	0.15
	gr120	15	0.006	688.78	2	0.341	3169.59	8	0.367	1800.31
	pr124	16	0	100.51	14	0.016	1132.63	13	0.018	1144.92
	bier127	16	0	92.16	3	0.170	3257.18	0	0.289	3600.16
	ch130	15	0.0042	767.34	4	0.328	2823.47	6	0.348	2594.12
	pr136	16	0	326.29	1	0.356	3544.06	8	0.309	1800.65
	gr137	16	0	149.90	6	0.170	2587.61	9	0.130	1784.16
	pr144	16	0	135.73	8	0.127	1843.67	14	0.041	934.23
	ch150	9	0.0584 2098.01	4	0.414	2758.08	8	0.453	1800.74
	kroA150	10	0.0583 1713.36	4	0.381	2722.32	8	0.547	1807.96
	kroB150	11	0.0563 1913.78	6	0.396	2569.58	8	0.539	1800.4
	pr152	16	0	559.19	8	0.205	1800.49	16	0	0.49
	u159	14	0.0109 1185.79	0	0.264	3600.14	3	0.218	2999.66
	si175	16	0	315.50	2	0.095	3187.11	0	0.192	3600.07
	brg180	16	0	155.60	10	0.024	2589.05	2	0.149	3328.89
	rat195	10	0.0447 1757.66	0	0.334	3600.18	0	0.447	3600.15
				continued on next page			

Table 5 :

 5 Multiple vehiclesFigures 8 to 10 depict the performance of the heuristic with respect to the number of vehicles and the number of clusters. According to fig.

		U BGap(%) OptGap(%) #Opt CP U (s)
	1 vehicle	0.888	0.02	673/679 301.73
	2 vehicles	11.201	0.141	328/337 390.07
	3 vehicles	11.6	0.258	460/463 310.411

Acknowledgements

The authors would like to thank the Hauts-de-France region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work. This work was carried out in the framework of ANR project TCDU (Collaborative Transportation in Urban Distribution ANR-14-CE22-0017) and of Labex MS2T funded through the program "Investments for the Future" managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02). Thanks are due to anonymous referees for their valuable comments that helped improving this paper.