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Abstract

In this paper we study the large time asymptotics of the flow of a dynamical system
X ′ = b(X) posed in the d-dimensional torus. Rather than using the classical unique
ergodicity condition which is not fulfilled if b vanishes at different points, we only assume
that the set of the averages of b with respect to the invariant probability measures for
the flow is reduced to a singleton. We also rewrite the Liouville theorem which holds for
any invariant probability measure µ, namely µ b is divergence free, as a divergence-curl
formula satisfied by any regular periodic function. The combination of these two tools
turns out to be a new approach to get the asymptotics for some flows. This allows us to
obtain the desired asymptotics in any dimension when b = a ξ with a a possibly vanishing
periodic nonnegative function and ξ a nonzero vector in Rd, or when b = A∇v with A a
periodic nonnegative symmetric matrix-valued function and v a periodic function.

Keywords: dynamical system, flow, torus, Zd-periodic, asymptotics, invariant measure, er-
godic theorem, divergence-curl result
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1 Introduction

This paper is devoted to the large time asymptotics of the solution X(t, x) to the dynamical
system 

∂X

∂t
(t, x) = b(X(t, x)), t ∈ R

X(0, x) = x ∈ Rd,

(1.1)

where b is a C1-regular Zd-periodic vector field in Rd. More precisely, we focus on the existence
of the limit of X(t, x)/t as t → ∞ for x ∈ Rd. This problem is strongly connected to the
asymptotic behavior of the transport equation with an oscillating velocity

∂uε
∂t

(t, x) + b
(x
ε

)
· ∇xuε(t, x) = 0 for (t, x) ∈ [0,∞)× Rd, (1.2)
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which is dealt with in [1, 9, 6, 7, 13, 3]. Otherwise, this question naturally arises in ergodic
theory since it involves the flow Tt defined by

(Ttϕ)(x) := ϕ(X(t, x)) for ϕ continuous and Zd-periodic in Rd, x ∈ Rd, (1.3)

which is associated with system (1.1), and the Borel measures µ on the torus Yd := Rd/Zd
which are invariant for the flow, i.e.

∀ t ∈ R, µ ◦ Tt = µ. (1.4)

A strengthened variant of the famous Birkhoff ergodic theorem [5, Theorem 2, Section 1.8]
claims that if the flow is uniquely ergodic, i.e. there exists a unique probability measure µ on
Yd invariant for the flow, then any continuous Zd-periodic function f satisfies

∀x ∈ Rd, lim
t→∞

[
1

t

∫ t

0

f(X(s, x)) ds

]
=

∫
Yd

f(y) dµ(y), (1.5)

and the converse actually holds true. In the particular case where f := b, limit (1.5) yields

∀x ∈ Rd, lim
t→∞

X(t, x)

t
=

∫
Yd

b(y) dµ(y). (1.6)

The unique ergodicity condition seems to be a rather restrictive condition on the flows of
type (1.1). For example, if the vector field b vanishes at two points x 6= y in the torus, then any
convex combination of the Dirac masses δx and δy are invariant for the flow. When b does not
vanish in Rd, the unique ergodicity of the flow is not clear. This is true in dimension one (see
Proposition 3.1) but the situation is more complicated in higher dimension. As best we know
the asymptotics of the flow is completely known only in dimension two for a non-vanishing
vector field b. Specifically in dimension two, Peirone [11] obtained the asymptotics of the flow
through the following alternative:

• Under the existence of a periodic trajectory X(·, y) of (1.1) with respect to the torus (see
(1.14)), the limit of (1.6) does exist but may depend on x.

• In the absence of periodic trajectory with respect to the torus, the limit of (1.6) ex-
ists independently of x. To this end, Peirone used an one-dimensional ergodicity result
transversally to Siegel’s curve, but his approach has nothing to do with the unique er-
godicity of the flow.

On the other hand, when the two-dimensional flow associated with a non-vanishing vector field
b = (b1, b2) admits an invariant measure with a positive Z2-periodic density σ with respect to
the Lebesgue measure, or equivalently, by virtue of Liouville’s theorem σb is divergence free
in R2, then Kolmogorov’s theorem [10] implies the existence of a diffeomorphism on the torus
which transforms the dynamical system (1.1) into the dynamical system

∂Y

∂t
(t, y) = a(Y (t, y)) ξ, t ∈ R

Y (0, x) = y ∈ R2,

(1.7)

where a is a regular Z2-periodic vector field in R2 and ξ = (ξ1, ξ2) is a nonzero constant vector
in R2. In this two-dimensional setting with the additional assumption that b1 is nonvanishing,
Tassa [13] also obtained the asymptotics of the flow through the following alternative which is
strongly connected to the above Peirone’s alternative:
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• If ξ1 and ξ2 are rationally dependent, the limit of (1.6) exists but does depend on x.

• If ξ1 and ξ2 are rationally independent, or equivalently the so-called rotation number is
irrational (see, e.g., [12, Chapter I, Section 4.1]), the limit of (1.6) exists independently
of x. The more general result where the vector field b (rather than b1) is nonvanishing
with an invariant density σ ∈ C5(Y2) is due to Kolmogorov [10].

Note that in [11, 13] the nonvanishing condition of the vector field b is essential to obtain the
asymptotics of the flow.

Actually, the unique ergodicity of the flow (1.3) associated with b is not needed to get
the desired asymptotics (1.6) which is much less restrictive than (1.5). Indeed, our approach
consists in replacing the unique ergodicity assumption by the weaker uniqueness condition

#

{∫
Yd

b(y) dµ(y) : µ is an invariant probability measure for the flow

}
= 1. (1.8)

This new condition is obtained by observing that the Birkhoff time average in (1.6) is only
addressed (contrary to (1.5)) to the function b. Then, we revisit (see Proposition 2.1) the proof
of the existence of an invariant probability measure for the flow defined on a compact space (the
torus here). We conclude by proving (see Theorem 2.1) that condition (1.8) turns out to be
equivalent to asymptotics (1.6). On the other hand, we show (see Theorem 2.2 and Remark 2.2)
that the Liouville theorem satisfied by an invariant measure µ for the flow associated with b
can be regarded as a divergence-curl result such that for any Zd-periodic C1-function ψ,∫

Yd

b(y) · ∇ψ(y) dµ(y) = 0. (1.9)

Our new approach consists in combining the tools (1.8) and (1.9) to obtain the limit of X(t, x)/t
as t→∞ for some dynamical systems (1.1). So, we get the desired asymptotics for the dynam-
ical system (1.7) (see Proposition 3.2) assuming that the Zd-periodic function a is nonnegative
and may vanish contrary to [11, 13], and that the vector ξ satisfies one of the two following
conditions which extend in any dimension the above two-dimensional conditions obtained by
Peirone (see Remark 3.3 and Proposition 3.4) and Tassa:

• There exists T > 0 such that Tξ ∈ Zd, which leads us to a limit of X(t, x)/t depending
on x.

• For any k ∈ Zd \ {0}, ξ · k 6= 0, which leads us to the limit

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= a∗ξ with a∗ :=


(∫

Yd

a−1(y) dy

)−1
if a > 0 in Rd

0 if a vanishes in Rd.

When a vanishes at different points in the torus, the unique ergodicity of the flow (1.5) is not
satisfied, while the asymptotics of the flow holds true for b in (1.6). The former asymptotics
result easily extends (see Corollary 3.1) to the case where the vector field b is rectifiable to a fixed
direction ξ through a diffeomorphism Φ on the torus, i.e. b = a◦Φ∇Φ−1ξ for some Zd-periodic
nonnegative function a. Finally, again using (1.8) and (1.9) we obtain the zero vector limit in
(1.6) when b is a current field (see Proposition 3.5), i.e. b = A∇v with A a regular Zd-periodic
nonnegative symmetric matrix-valued conductivity and v a regular Zd-periodic potential.
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Notation

• Yd for d ≥ 1, denotes the d-dimensional torus Rd/Zd, which is identified to the cube [0, 1)d

in Rd.

• Ck
c (Rd) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions in Ck(Rd) with

compact support.

• Ck
] (Yd) for k ∈ N∪{∞}, denotes the space of the real-valued functions f ∈ Ck(Rd) which

are Zd-periodic, i.e.
∀ k ∈ Zd, ∀x ∈ Rd, f(x+ k) = f(x).

• Lp] (Yd) for p ≥ 1, denotes the space of the real-valued functions in Lploc(Rd) which are

Zd-periodic.

• M (Yd) denotes the space of the Radon measures on Yd, and Mp(Yd) denotes the space of
the probability measures on Yd.

• D ′(Rd) denotes the space of the distributions on Rd.

Definitions and recalls

Let b : Rd → Rd be a vector-valued function in C1
] (Yd)

d. Consider the dynamical system
∂X

∂t
(t, x) = b(X(t, x)), t ∈ R

X(0, x) = x ∈ Rd.

(1.10)

The solution X(·, x) of (1.10) which is known to be unique (see, e.g., [8, Section 17.4]) is
associated with the flow (Tt)t∈R, defined by

Tt(ϕ)(x) := ϕ
(
X(t, x)

)
for ϕ ∈ C0

] (Yd) and x ∈ Rd, (1.11)

which satisfies the semi-group property

∀ s, t ∈ R, Ts+t = Ts ◦ Tt, (1.12)

and is well defined in the torus since

∀ t ∈ R, ∀x ∈ Rd, ∀ k ∈ Zd, X(t, x+ k) = X(t, x) + k. (1.13)

Property (1.13) follows immediately from the uniqueness of the solution X to (1.10) combined
with the Zd-periodicity of b.

A solution X(·, x) to (1.10) is said to be periodic in the torus if there exists τ > 0 and
k ∈ Zd such that

∀ t ∈ R, X(t+ τ, x) = X(t, x) + k. (1.14)

If k = 0 the solution is said to be periodic in Rd.
A measure µ in Mp(Yd) is said to be invariant for the flow Tt (see, e.g., [5, Chap. 2]) if

∀ t ∈ R, ∀ψ ∈ C0
] (Yd),

∫
Yd

Tt(ψ)(y) dµ(y) =

∫
Yd

ψ
(
X(t, y)

)
dµ(y) =

∫
Yd

ψ(y) dµ(y), (1.15)

or equivalently, the image measure of µ by the flow Tt agrees with µ.
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2 Some general results

2.1 Existence of invariant probability measures for the flow

When a flow preserves the set of the continuous functions on a compact metric space, the
existence of an invariant probability measure for the flow is a classical statement which can be
derived thanks to a weak compactness argument applied to sequences of probability measures
defined from the Birkhoff time averages in (1.5) (see, e.g., [5, Theorem 1, Section 1.8] in the
discrete time case). The following result adapts this statement restricting it to the limit points
of the Birkhoff time averages for a given function.

Proposition 2.1 Let b ∈ C1
] (Yd)

d. There exists an invariant probability measure on Yd for

the flow Tt (1.11) associated with b. Moreover, let g ∈ C0
] (Yd) and x ∈ Rd be fixed, and

let (tn)n∈N ∈ RN be such that limn tn = ∞. Then, for any limit point a of the sequence
(un)n∈N ∈ RN defined by

un :=
1

tn

∫ tn

0

g(X(s, x)) ds, n ∈ N, (2.1)

there exists a probability measure µ ∈Mp(Yd) (depending a priori on x and g) which is invariant
for the flow Tt and satisfies

a =

∫
Yd

g(y) dµ(y). (2.2)

Proof. As above mentioned the following lemma is classical in ergodic theory. For the reader’s
convenience its proof is postponed to the Appendix.

Lemma 2.2 Let x ∈ Rd, let (rn)n∈N ∈ RN be such that limn rn = ∞, and let νn ∈ Mp(Yd),
n ∈ N, be the probability measure defined by∫

Yd

f(y) dνn(y) =
1

rn

∫ rn

0

f(X(s, x)) ds for f ∈ C0
] (Yd). (2.3)

Then, there exists a subsequence (νnk)k∈N of (νn)n∈N which converges weakly ∗ to some proba-
bility measure µ ∈Mp(Yd) which is invariant for the flow Tt.

Let a be a limit point of the sequence (un)n∈N (2.1), namely

a = lim
n→∞

1

tθ(n)

∫ tθ(n)

0

g(X(t, x)) dt,

for some subsequence (tθ(n))n∈N of (tn)n∈N. Set rn := tθ(n), and consider the associated sequence
(νn)n∈N of probability measures on Yd given by (2.3). By Lemma 2.2 we can extract a sub-
sequence (νnk)k∈N which converges weakly ∗ to some invariant measure µ ∈ Mp(Yd) for the
flow Tt. We thus have

∀ f ∈ C0
] (Yd), lim

k→∞

∫
Yd

f(y) dνnk(y) =

∫
Yd

f(y) dµ(y),

which implies in particular that

a = lim
k→∞

1

rnk

∫ rnk

0

g(X(s, x)) ds = lim
k→∞

∫
Yd

g(y) dνnk(y) =

∫
Yd

g(y) dµ(y).

�
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Remark 2.1 The second assertion of Proposition 2.1 may provide a simple way to find the
limit of Birkhoff’s time averages for a specific function, when the general form of the limit in
Birkhoff’s theorem is unknown. For instance, if the support of any invariant probability measure
for the flow is contained in a subset F of Yd and if g ∈ C0

] (Yd) vanishes on F , then

∀x ∈ Yd, lim
t→∞

[
1

t

∫ t

0

g(X(s, x)) ds

]
= 0,

since any limit point of these averages is zero by (2.2).

2.2 A criterium for the asymptotics of the flow

It is known (see, e.g., [5, Theorem 2, Section 1.8] for the discrete case) that the uniqueness of
an invariant measure µ ∈Mp(Yd) for the flow Tt is equivalent to the pointwise property:

∀x ∈ Rd, ∀ f ∈ C0
] (Yd), lim

t→∞

(
1

t

∫ t

0

f(X(s, x)) ds

)
=

∫
Yd

f(y) dµ(y). (2.4)

The following result which is new as the best we know, allows us to restrict condition (2.4) to
f = b and to derive the asymptotics of the flow at each point in Rd, by assuming the uniqueness
of the averages of b with respect to the invariant probability measures on Yd for the flow rather
than the uniqueness of an invariant measure for the flow.

Theorem 2.1 Let b ∈ C1
] (Yd)

d. Define the sets

Ib :=
{
µ ∈Mp(Yd) : µ is invariant for the flow Tt

}
and Cb :=

{∫
Yd

b dµ : µ ∈ Ib

}
. (2.5)

Then, Ib is a nonempty set, and Cb is a nonempty compact convex set of Rd.
Moreover, the following equivalence holds for any ζ ∈ Rd,

Cb = {ζ} ⇔ ∀x ∈ Rd, lim
t→∞

X(t, x)

t
= ζ. (2.6)

Proof. By virtue of Proposition 2.1 the sets Ib and Cb are nonempty. The set Cb is a convex
set in Rd since Ib is clearly convex. Using the compactness of Mp(Yd) for the weak ∗ topology,
we get that Cb is a closed set in Rd. We also have Cb ⊂ [0, ‖b‖∞], so that Cb is a compact set
of Rd.

Now, assume that Cb = {ζ}. Let x ∈ Rd, let (tn)n∈N ∈ RN be such that limn tn = ∞, and
define the sequence (un)n∈N by (2.1) with the function g := b · ξ for ξ ∈ Rd. Let a be a limit
point of the sequence (un)n∈N. By Proposition 2.1 there exists an invariant measure µ ∈Mp(Yd)
for the flow Tt satisfying

a =

∫
Yd

b(y) · ξ dµ(y),

which by hypothesis implies that a = ζ · ξ. Hence, ζ · ξ is the unique limit point of the bounded
sequence (un)n∈N which thus converges to ζ · ξ. Therefore, due to the arbitrariness of the
sequence (tn)n∈N we obtain that

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= lim

t→∞

(
1

t

∫ t

0

b(X(s, x)) ds

)
= ζ.
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Conversely, assume that the right-hand side of (2.6) holds, which implies that

∀x ∈ Rd, lim
t→∞

(
1

t

∫ t

0

b(X(s, x)) ds

)
= ζ.

Then, integrating over Yd the former equality with respect to any probability measure µ ∈ Ib,
then applying successively Lebesgue’s dominated convergence theorem and Fubini’s theorem,
we get that

ζ = lim
t→∞

∫
Yd

(
1

t

∫ t

0

b(X(s, x)) ds

)
dµ(x)

= lim
t→∞

1

t

∫ t

0

(∫
Yd

b(X(s, x)) dµ(x)

)
ds =

∫
Yd

b(x) dµ(x).

which shows that Cb = {ζ}. This concludes the proof of (2.6). �

2.3 Liouville’s theorem and a divergence-curl result

Liouville’s theorem provides a criterium for a probability measure on a smooth compact mani-
fold in Rd (see, e.g., [5, Theorem 1, Section 2.2]) to be invariant for the flow. The next result
revisits this theorem in Mp(Yd) in association with a divergence-curl result on the torus.

Theorem 2.2 Let b ∈ C1
] (Yd)

d and let µ ∈Mp(Yd). We define the Radon measure µ̃ ∈M (Rd)

on Rd by∫
Rd
ϕ(x) dµ̃(x) :=

∫
Yd

ϕ](y) dµ(y) where ϕ](·) :=
∑
k∈Zd

ϕ(·+ k) for ϕ ∈ C0
c (Rd). (2.7)

Then, µ is invariant for the flow Tt if, and only if, one of the two following conditions is
satisfied:

div (µ̃ b) = 0 in D ′(Rd), (2.8)

∀ψ ∈ C1
] (Yd),

∫
Yd

b(y) · ∇ψ(y) dµ(y) = 0. (2.9)

Proof. Assume that µ is invariant for the flow, i.e. (1.15). Let ϕ ∈ C1
c (Rd). Since by (1.13)

we have for any t ∈ R and y ∈ Rd,[
ϕ(X(t, ·))

]
]
(y) =

∑
k∈Zd

ϕ(X(t, y + k)) =
∑
k∈Zd

ϕ(X(t, y) + k) = ϕ](X(t, y)), (2.10)

it follows from (2.7) and the invariance of µ that

∀ t ∈ R,
∫
Rd
ϕ(X(t, x)) dµ̃(x) =

∫
Yd

[
ϕ(X(t, ·))

]
]
(y) dµ(y) =

∫
Yd

ϕ](X(t, y)) dµ(y) =∫
Yd

ϕ](y) dµ(y) =

∫
Rd
ϕ(x) dµ̃(x).

Taking the derivative of the former expression with respect to t, we get that

∀ t ∈ R,
∫
Rd
b(X(t, x)) · ∇ϕ(X(t, x)) dµ̃(x) = 0,
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which at t = 0 yields

∀ϕ ∈ C1
c (Rd),

∫
Rd
b(x) · ∇ϕ(x) dµ̃(x) = 0, (2.11)

namely the variational formulation of the distributional equation (2.8).
Conversely, assume that equation (2.8) holds true. Let ϕ ∈ C1

c (Rd) and define the function
φ ∈ C1(R × Rd) by φ(t, x) := ϕ(X(t, x)). By the semi-group property (1.12) we have for any
s, t ∈ R and x ∈ Rd,

∂

∂s

(
φ(s+ t,X(−s, x))

)
=

∂

∂s

(
φ(t, x)

)
= 0

=
∂φ

∂s
(s+ t,X(−s, x))− b(X(−s, x)) · ∇xφ(s+ t,X(−s, x)),

which at s = 0 gives the classical transport equation

∀ t ∈ R, ∀x ∈ Rd,
∂φ

∂t
(t, x) = b(x) · ∇xφ(t, x). (2.12)

Hence, since ϕ(X(t, ·)) is in C1(Rd) and has a compact support independent of t when t lies in
a compact set of R, we deduce from (2.12) and (2.8) that

∀ t ∈ R,
d

dt

(∫
Rd
ϕ(X(t, x)) dµ̃(x)

)
=

∫
Rd
b(x) · ∇x

(
ϕ(X(t, x))

)
dµ̃(x) = 0,

or equivalently,

∀ t ∈ R,
∫
Rd
ϕ(X(t, x)) dµ̃(x) =

∫
Rd
ϕ(x) dµ̃(x).

On the other hand, we have the following result.

Lemma 2.3 ([2], Lemma 3.5) For any smooth Zd-periodic function ψ ∈ C∞] (Yd), there ex-

ists a smooth function with compact support ϕ ∈ C∞c (Rd) such that ψ = ϕ].

Hence, using relation (2.10) and definition (2.7) we get that for any ψ ∈ C∞] (Y ),

∀ t ∈ R,
∫
Yd

ψ(X(t, y)) dµ(y) =

∫
Yd

ϕ](X(t, y)) dµ(y) =

∫
Rd
ϕ(X(t, x)) dµ̃(x) =∫

Rd
ϕ(x) dµ̃(x) =

∫
Yd

ψ(y) dµ(y),

which shows that µ is invariant for the flow. We have just proved the equivalence between the
invariance of µ for the flow and the distributional equation (2.8) satisfied by µ̃.

Finally, the equivalence between (2.8), or equivalently (2.11), and (2.9) is a straightforward
consequence of the relation

∀ϕ ∈ C1
c (Rd),

∫
Rd
b(x) · ∇ϕ(x) dµ̃(x) =

∫
Yd

b(y) · ∇ϕ](y) dµ(y)

which itself follows from [b · ∇ϕ]] = b · ∇ϕ] and (2.7), combined with Lemma 2.3. �
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Remark 2.2 Equation (2.9) can be considered as the divergence free of the vector-valued mea-
sure µ b in the torus Yd, while equation (2.8) is exactly the divergence free of the vector-valued
measure µ̃ b in the space Rd. Equation (2.9) is also equivalent to

∀∇ψ ∈ C0
] (Yd)

d,

∫
Yd

b(y) · ∇ψ(y) dµ(y) =

(∫
Yd

b(y) dµ(y)

)
·
(∫

Yd

∇ψ(y) dy

)
, (2.13)

since

∇ψ ∈ C0
] (Yd)

d ⇔
(
x 7→ ψ(x)− x ·

∫
Yd

∇ψ(y) dy

)
∈ C1

] (Yd).

Condition (2.13) has to be regarded as a divergence-curl result combining the invariant measure
µ for the divergence free vector field µ b and the Lebesgue measure for the gradient field ∇ψ.

3 Application to the asymptotics of the flow

First of all, we apply the tools of Section 2 to the one-dimensional case.

3.1 The one-dimensional case

We have the following result.

Proposition 3.1 Let b ∈ C1
] (Y1). We have the following alternative:

(i) If b 6= 0 sur Y1, then b/b(y) dy is the unique invariant measure for the flow Tt associated
with b, and

∀x ∈ R, lim
t→∞

X(t, x)

t
= b :=

(∫
Y1

dy

b(y)

)−1
. (3.1)

(ii) If b does vanish in Y1, then

∀x ∈ R, lim
t→∞

X(t, x)

t
= 0. (3.2)

Proof.
Case (i). Let µ ∈ Mp(Y1) be an invariant measure for the flow Tt. By the condition (2.8) of
Theorem 2.2 there exists a constant C ∈ R such that µ̃ b = C in R, or equivalently,

∀ϕ ∈ C0
c (R),

∫
R
ϕ(x) b(x) dµ̃(x) = C

∫
R
ϕ(x) dx.

Hence, by the definition (2.7) of µ̃ we have

∀ϕ ∈ C0
c (R),

∫
Y1

ϕ](y) b(y) dµ(y) =

∫
R
ϕ(x) b(x) dµ̃(x) = C

∫
R
ϕ(x) dx = C

∫
Y1

ϕ](y) dy.

Therefore, from Lemma 2.3 we deduce that

∀ψ ∈ C0
] (Y1),

∫
Y1

ψ(y) b(y) dµ(y) = C

∫
Y1

ψ(y) dy. (3.3)

Taking ψ = 1/b in (3.3) we get that C = b, which implies that µ(dy) = b/b(y) dy is thus the
unique invariant measure for the flow.
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As a consequence the set Ib defined by (2.5) is a singleton, and Cb = {b}. Therefore, due
to the equivalence (2.6) of Theorem 2.1 we obtain the desired asymptotics (3.1). We could
also have concluded directly thanks to the unique ergodicity theorem. However, the unique
ergodicity theorem does not apply in the following case, while Theorem 2.1 does.

Case (ii). Let µ ∈ Mp(Y1) be an invariant measure for the flow Tt. The equality µ̃ b = C
still holds true in R for some constant C ∈ R, as well as equality (3.3). Take the function
ψ := (|b|+ ε)−1 for ε > 0, in equality (3.3), and make ε tend to 0. Then, using that b is regular
and vanishes in Y1 (which implies that 1/b /∈ L1

] (Yd)), and applying successively Beppo-Levi’s
theorem and (3.3), it follows that

|C| ×∞ = |C| ×
∫
Y1

dy

|b(y)|
= lim

ε→0

∣∣∣∣ ∫
Y1

C dy

|b(y)|+ ε

∣∣∣∣ = lim inf
ε→0

∣∣∣∣ ∫
Y1

b(y)

|b(y)|+ ε
dµ(y)

∣∣∣∣ ≤ 1, (3.4)

which implies that C = 0. Finally, taking ψ = 1 in the equality (3.3) with C = 0, leads us to
Cb = {0}, which by virtue of the equivalence (2.6) of Theorem 2.1 yields the asymptotics of
the flow (3.2).

As a by-product, using Lebesgue’s dominated convergence theorem in the third integral
of (3.4), we also get the equality ∫

{b(y) 6=0}

b(y)

|b|
dµ(y) = 0. (3.5)

�

3.2 The rectifiable case

3.2.1 The case with a fixed direction

This section deals with the case where the vector field b has a fixed direction, namely

b(y) = a(y) ξ, y ∈ Yd, (3.6)

for some nonnegative function a ∈ C1
] (Yd) which may vanish, and for a given vector ξ ∈ Rd

with |ξ| = 1.
We have the following result.

Proposition 3.2 Let b ∈ C1
] (Yd)

d be given by (3.6) with a ≥ 0 and ξ ∈ Rd with |ξ| = 1.

(i) If ξ · k 6= 0 for any k ∈ Zd \ {0}, then we have

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= a∗ξ with a∗ :=

{
a if a > 0 in Yd

0 if a vanishes in Yd,
(3.7)

where a is the harmonic mean of a.

(ii) If there exists T > 0 such that Tξ ∈ Zd, then we have

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= a∗(x) ξ with

a∗(x) :=


(

1

T

∫ T

0

ds

a
(
sξ + Πξ⊥(x)

))−1ξ if ∀u ∈ R, a
(
uξ + Πξ⊥(x)

)
6= 0

0 if ∃u ∈ R, a
(
uξ + Πξ⊥(x)

)
= 0,

(3.8)

where Πξ⊥ denotes the projection on the hyperplane ξ⊥ orthogonal to ξ.
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Remark 3.1 The two-dimensional framework is completely covered by the disjoint cases (i)
and (ii) of Proposition 3.2, since

∃ k ∈ Zd \ {0}, ξ · k = 0 ⇔ ∃T > 0, T ξ ∈ Z2.

This equivalence does not hold in higher dimension.

Proof of Proposition 3.2.
Case (i). Assume that for any k ∈ Zd \ {0}, ξ · k 6= 0.

First assume that a does not vanish in Yd. Let x ∈ Rd. Since the vector field b is parallel to
the fixed direction ξ, we have

∀ t ∈ R, X(t, x) =
(
X(t, x) · ξ

)
ξ + Πξ⊥

(
X(t, x)

)
and Πξ⊥

(
X(t, x)

)
= Πξ⊥(x), (3.9)

which implies that 
∂(X · ξ)
∂t

(t, x) = a
(
(X · ξ)(t, x) ξ + Πξ⊥(x)

)
, t ∈ R

(X · ξ)(0, x) = x · ξ.
(3.10)

Then, the solution X · ξ to equation (3.10) is given by

∀ t ∈ R, X(t, x) · ξ = F−1x

(
t+ Fx(x · ξ)

)
where Fx(t) :=

∫ t

0

ds

a
(
s ξ + Πξ⊥(x)

) . (3.11)

By approximating in C0
] (Yd) the continuous Zd-periodic function 1/a by Fejér’s type trigono-

metric polynomials, and noting that by hypothesis

∀ k ∈ Zd \ {0}, lim
t→∞

(
1

t

∫ t

0

e−2iπ s ξ·k ds

)
= 0,

it follows that

lim
t→∞

Fx(t)

t
=

∫
Yd

dy

a(y)
=

1

a
,

which taking into account that Fx
(
X(t, x) · ξ

)
∼
t→∞

t with X(t, x) · ξ → ∞ as t → ∞, implies

that

lim
t→∞

X(t, x) · ξ
t

= a.

Therefore, we get that

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= lim

t→∞

(
X(t, x) · ξ

)
ξ + Πξ⊥(x)

t
= a ξ.

Otherwise, if a vanishes in Yd let us prove that

∀µ ∈ Iaξ,

∫
Yd

a(y) dµ(y) = 0,

or equivalently, Caξ = {0}. Then, Theorem 2.1 will allow us to conclude. Assume by contra-
diction that there exists a measure µ ∈ Iaξ such that∫

Yd

a(y) dµ(y) > 0.

11



Set aε := a+ ε for ε > 0, and define the probability measure (recall that a ≥ 0)

dµε(x) :=

(∫
Yd

a(y)

aε(y)
dµ(y)

)−1
a(x)

aε(x)
dµ(x), (3.12)

which is well defined since∫
Yd

a(y)

aε(y)
dµ(y) ≥ 1

‖a‖∞ + ε

∫
Yd

a(y) dµ(y) > 0.

Since µ is invariant for the flow associated with a ξ, by equality (2.9) we have

∀ϕ ∈ C1
] (Yd),

∫
Yd

aε(x) ξ · ∇ϕ(x) dµε(x) =

(∫
Yd

a(y)

aε(y)
dµ(y)

)−1 ∫
Yd

a(x) ξ · ∇ϕ(x) dµ(x) = 0,

hence µε ∈ Iaεξ. But from the former case a > 0 combined with Theorem 2.1 we deduce that

Caεξ =

{∫
Yd

aε(y)µε(dy) ξ

}
= {aε ξ} or equivalently

∫
Yd

aε(y)µε(dy) = aε.

This combined with the expression of aε(x) dµε(x) given by (3.12) leads us to the equality(∫
Yd

a(y)

aε(y)
dµ(y)

)
aε =

(∫
Yd

a(y)

aε(y)
dµ(y)

)(∫
Yd

aε(x)µε(dx)

)
=

∫
Yd

a(x)µ(dx).

Then, applying Beppo-Levi’s theorem and using that a is regular and vanishes in Yd (which
implies that 1/a /∈ L1

] (Yd)), it follows that

0 <

∫
Yd

a(x)µ(dx) =

(∫
Yd

a(y)

aε(y)
dµ(y)

)
aε ≤ aε −→

ε→0

(∫
Yd

dy

a(y)

)−1
= 0,

which yields a contradiction. Therefore, we get that Caξ = {0}, and by the convergence (2.6)
of Theorem 2.1 we obtain that

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= 0.

Case (ii). Now, assume that there exists T > 0 such that Tξ ∈ Zd. Let x ∈ Rd. We have to
distinguish two cases.

If a
(
uξ + Πξ⊥(x)

)
> 0 for any u ∈ R, then by the T -periodicity of u 7→ a

(
uξ + Πξ⊥(x)

)
we

have

lim
t→∞

Fx(t)

t
=

1

T

∫ T

0

ds

a
(
sξ + Πξ⊥(x)

) ,
hence

lim
t→∞

X(t, x)

t
=

(
1

T

∫ T

0

ds

a
(
sξ + Πξ⊥(x)

))−1ξ.
On the contrary, if there exists u0 ∈ R such that a

(
u0ξ + Πξ⊥(x)

)
= 0, then the part (ii) of

Proposition 3.1 applies to the one-dimensional solution X ·ξ to (3.10), where u 7→ a
(
uξ+Πξ⊥(x)

)
is T -periodic and vanishes at the point u0. We thus deduce that

lim
t→∞

X(t, x) · ξ
t

= 0, then lim
t→∞

X(t, x)

t
= 0,

which concludes the proof. �
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3.2.2 Rectification to a fixed direction

In this section we extend the result of the former section thanks to a diffeomorphism on the
torus.

Definition 3.3 A mapping Φ ∈ C1(Rd)d is said to be a C1-diffeomorphism on the torus if Φ
satisfies the following conditions:

• det(Φ(x)) 6= 0 for any x ∈ Rd,

• there exist a matrix A ∈ Zd×d with | det(A)| = 1, and a Zd-periodic mapping Φ] ∈ C1
] (Yd)

d

such that
∀x ∈ Rd, Φ(x) = Ax+ Φ](x). (3.13)

Note that the invertibility of A and the periodicity of Φ] in (3.13) imply that Φ is a proper
function (i.e., the inverse image by the function of any compact set in Rd is a compact set).
Hence, by virtue of Hadamard-Caccioppoli’s theorem [4] (also called Hadamard-Lévy’s theorem)
the mapping Φ is actually a C1-diffeomorphism on Rd. Also noting that due to A−1 ∈ Zd×d,
we have

∀ k ∈ Zd, ∀x ∈ Rd,

{
Φ(x+ k)− Φ(x) = Ak ∈ Zd

Φ−1(x+ k)− Φ−1(x) = A−1k ∈ Zd,

Φ well defines an isomorphism on the torus.
Using a diffeomorphism on the torus the result of Proposition 3.2 can be extended to the

following general result.

Corollary 3.1 Consider a vector field b such that there exist a C1-diffeomorphism Φ on the
torus given by (3.13), a nonnegative function a ∈ C1

] (Yd)
d and a vector ξ ∈ Rd with |ξ| = 1,

such that
∀x ∈ Rd, b(x) = a(Φ(x))∇Φ(x)−1ξ. (3.14)

Then, if ξ satisfies one of the two conditions of Proposition 3.2 we get that

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= a∗(Φ(x))A−1ξ, (3.15)

where a∗(y) is given by formula (3.7) or formula (3.8).

Remark 3.2 A similar result as Corollary 3.1 was proved by Tassa [13, Theorem 2.1] in
dimension two assuming that the first coordinate b1 of b does not vanish in R2, and that there
exists an invariant measure for the flow associated with b, having a density in C1

] (Y2) with
respect to Lebesgue’s mesure. More precisely, under these two conditions Tassa showed in the
spirit of Kolmogorov’s theorem the existence of a C1-diffeomorphism on the torus satisfying
(3.14) with the matrix A = I2. In the present case, we only assume the weaker rectification
formula (3.14) in any dimension d ≥ 1, with any diffeomorphism Φ on the torus and a possibly
vanishing nonnegative function a.

Conversely, consider a vector field b ∈ C1
] (Yd)

d satisfying (3.14) with a > 0. By making the

change of variables ϕ(x) = ψ(y) with y = Φ(x) for any function ϕ ∈ C∞c (Rd), it is easy to
check that ∫

Rd

det(∇Φ(x))

a(Φ(x))
b(x) · ∇ϕ(x) dx =

∫
Rd
ξ · ∇ψ(y) dy = 0,
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which implies that

div (σb) = 0 in Rd with σ :=

(∫
Yd

det(∇Φ(y))

a(Φ(y))
dy

)−1
det(∇Φ)

a ◦ Φ
> 0. (3.16)

Since the function σ is Zd-periodic, by virtue of Theorem 2.2 (3.16) means that the density
probability measure σ(x) dx is invariant for the flow associated with b.

Therefore, the rectification formula (3.14) of a nonvanishing vector field b can be regarded
as a (more restrictive) substitute to (3.16) in dimension d > 2 for which Kolmogorov’s theorem
does not apply.

Proof of Corollary 3.1. Define

Y (t, y) := Φ(X(t, x)) for (t, x) ∈ R× Rd with y := Φ(x). (3.17)

By the chain rule and (3.14) we have
∂Y

∂t
(t, y) = ∇Φ(X(t, x))

∂X

∂t
(t, x) = ∇Φ(X(t, x)) b(X(t, x)) = a(Φ(X(t, x))) ξ = a(Y (t, y)) ξ

Y (0, y) = Φ(X(0, x)) = Φ(x) = y,

which shows that Y is the solution to the dynamical system associated with the vector field a ξ.
Hence, if ξ satisfies one of the two conditions of Proposition 3.2, we get the asymptotics of the
flow

∀ y ∈ Rd, lim
t→∞

Y (t, y)

t
= a∗(y) ξ,

where a∗(y) is given by formula (3.7) or formula (3.8). Therefore, by the boundedness of Φ]

in (3.13) we have for any x ∈ Rd and y := Φ(x),

X(t, x)

t
=

Φ−1(Y (t, y))

t
= A−1

[
A
(
Φ−1(Y (t, y))

)
t

]
= A−1

[
Y (t, y)

t

]
+
O(1)

t
−→
t→∞

a∗(y)A−1ξ,

which yields the desired asymptotics (3.15). �

Remark 3.3 Peirone [11, Theorem 3.1] proved that in dimension two and for a nonvanishing
vector field b ∈ C1

] (Y2)
2, there is no periodic solution in R2 to system (1.10) (see the definition

after (1.14)), and that the limit of X(t, x)/t as t → ∞ does exist for any x ∈ R2 with the
following alternative:

• If system (1.10) has no periodic solution in the torus according to (1.14), then the limit
of X(t, x)/t as t→∞ is independent of x ∈ R2 as in (3.7).

• If system (1.10) has a periodic solution in the torus, then the limit of X(t, x)/t as t→∞
may depend on x ∈ R2 as in (3.8).

Actually, in any dimension the alternative on the vector ξ in Corollary 3.1 (see also Proposi-
tion 3.2) is naturally connected to the former alternative due to the following result.

Proposition 3.4 In the framework of Corollary 3.1 assume in addition that

∃x ∈ Rd, ∀ t ∈ R, a
(
t ξ + Πξ⊥(x)

)
> 0. (3.18)

Then, the following equivalence holds:

∃T > 0, T ξ ∈ Zd ⇔ system (1.10) has a periodic solution in Yd but not in Rd. (3.19)

Moreover, the implication (⇐) of (3.19) is always true. When condition (3.18) is not satisfied,
the implication (⇒) of (3.19) does not hold in general.
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Proof. First note that the definition (3.13) of the C1-diffeomorphism on the torus Φ implies
that a solution X(·, x) is periodic in the torus if, and only if, the function Y (·,Φ(x)) is periodic
in the torus. Therefore, it is enough to prove the result in the case b = a ξ.

If system (1.10) with b = a ξ has a periodic solution X(·, x) in the torus but not in Rd, then
there exists τ > 0 and k ∈ Zd \ {0} such that by (3.9) we have for any t ∈ R,

Πξ⊥(x) = Πξ⊥(X(t+ τ, x)) = Πξ⊥(X(t, x) + k) = Πξ⊥(X(t, x)) + Πξ⊥(k) = Πξ⊥(x) + Πξ⊥(k).

Hence, we obtain that Πξ⊥(k) = 0, or equivalently, there exists T > 0 such that Tξ = ±k ∈ Zd.
Conversely, assume that (3.18) is satisfied for some x ∈ Rd, and there exists T > 0 such

that Tξ = k ∈ Zd. The solution X(·, x) of (1.10) is given by (3.9) and (3.11). Define

τ :=

∫ T

0

ds

a
(
s ξ + Πξ⊥(x)

) .
Then, by the T -periodicity of the function t 7→ a

(
t ξ + Πξ⊥(x)

)
we have

Fx(x · ξ + T ) =

∫ x·ξ+T

0

ds

a
(
s ξ + Πξ⊥(x)

)
=

∫ x·ξ

0

ds

a
(
s ξ + Πξ⊥(x)

) +

∫ x·ξ+T

x·ξ

ds

a
(
s ξ + Πξ⊥(x)

)
= Fx(x · ξ) + τ = Fx

(
X(τ, x) · ξ

)
by (3.11),

which implies that X(τ, x) · ξ = x · ξ + T . Moreover, the functions t 7→ X(t + τ, x) · ξ and
t 7→ X(t, x) · ξ + T are solutions to the system z′(t) = a

(
z(t) ξ + Πξ⊥(x)

)
, and agree at t = 0.

Hence, by a uniqueness argument these two solutions are equal, which yields

∀ t ∈ R, X(t+ τ, x) · ξ = X(t, x) · ξ + T =
(
X(t, x) + k

)
· ξ.

Moreover, again by (3.9) and recalling that Πξ⊥(k) = 0 we have

∀ t ∈ R, Πξ⊥
(
X(t+ τ, x)

)
= Πξ⊥(x) = Πξ⊥

(
X(t, x)

)
= Πξ⊥

(
X(t, x) + k

)
.

The two previous identities imply that

∀ t ∈ R, X(t+ τ, x) = X(t, x) + k.

namely, X(·, x) is periodic in the torus.
Consider the vector field b(x) := a(x)e1 with a(x) := 1

π
cos2(πx1) ≥ 0 for x ∈ Rd. Here, the

vector ξ = e1 clearly satisfies the left-hand side of (3.19). However, since

∀x ∈ Rd, a
(
1
2
e1 + Πe⊥1

(x)
)

= 1
π

cos2(π
2
) = 0,

condition (3.18) is not satisfied. Moreover, for any x ∈ Rd the solution X(·, x) to (1.10) is given
by

X1(t, x) =

{
x1 if x1 = 1

2
+ n, n ∈ Z

1
π

arctan(t+ tan(πx1)) + n if x1 ∈ (−1
2

+ n, 1
2

+ n), n ∈ Z

Xi(t, x) = xi for i ≥ 2

(t, x) ∈ R×Rd.

It follows that any periodic solution in the torus is necessarily stationary and a fortiori periodic
in Rd in the sense of (1.14). Therefore, the implication (⇒) of (3.19) does not hold. �
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3.3 The case of a current field

The following result deals with the case of a current field b = A∇v defined with some matrix-
valued conductivity A and some electric field ∇v with zero average.

Proposition 3.5 Assume that

b = A∇v in Yd with

{
A ∈ C1

] (Yd)
d×d, A = AT ≥ 0 in Yd,

v ∈ C2
] (Yd)

d.
(3.20)

Then, the flow Tt associated with b satisfies the asymptotics

∀x ∈ Rd, lim
t→∞

X(t, x)

t
= 0.

Proof. Let µ ∈Mp(Yd) be an invariant measure for the flow Tt. By the div-curl relation (2.13)
combined with the zero average of ∇v, we have∫

Yd

A(y)∇v(y) · ∇v(y)︸ ︷︷ ︸
≥0

µ(dy) =

∫
Yd

b(y) · ∇v(y)µ(dy) = 0,

which implies that A∇v · ∇v = 0 µ-a.e. in Yd. Since the matrix-valued A is symmetric and
nonnegative, by the Cauchy-Schwarz inequality we deduce that A∇v = 0 µ-a.e. in Yd, and thus∫

Yd

b(y)µ(dy) =

∫
Yd

A(y)∇v(y)µ(dy) = 0.

Therefore, Cb = {0} and the equivalence (2.6) of Theorem 2.1 allows us to conclude. �

A Proof of Lemma 2.2

Since Yd is a compact metrizable space, there exists a subsequence (νnk)k∈N of (νn)n∈N which
converges weakly ∗ to some probability measure µ ∈Mp(Yd), namely for any f ∈ C0

] (Yd),∫
Yd

f(y) dνnk(y) =
1

rnk

∫ rnk

0

f(X(s, x)) ds −→
k→∞

∫
Yd

f(y) dµ(y). (A.1)

Let us prove that µ is invariant for the flow Tt. For the sake of simplicity denote τk := rnk and
µk := νnk . Let t ∈ R and f ∈ C0

] (Yd). By the semi-group property of the flow (1.12) we have∫
Yd

(Ttf)(y) dµk(y) =
1

τk

∫ τk

0

f(X(s+ t, x)) ds.

By the change of variable r = s+ t, it follows that∫
Yd

(Ttf)(y) dµk(y) =
1

τk

∫ t+τk

t

f(X(r, x)) dr

=
1

τk

∫ τk

0

f(X(r, x)) dr +
1

τk

∫ t+τk

τk

f(X(r, x)) dr − 1

τk

∫ t

0

f(X(r, x)) dr

Since f is bounded and t ∈ R is fixed, we deduce from (A.1) that

lim
k→∞

∫
Yd

(Ttf)(y) dµk(y) =

∫
Yd

f(y) dµ(y).
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However, by the definition of µ we also have

lim
k→∞

∫
Yd

(Ttf)(y) dµk(y) =

∫
Yd

(Ttf)(y) dµ(y).

Hence, we get that

∀ t ∈ R, ∀ f ∈ C0
] (Yd),

∫
Yd

(Ttf)(y) dµ(y) =

∫
Yd

f(y) dµ(y),

which implies that µ is invariant for the flow Tt. �
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