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Revisiting the asymptotics of the flow for some dynamical systems on the torus

Introduction

This paper is devoted to the large time asymptotics of the solution X(t, x) to the dynamical system

   ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x ∈ R d , (1.1) 
where b is a C 1 -regular Z d -periodic vector field in R d . More precisely, we focus on the existence of the limit of X(t, x)/t as t → ∞ for x ∈ R d . This problem is strongly connected to the asymptotic behavior of the transport equation with an oscillating velocity

∂u ε ∂t (t, x) + b x ε • ∇ x u ε (t, x) = 0 for (t, x) ∈ [0, ∞) × R d , (1.2) 
which is dealt with in [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF][START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF][START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF]. Otherwise, this question naturally arises in ergodic theory since it involves the flow T t defined by (T t ϕ)(x) := ϕ(X(t, x)) for ϕ continuous and

Z d -periodic in R d , x ∈ R d , (1.3) 
which is associated with system (1.1), and the Borel measures µ on the torus Y d := R d /Z d which are invariant for the flow, i.e.

∀ t ∈ R, µ • T t = µ. (1.4) 
A strengthened variant of the famous Birkhoff ergodic theorem [5, Theorem 2, Section 1.8] claims that if the flow is uniquely ergodic, i.e. there exists a unique probability measure µ on Y d invariant for the flow, then any continuous Z d -periodic function f satisfies

∀ x ∈ R d , lim t→∞ 1 t t 0 f (X(s, x)) ds = Y d f (y) dµ(y), (1.5) 
and the converse actually holds true. In the particular case where f := b, limit (1.5) yields

∀ x ∈ R d , lim t→∞ X(t, x) t = Y d
b(y) dµ(y).

(1.6)

The unique ergodicity condition seems to be a rather restrictive condition on the flows of type (1.1). For example, if the vector field b vanishes at two points x = y in the torus, then any convex combination of the Dirac masses δ x and δ y are invariant for the flow. When b does not vanish in R d , the unique ergodicity of the flow is not clear. This is true in dimension one (see Proposition 3.1) but the situation is more complicated in higher dimension. As best we know the asymptotics of the flow is completely known only in dimension two for a non-vanishing vector field b. Specifically in dimension two, Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations, Ergodic Theory Dynam[END_REF] obtained the asymptotics of the flow through the following alternative:

• Under the existence of a periodic trajectory X(•, y) of (1.1) with respect to the torus (see (1.14)), the limit of (1.6) does exist but may depend on x.

• In the absence of periodic trajectory with respect to the torus, the limit of (1.6) exists independently of x. To this end, Peirone used an one-dimensional ergodicity result transversally to Siegel's curve, but his approach has nothing to do with the unique ergodicity of the flow.

On the other hand, when the two-dimensional flow associated with a non-vanishing vector field b = (b 1 , b 2 ) admits an invariant measure with a positive Z 2 -periodic density σ with respect to the Lebesgue measure, or equivalently, by virtue of Liouville's theorem σb is divergence free in R 2 , then Kolmogorov's theorem [START_REF] Kolmogorov | On dynamical systems with an integral invariant on the torus[END_REF] implies the existence of a diffeomorphism on the torus which transforms the dynamical system (1.1) into the dynamical system

   ∂Y ∂t (t, y) = a(Y (t, y)) ξ, t ∈ R Y (0, x) = y ∈ R 2 , (1.7)
where a is a regular Z 2 -periodic vector field in R 2 and ξ = (ξ 1 , ξ 2 ) is a nonzero constant vector in R 2 . In this two-dimensional setting with the additional assumption that b 1 is nonvanishing, Tassa [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] also obtained the asymptotics of the flow through the following alternative which is strongly connected to the above Peirone's alternative:

• If ξ 1 and ξ 2 are rationally dependent, the limit of (1.6) exists but does depend on x.

• If ξ 1 and ξ 2 are rationally independent, or equivalently the so-called rotation number is irrational (see, e.g., [12, Chapter I, Section 4.1]), the limit of (1.6) exists independently of x. The more general result where the vector field b (rather than b 1 ) is nonvanishing with an invariant density σ ∈ C 5 (Y 2 ) is due to Kolmogorov [START_REF] Kolmogorov | On dynamical systems with an integral invariant on the torus[END_REF].

Note that in [START_REF] Peirone | Convergence of solutions of linear transport equations, Ergodic Theory Dynam[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] the nonvanishing condition of the vector field b is essential to obtain the asymptotics of the flow. Actually, the unique ergodicity of the flow (1.3) associated with b is not needed to get the desired asymptotics (1.6) which is much less restrictive than (1.5). Indeed, our approach consists in replacing the unique ergodicity assumption by the weaker uniqueness condition # Y d b(y) dµ(y) : µ is an invariant probability measure for the flow = 1.

(1.8)

This new condition is obtained by observing that the Birkhoff time average in (1.6) is only addressed (contrary to (1.5)) to the function b. Then, we revisit (see Proposition 2.1) the proof of the existence of an invariant probability measure for the flow defined on a compact space (the torus here). We conclude by proving (see Theorem 2.1) that condition (1.8) turns out to be equivalent to asymptotics (1.6). On the other hand, we show (see Theorem 2.2 and Remark 2.2) that the Liouville theorem satisfied by an invariant measure µ for the flow associated with b can be regarded as a divergence-curl result such that for any

Z d -periodic C 1 -function ψ, Y d b(y) • ∇ψ(y) dµ(y) = 0. (1.9) 
Our new approach consists in combining the tools (1.8) and (1.9) to obtain the limit of X(t, x)/t as t → ∞ for some dynamical systems (1.1). So, we get the desired asymptotics for the dynamical system (1.7) (see Proposition 3.2) assuming that the Z d -periodic function a is nonnegative and may vanish contrary to [START_REF] Peirone | Convergence of solutions of linear transport equations, Ergodic Theory Dynam[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF], and that the vector ξ satisfies one of the two following conditions which extend in any dimension the above two-dimensional conditions obtained by Peirone (see Remark 3.3 and Proposition 3.4) and Tassa:

• There exists T > 0 such that T ξ ∈ Z d , which leads us to a limit of X(t, x)/t depending on x.

• For any k ∈ Z d \ {0}, ξ • k = 0, which leads us to the limit

∀ x ∈ R d , lim t→∞ X(t, x) t = a * ξ with a * :=      Y d a -1 (y) dy -1 if a > 0 in R d 0 if a vanishes in R d .
When a vanishes at different points in the torus, the unique ergodicity of the flow (1.5) is not satisfied, while the asymptotics of the flow holds true for b in (1.6). The former asymptotics result easily extends (see Corollary 3.1) to the case where the vector field b is rectifiable to a fixed direction ξ through a diffeomorphism Φ on the torus, i.e. b = a • Φ ∇Φ -1 ξ for some Z d -periodic nonnegative function a. Finally, again using (1.8) and (1.9) we obtain the zero vector limit in (1.6) when b is a current field (see Proposition 3.5), i.e. b = A∇v with A a regular Z d -periodic nonnegative symmetric matrix-valued conductivity and v a regular Z d -periodic potential.

Notation • Y d for d ≥ 1, denotes the d-dimensional torus R d /Z d , which is identified to the cube [0, 1) d in R d . • C k c (R d ) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions in C k (R d ) with compact support. • C k (Y d ) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ C k (R d ) which are Z d -periodic, i.e. ∀ k ∈ Z d , ∀ x ∈ R d , f (x + k) = f (x).
• L p (Y d ) for p ≥ 1, denotes the space of the real-valued functions in L p loc (R d ) which are Z d -periodic.

• M (Y d ) denotes the space of the Radon measures on Y d , and M p (Y d ) denotes the space of the probability measures on Y d .

• D (R d ) denotes the space of the distributions on R d .

Definitions and recalls

Let b : R d → R d be a vector-valued function in C 1 (Y d ) d . Consider the dynamical system    ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x ∈ R d .
(1.10)

The solution X(•, x) of (1.10) which is known to be unique (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.4]) is associated with the flow (T t ) t∈R , defined by

T t (ϕ)(x) := ϕ X(t, x) for ϕ ∈ C 0 (Y d ) and x ∈ R d , (1.11) 
which satisfies the semi-group property

∀ s, t ∈ R, T s+t = T s • T t , (1.12) 
and is well defined in the torus since

∀ t ∈ R, ∀ x ∈ R d , ∀ k ∈ Z d , X(t, x + k) = X(t, x) + k. (1.13)
Property (1.13) follows immediately from the uniqueness of the solution X to (1.10) combined with the Z d -periodicity of b.

A solution X(•, x) to (1.10) is said to be periodic in the torus if there exists τ > 0 and 

k ∈ Z d such that ∀ t ∈ R, X(t + τ, x) = X(t, x) + k. ( 1 
∀ t ∈ R, ∀ ψ ∈ C 0 (Y d ), Y d T t (ψ)(y) dµ(y) = Y d ψ X(t, y) dµ(y) = Y d ψ(y) dµ(y), (1.15)
or equivalently, the image measure of µ by the flow T t agrees with µ.

2 Some general results

Existence of invariant probability measures for the flow

When a flow preserves the set of the continuous functions on a compact metric space, the existence of an invariant probability measure for the flow is a classical statement which can be derived thanks to a weak compactness argument applied to sequences of probability measures defined from the Birkhoff time averages in (1.5) (see, e.g., [5, Theorem 1, Section 1.8] in the discrete time case). The following result adapts this statement restricting it to the limit points of the Birkhoff time averages for a given function.

Proposition 2.1 Let b ∈ C 1 (Y d ) d .
There exists an invariant probability measure on Y d for the flow T t (1.11) associated with b. Moreover, let g ∈ C 0 (Y d ) and x ∈ R d be fixed, and let (t n ) n∈N ∈ R N be such that lim n t n = ∞. Then, for any limit point a of the sequence

(u n ) n∈N ∈ R N defined by u n := 1 t n tn 0 g(X(s, x)) ds, n ∈ N, (2.1) 
there exists a probability measure µ ∈ M p (Y d ) (depending a priori on x and g) which is invariant for the flow T t and satisfies

a = Y d g(y) dµ(y). (2.2)
Proof. As above mentioned the following lemma is classical in ergodic theory. For the reader's convenience its proof is postponed to the Appendix.

Lemma 2.2 Let x ∈ R d , let (r n ) n∈N ∈ R N be such that lim n r n = ∞, and let ν n ∈ M p (Y d ),
n ∈ N, be the probability measure defined by

Y d f (y) dν n (y) = 1 r n rn 0 f (X(s, x)) ds for f ∈ C 0 (Y d ). (2.3)
Then, there exists a subsequence (ν n k ) k∈N of (ν n ) n∈N which converges weakly * to some probability measure µ ∈ M p (Y d ) which is invariant for the flow T t .

Let a be a limit point of the sequence (u n ) n∈N (2.1), namely

a = lim n→∞ 1 t θ(n) t θ(n) 0 g(X(t, x)) dt, for some subsequence (t θ(n) ) n∈N of (t n ) n∈N . Set r n := t θ(n)
, and consider the associated sequence (ν n ) n∈N of probability measures on Y d given by (2.3). By Lemma 2.2 we can extract a subsequence (ν n k ) k∈N which converges weakly * to some invariant measure µ ∈ M p (Y d ) for the flow T t . We thus have

∀ f ∈ C 0 (Y d ), lim k→∞ Y d f (y) dν n k (y) = Y d f (y) dµ(y), which implies in particular that a = lim k→∞ 1 r n k rn k 0 g(X(s, x)) ds = lim k→∞ Y d g(y) dν n k (y) = Y d g(y) dµ(y).
Remark 2.1 The second assertion of Proposition 2.1 may provide a simple way to find the limit of Birkhoff 's time averages for a specific function, when the general form of the limit in Birkhoff 's theorem is unknown. For instance, if the support of any invariant probability measure for the flow is contained in a subset

F of Y d and if g ∈ C 0 (Y d ) vanishes on F , then ∀ x ∈ Y d , lim t → ∞ 1 t t 0
g(X(s, x)) ds = 0, since any limit point of these averages is zero by (2.2).

A criterium for the asymptotics of the flow

It is known (see, e.g., [5, Theorem 2, Section 1.8] for the discrete case) that the uniqueness of an invariant measure µ ∈ M p (Y d ) for the flow T t is equivalent to the pointwise property:

∀ x ∈ R d , ∀ f ∈ C 0 (Y d ), lim t→∞ 1 t t 0 f (X(s, x)) ds = Y d f (y) dµ(y).
(2.4)

The following result which is new as the best we know, allows us to restrict condition (2.4) to f = b and to derive the asymptotics of the flow at each point in R d , by assuming the uniqueness of the averages of b with respect to the invariant probability measures on Y d for the flow rather than the uniqueness of an invariant measure for the flow. 

C b = {ζ} ⇔ ∀ x ∈ R d , lim t→∞ X(t, x) t = ζ. ( 2 
C b is a closed set in R d . We also have C b ⊂ [0, b ∞ ], so that C b is a compact set of R d . Now, assume that C b = {ζ}. Let x ∈ R d , let (t n ) n∈N ∈ R N be such that lim n t n = ∞,
∀ x ∈ R d , lim t→∞ X(t, x) t = lim t→∞ 1 t t 0 b(X(s, x)) ds = ζ.
Conversely, assume that the right-hand side of (2.6) holds, which implies that

∀ x ∈ R d , lim t→∞ 1 t t 0 b(X(s, x)) ds = ζ.
Then, integrating over Y d the former equality with respect to any probability measure µ ∈ I b , then applying successively Lebesgue's dominated convergence theorem and Fubini's theorem, we get that

ζ = lim t→∞ Y d 1 t t 0 b(X(s, x)) ds dµ(x) = lim t→∞ 1 t t 0 Y d b(X(s, x)) dµ(x) ds = Y d b(x) dµ(x).
which shows that C b = {ζ}. This concludes the proof of (2.6).

Liouville's theorem and a divergence-curl result

Liouville's theorem provides a criterium for a probability measure on a smooth compact manifold in R d (see, e.g., [5, Theorem 1, Section 2.2]) to be invariant for the flow. The next result revisits this theorem in M p (Y d ) in association with a divergence-curl result on the torus.

Theorem 2.2 Let b ∈ C 1 (Y d ) d and let µ ∈ M p (Y d ). We define the Radon measure μ ∈ M (R d ) on R d by R d ϕ(x) dμ(x) := Y d ϕ (y) dµ(y) where ϕ (•) := k∈Z d ϕ(• + k) for ϕ ∈ C 0 c (R d ). (2.7) 
Then, µ is invariant for the flow T t if, and only if, one of the two following conditions is satisfied:

div (μ b) = 0 in D (R d ), (2.8) 
∀ ψ ∈ C 1 (Y d ), Y d b(y) • ∇ψ(y) dµ(y) = 0.
(2.9)

Proof. Assume that µ is invariant for the flow, i.e. (1.15). Let ϕ ∈ C 1 c (R d ). Since by (1.13) we have for any t ∈ R and y

∈ R d , ϕ(X(t, •)) (y) = k∈Z d ϕ(X(t, y + k)) = k∈Z d ϕ(X(t, y) + k) = ϕ (X(t, y)), (2.10) 
it follows from (2.7) and the invariance of µ that

∀ t ∈ R, R d ϕ(X(t, x)) dμ(x) = Y d ϕ(X(t, •)) (y) dµ(y) = Y d ϕ (X(t, y)) dµ(y) = Y d ϕ (y) dµ(y) = R d ϕ(x) dμ(x).
Taking the derivative of the former expression with respect to t, we get that

∀ t ∈ R, R d b(X(t, x)) • ∇ϕ(X(t, x)) dμ(x) = 0, which at t = 0 yields ∀ ϕ ∈ C 1 c (R d ), R d b(x) • ∇ϕ(x) dμ(x) = 0, (2.11)
namely the variational formulation of the distributional equation (2.8).

Conversely, assume that equation (2.8) holds true. Let ϕ ∈ C 1 c (R d ) and define the function φ ∈ C 1 (R × R d ) by φ(t, x) := ϕ(X(t, x)). By the semi-group property (1.12) we have for any

s, t ∈ R and x ∈ R d , ∂ ∂s φ(s + t, X(-s, x)) = ∂ ∂s φ(t, x) = 0 = ∂φ ∂s (s + t, X(-s, x)) -b(X(-s, x)) • ∇ x φ(s + t, X(-s, x)),
which at s = 0 gives the classical transport equation

∀ t ∈ R, ∀ x ∈ R d , ∂φ ∂t (t, x) = b(x) • ∇ x φ(t, x). (2.12) Hence, since ϕ(X(t, •)) is in C 1 (R d
) and has a compact support independent of t when t lies in a compact set of R, we deduce from (2.12) and (2.8) that

∀ t ∈ R, d dt R d ϕ(X(t, x)) dμ(x) = R d b(x) • ∇ x ϕ(X(t, x)) dμ(x) = 0,
or equivalently,

∀ t ∈ R, R d ϕ(X(t, x)) dμ(x) = R d ϕ(x) dμ(x).
On the other hand, we have the following result. Hence, using relation (2.10) and definition (2.7) we get that for any ψ ∈ C ∞ (Y ),

∀ t ∈ R, Y d ψ(X(t, y)) dµ(y) = Y d ϕ (X(t, y)) dµ(y) = R d ϕ(X(t, x)) dμ(x) = R d ϕ(x) dμ(x) = Y d ψ(y) dµ(y),
which shows that µ is invariant for the flow. We have just proved the equivalence between the invariance of µ for the flow and the distributional equation (2.8) satisfied by μ. Finally, the equivalence between (2.8), or equivalently (2.11), and (2.9) is a straightforward consequence of the relation Remark 2.2 Equation (2.9) can be considered as the divergence free of the vector-valued measure µ b in the torus Y d , while equation (2.8) is exactly the divergence free of the vector-valued measure μ b in the space R d . Equation (2.9) is also equivalent to

∀ ϕ ∈ C 1 c (R d ), R d b(x) • ∇ϕ(x) dμ(x) =
∀ ∇ψ ∈ C 0 (Y d ) d , Y d b(y) • ∇ψ(y) dµ(y) = Y d b(y) dµ(y) • Y d ∇ψ(y) dy , (2.13) since ∇ψ ∈ C 0 (Y d ) d ⇔ x → ψ(x) -x • Y d ∇ψ(y) dy ∈ C 1 (Y d ).
Condition (2.13) has to be regarded as a divergence-curl result combining the invariant measure µ for the divergence free vector field µ b and the Lebesgue measure for the gradient field ∇ψ.

Application to the asymptotics of the flow

First of all, we apply the tools of Section 2 to the one-dimensional case.

The one-dimensional case

We have the following result.

Proposition 3.1 Let b ∈ C 1 (Y 1 )
. We have the following alternative: 

(i) If b = 0 sur Y 1 ,
∀ x ∈ R, lim t→∞ X(t, x) t = 0. (3.2)
Proof. Case (i). Let µ ∈ M p (Y 1 ) be an invariant measure for the flow T t . By the condition (2.8) of Theorem 2.2 there exists a constant C ∈ R such that μ b = C in R, or equivalently,

∀ ϕ ∈ C 0 c (R), R ϕ(x) b(x) dμ(x) = C R ϕ(x) dx.
Hence, by the definition (2.7) of μ we have

∀ ϕ ∈ C 0 c (R), Y 1 ϕ (y) b(y) dµ(y) = R ϕ(x) b(x) dμ(x) = C R ϕ(x) dx = C Y 1 ϕ (y) dy.
Therefore, from Lemma 2.3 we deduce that As a consequence the set I b defined by (2.5) is a singleton, and C b = {b}. Therefore, due to the equivalence (2.6) of Theorem 2.1 we obtain the desired asymptotics (3.1). We could also have concluded directly thanks to the unique ergodicity theorem. However, the unique ergodicity theorem does not apply in the following case, while Theorem 2.1 does.

∀ ψ ∈ C 0 (Y 1 ),
Case (ii). Let µ ∈ M p (Y 1 ) be an invariant measure for the flow T t . The equality μ b = C still holds true in R for some constant C ∈ R, as well as equality (3.3). Take the function ψ := (|b| + ε) -1 for ε > 0, in equality (3.3), and make ε tend to 0. Then, using that b is regular and vanishes in Y 1 (which implies that 1/b / ∈ L 1 (Y d )), and applying successively Beppo-Levi's theorem and (3.3), it follows that As a by-product, using Lebesgue's dominated convergence theorem in the third integral of (3.4), we also get the equality 

|C| × ∞ = |C| × Y 1 dy |b(y)| = lim ε→0 Y 1 C dy |b(y)| + ε = lim inf
(i) If ξ • k = 0 for any k ∈ Z d \ {0}, then we have ∀ x ∈ R d , lim t→∞ X(t, x) t = a * ξ with a * := a if a > 0 in Y d 0 if a vanishes in Y d , (3.7)
where a is the harmonic mean of a.

(ii) If there exists T > 0 such that T ξ ∈ Z d , then we have

∀ x ∈ R d , lim t→∞ X(t, x) t = a * (x) ξ with a * (x) :=        1 T T 0 ds a sξ + Π ξ ⊥ (x) -1 ξ if ∀ u ∈ R, a uξ + Π ξ ⊥ (x) = 0 0 if ∃ u ∈ R, a uξ + Π ξ ⊥ (x) = 0, (3.8)
where Π ξ ⊥ denotes the projection on the hyperplane ξ ⊥ orthogonal to ξ.

Remark 3.1 The two-dimensional framework is completely covered by the disjoint cases (i) and (ii) of Proposition 3.2, since

∃ k ∈ Z d \ {0}, ξ • k = 0 ⇔ ∃ T > 0, T ξ ∈ Z 2 .
This equivalence does not hold in higher dimension.

Proof of Proposition 3.2. Case (i). Assume that for any

k ∈ Z d \ {0}, ξ • k = 0.
First assume that a does not vanish in Y d . Let x ∈ R d . Since the vector field b is parallel to the fixed direction ξ, we have

∀ t ∈ R, X(t, x) = X(t, x) • ξ ξ + Π ξ ⊥ X(t, x) and Π ξ ⊥ X(t, x) = Π ξ ⊥ (x), (3.9) which implies that    ∂(X • ξ) ∂t (t, x) = a (X • ξ)(t, x) ξ + Π ξ ⊥ (x) , t ∈ R (X • ξ)(0, x) = x • ξ. (3.10)
Then, the solution X • ξ to equation (3.10) is given by

∀ t ∈ R, X(t, x) • ξ = F -1 x t + F x (x • ξ) where F x (t) := t 0 ds a s ξ + Π ξ ⊥ (x) . (3.11) 
By approximating in C 0 (Y d ) the continuous Z d -periodic function 1/a by Fejér's type trigonometric polynomials, and noting that by hypothesis

∀ k ∈ Z d \ {0}, lim t→∞ 1 t t 0 e -2iπ s ξ•k ds = 0, it follows that lim t→∞ F x (t) t = Y d dy a(y) = 1 a , which taking into account that F x X(t, x) • ξ ∼ t→∞ t with X(t, x) • ξ → ∞ as t → ∞, implies that lim t → ∞ X(t, x) • ξ t = a.
Therefore, we get that

∀ x ∈ R d , lim t → ∞ X(t, x) t = lim t → ∞ X(t, x) • ξ ξ + Π ξ ⊥ (x) t = a ξ.
Otherwise, if a vanishes in Y d let us prove that

∀ µ ∈ I aξ , Y d a(y) dµ(y) = 0,
or equivalently, C aξ = {0}. Then, Theorem 2.1 will allow us to conclude. Assume by contradiction that there exists a measure µ ∈ I aξ such that

Y d a(y) dµ(y) > 0.
Set a ε := a + ε for ε > 0, and define the probability measure (recall that a ≥ 0)

dµ ε (x) := Y d a(y) a ε (y) dµ(y) -1 a(x) a ε (x) dµ(x), (3.12)
which is well defined since

Y d a(y) a ε (y) dµ(y) ≥ 1 a ∞ + ε Y d a(y) dµ(y) > 0.
Since µ is invariant for the flow associated with a ξ, by equality (2.9) we have

∀ ϕ ∈ C 1 (Y d ), Y d a ε (x) ξ • ∇ϕ(x) dµ ε (x) = Y d a(y) a ε (y) dµ(y) -1 Y d a(x) ξ • ∇ϕ(x) dµ(x) = 0,
hence µ ε ∈ I aεξ . But from the former case a > 0 combined with Theorem 2.1 we deduce that

C aεξ = Y d a ε (y) µ ε (dy) ξ = {a ε ξ} or equivalently Y d a ε (y) µ ε (dy) = a ε .
This combined with the expression of a ε (x) dµ ε (x) given by (3.12) leads us to the equality

Y d a(y) a ε (y) dµ(y) a ε = Y d a(y) a ε (y) dµ(y) Y d a ε (x) µ ε (dx) = Y d a(x) µ(dx).
Then, applying Beppo-Levi's theorem and using that a is regular and vanishes in

Y d (which implies that 1/a / ∈ L 1 (Y d )), it follows that 0 < Y d a(x) µ(dx) = Y d a(y) a ε (y) dµ(y) a ε ≤ a ε -→ ε→0 Y d dy a (y) -1 
= 0, which yields a contradiction. Therefore, we get that C aξ = {0}, and by the convergence (2.6) of Theorem 2.1 we obtain that

∀ x ∈ R d , lim t → ∞ X(t, x) t = 0.
Case (ii). Now, assume that there exists

T > 0 such that T ξ ∈ Z d . Let x ∈ R d . We have to distinguish two cases. If a uξ + Π ξ ⊥ (x) > 0 for any u ∈ R, then by the T -periodicity of u → a uξ + Π ξ ⊥ (x) we have lim t→∞ F x (t) t = 1 T T 0 ds a sξ + Π ξ ⊥ (x) , hence lim t → ∞ X(t, x) t = 1 T T 0 ds a sξ + Π ξ ⊥ (x) -1 ξ.
On the contrary, if there exists u 0 ∈ R such that a u 0 ξ + Π ξ ⊥ (x) = 0, then the part (ii) of Proposition 3.1 applies to the one-dimensional solution X •ξ to (3.10), where u → a uξ+Π ξ ⊥ (x) is T -periodic and vanishes at the point u 0 . We thus deduce that lim t→∞ X(t, x) • ξ t = 0, then lim t→∞ X(t, x) t = 0, which concludes the proof.

Rectification to a fixed direction

In this section we extend the result of the former section thanks to a diffeomorphism on the torus.

Definition 3.3 A mapping Φ ∈ C 1 (R d ) d
is said to be a C 1 -diffeomorphism on the torus if Φ satisfies the following conditions:

• det(Φ(x)) = 0 for any x ∈ R d ,
• there exist a matrix A ∈ Z d×d with | det(A)| = 1, and a

Z d -periodic mapping Φ ∈ C 1 (Y d ) d such that ∀ x ∈ R d , Φ(x) = Ax + Φ (x). (3.13) 
Note that the invertibility of A and the periodicity of Φ in (3.13) imply that Φ is a proper function (i.e., the inverse image by the function of any compact set in R d is a compact set). Hence, by virtue of Hadamard-Caccioppoli's theorem [START_REF] Caccioppoli | Sugli elementi uniti delle trasformazioni funzionali: un teorema di esistenza e unicit ed alcune sue applicazioni[END_REF] (also called Hadamard-Lévy's theorem) the mapping Φ is actually a C 1 -diffeomorphism on R d . Also noting that due to A -1 ∈ Z d×d , we have

∀ k ∈ Z d , ∀ x ∈ R d , Φ(x + k) -Φ(x) = Ak ∈ Z d Φ -1 (x + k) -Φ -1 (x) = A -1 k ∈ Z d ,
Φ well defines an isomorphism on the torus. Using a diffeomorphism on the torus the result of Proposition 3.2 can be extended to the following general result. Then, if ξ satisfies one of the two conditions of Proposition 3.2 we get that

∀ x ∈ R d , lim t→∞ X(t, x) t = a * (Φ(x)) A -1 ξ, (3.15) 
where a * (y) is given by formula (3.7) or formula (3.8). (3.17)

By the chain rule and (3.14) we have

   ∂Y ∂t (t, y) = ∇Φ(X(t, x)) ∂X ∂t (t, x) = ∇Φ(X(t, x)) b(X(t, x)) = a(Φ(X(t, x))) ξ = a(Y (t, y)) ξ Y (0, y) = Φ(X(0, x)) = Φ(x) = y,
which shows that Y is the solution to the dynamical system associated with the vector field a ξ. Hence, if ξ satisfies one of the two conditions of Proposition 3.2, we get the asymptotics of the flow

∀ y ∈ R d , lim t→∞ Y (t, y) t = a * (y) ξ,
where a * (y) is given by formula (3.7) or formula (3.8). Therefore, by the boundedness of Φ in (3.13) we have for any x ∈ R d and y := Φ(x),

X(t, x) t = Φ -1 (Y (t, y)) t = A -1 A Φ -1 (Y (t, y)) t = A -1 Y (t, y) t + O(1) t -→ t→∞ a * (y) A -1 ξ,
which yields the desired asymptotics (3.15).

Remark 3.3 Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations, Ergodic Theory Dynam[END_REF]Theorem 3.1] proved that in dimension two and for a nonvanishing vector field b ∈ C 1 (Y 2 ) 2 , there is no periodic solution in R 2 to system (1.10) (see the definition after (1.14)), and that the limit of X(t, x)/t as t → ∞ does exist for any x ∈ R 2 with the following alternative:

• If system (1.10) has no periodic solution in the torus according to (1.14), then the limit of X(t, x)/t as t → ∞ is independent of x ∈ R 2 as in (3.7).

• If system (1.10) has a periodic solution in the torus, then the limit of X(t, x)/t as t → ∞ may depend on x ∈ R 2 as in (3.8).

Actually, in any dimension the alternative on the vector ξ in Corollary 3.1 (see also Proposition 3.2) is naturally connected to the former alternative due to the following result.

Proposition 3.4 In the framework of Corollary 3.1 assume in addition that

∃ x ∈ R d , ∀ t ∈ R, a t ξ + Π ξ ⊥ (x) > 0. (3.18)
Then, the following equivalence holds: Proof. First note that the definition (3.13) of the C 1 -diffeomorphism on the torus Φ implies that a solution X(•, x) is periodic in the torus if, and only if, the function Y (•, Φ(x)) is periodic in the torus. Therefore, it is enough to prove the result in the case b = a ξ.

∃ T > 0, T ξ ∈ Z d ⇔
If system (1.10) with b = a ξ has a periodic solution X(•, x) in the torus but not in R d , then there exists τ > 0 and k ∈ Z d \ {0} such that by (3.9) we have for any t ∈ R,

Π ξ ⊥ (x) = Π ξ ⊥ (X(t + τ, x)) = Π ξ ⊥ (X(t, x) + k) = Π ξ ⊥ (X(t, x)) + Π ξ ⊥ (k) = Π ξ ⊥ (x) + Π ξ ⊥ (k).
Hence, we obtain that Π ξ ⊥ (k) = 0, or equivalently, there exists T > 0 such that T ξ = ±k ∈ Z d .

Conversely, assume that (3.18) is satisfied for some x ∈ R d , and there exists T > 0 such that T ξ = k ∈ Z d . The solution X(•, x) of (1.10) is given by (3.9) and (3.11). Define

τ := T 0 ds a s ξ + Π ξ ⊥ (x)
.

Then, by the T -periodicity of the function t → a t ξ + Π ξ ⊥ (x) we have

F x (x • ξ + T ) = x•ξ+T 0 ds a s ξ + Π ξ ⊥ (x) = x•ξ 0 ds a s ξ + Π ξ ⊥ (x) + x•ξ+T x•ξ ds a s ξ + Π ξ ⊥ (x) = F x (x • ξ) + τ = F x X(τ, x) • ξ by (3.11), which implies that X(τ, x) • ξ = x • ξ + T . Moreover, the functions t → X(t + τ, x) • ξ and t → X(t, x) • ξ + T are solutions to the system z (t) = a z(t) ξ + Π ξ ⊥ (x)
, and agree at t = 0. Hence, by a uniqueness argument these two solutions are equal, which yields

∀ t ∈ R, X(t + τ, x) • ξ = X(t, x) • ξ + T = X(t, x) + k • ξ.
Moreover, again by (3.9) and recalling that Π ξ ⊥ (k) = 0 we have

∀ t ∈ R, Π ξ ⊥ X(t + τ, x) = Π ξ ⊥ (x) = Π ξ ⊥ X(t, x) = Π ξ ⊥ X(t, x) + k .
The two previous identities imply that

∀ t ∈ R, X(t + τ, x) = X(t, x) + k.
namely, X(•, x) is periodic in the torus.

Consider the vector field b(x) := a(x)e 1 with a(x) := 1 π cos 2 (πx 1 ) ≥ 0 for x ∈ R d . Here, the vector ξ = e 1 clearly satisfies the left-hand side of (3.19). However, since ∀ x ∈ R d , a 1 2 e 1 + Π e ⊥ 1 (x) = 1 π cos 2 ( π 2 ) = 0, condition (3.18) is not satisfied. Moreover, for any x ∈ R d the solution X(•, x) to (1.10) is given by

       X 1 (t, x) = x 1 if x 1 = 1 2 + n, n ∈ Z 1 π arctan(t + tan(πx 1 )) + n if x 1 ∈ (-1 2 + n, 1 2 + n), n ∈ Z X i (t, x) = x i for i ≥ 2 (t, x) ∈ R×R d .
It follows that any periodic solution in the torus is necessarily stationary and a fortiori periodic in R d in the sense of (1.14). Therefore, the implication (⇒) of (3.19) does not hold.

The case of a current field

The following result deals with the case of a current field b = A∇v defined with some matrixvalued conductivity A and some electric field ∇v with zero average. Hence, we get that

∀ t ∈ R, ∀ f ∈ C 0 (Y d ), Y d (T t f )(y) dµ(y) = Y d f (y) dµ(y),
which implies that µ is invariant for the flow T t .

Theorem 2 . 1

 21 Let b ∈ C 1 (Y d ) d . Define the sets I b := µ ∈ M p (Y d ) : µ is invariant for the flow T t and C b := Y d b dµ : µ ∈ I b . (2.5) Then, I b is a nonempty set, and C b is a nonempty compact convex set of R d . Moreover, the following equivalence holds for any ζ ∈ R d ,

. 6 )

 6 Proof. By virtue of Proposition 2.1 the sets I b and C b are nonempty. The set C b is a convex set in R d since I b is clearly convex. Using the compactness of M p (Y d ) for the weak * topology, we get that

  and define the sequence (u n ) n∈N by (2.1) with the function g := b • ξ for ξ ∈ R d . Let a be a limit point of the sequence (u n ) n∈N . By Proposition 2.1 there exists an invariant measure µ ∈ M p (Y d ) for the flow T t satisfying a = Y d b(y) • ξ dµ(y), which by hypothesis implies that a = ζ • ξ. Hence, ζ • ξ is the unique limit point of the bounded sequence (u n ) n∈N which thus converges to ζ • ξ. Therefore, due to the arbitrariness of the sequence (t n ) n∈N we obtain that

Lemma 2 . 3 ([ 2 ], Lemma 3 . 5 )

 23235 For any smooth Z d -periodic function ψ ∈ C ∞ (Y d ), there exists a smooth function with compact support ϕ ∈ C ∞ c (R d ) such that ψ = ϕ .

  Y d b(y) • ∇ϕ (y) dµ(y) which itself follows from [b • ∇ϕ] = b • ∇ϕ and (2.7), combined with Lemma 2.3.

  then b/b(y) dy is the unique invariant measure for the flow T t associated with b, and ∀ x ∈ R, lim t→∞ If b does vanish in Y 1 , then

Y 1 ψ 1 ψ

 11 (y) b(y) dµ(y) = C Y (y) dy. (3.3) Taking ψ = 1/b in (3.3) we get that C = b, which implies that µ(dy) = b/b(y) dy is thus the unique invariant measure for the flow.

ε→0 Y 1 b

 1 (y) |b(y)| + ε dµ(y) ≤ 1, (3.4) which implies that C = 0. Finally, taking ψ = 1 in the equality (3.3) with C = 0, leads us to C b = {0}, which by virtue of the equivalence (2.6) of Theorem 2.1 yields the asymptotics of the flow (3.2).

1 Proposition 3 . 2

 132 The case with a fixed direction This section deals with the case where the vector field b has a fixed direction, namely b(y) = a(y) ξ, y ∈ Y d , (3.6) for some nonnegative function a ∈ C 1 (Y d ) which may vanish, and for a given vector ξ ∈ R d with |ξ| = 1. We have the following result. Let b ∈ C 1 (Y d ) d be given by (3.6) with a ≥ 0 and ξ ∈ R d with |ξ| = 1.

Corollary 3 . 1

 31 Consider a vector field b such that there exist a C 1 -diffeomorphism Φ on the torus given by (3.13), a nonnegative function a ∈ C 1 (Y d ) d and a vector ξ ∈ R d with |ξ| = 1, such that ∀ x ∈ R d , b(x) = a(Φ(x)) ∇Φ(x) -1 ξ. (3.14)

Remark 3 . 2 A

 32 similar result as Corollary 3.1 was proved by Tassa[START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] Theorem 2.1] in dimension two assuming that the first coordinate b 1 of b does not vanish in R 2 , and that there exists an invariant measure for the flow associated with b, having a density in C 1 (Y 2 ) with respect to Lebesgue's mesure. More precisely, under these two conditions Tassa showed in the spirit of Kolmogorov's theorem the existence of a C 1 -diffeomorphism on the torus satisfying (3.14) with the matrix A = I 2 . In the present case, we only assume the weaker rectification formula (3.14) in any dimension d ≥ 1, with any diffeomorphism Φ on the torus and a possibly vanishing nonnegative function a. Conversely, consider a vector field b ∈ C 1 (Y d ) d satisfying (3.14) with a > 0. By making the change of variables ϕ(x) = ψ(y) with y = Φ(x) for any function ϕ ∈ C ∞ c (R d ), it is easy to check that R d det(∇Φ(x)) a(Φ(x)) b(x) • ∇ϕ(x) dx = R d ξ • ∇ψ(y) dy = 0, which implies that div (σb) = 0 in R d with σ := Since the function σ is Z d -periodic, by virtue of Theorem 2.2 (3.16) means that the density probability measure σ(x) dx is invariant for the flow associated with b. Therefore, the rectification formula (3.14) of a nonvanishing vector field b can be regarded as a (more restrictive) substitute to (3.16) in dimension d > 2 for which Kolmogorov's theorem does not apply. Proof of Corollary 3.1. Define Y (t, y) := Φ(X(t, x)) for (t, x) ∈ R × R d with y := Φ(x).

Proposition 3 . 5 r n k rn k 0 fτ k τ k 0 ffτ k t 0 f

 35000 Assume that b = A∇v in Y d with A ∈ C 1 (Y d ) d×d , A = A T ≥ 0 in Y d , v ∈ C 2 (Y d ) d . (3.20)Then, the flow T t associated with b satisfies the asymptotics∀ x ∈ R d , lim t→∞ X(t, x) t = 0. Proof. Let µ ∈ M p (Y d )be an invariant measure for the flow T t . By the div-curl relation (2.13) combined with the zero average of ∇v, we have Y d A(y)∇v(y) • ∇v(y) ≥0 µ(dy) = Y d b(y) • ∇v(y) µ(dy) = 0, which implies that A∇v • ∇v = 0 µ-a.e. in Y d . Since the matrix-valued A is symmetric and nonnegative, by the Cauchy-Schwarz inequality we deduce that A∇v = 0 µ-a.e. in Y d , and thus Y d b(y) µ(dy) = Y d A(y)∇v(y) µ(dy) = 0. Therefore, C b = {0} and the equivalence (2.6) of Theorem 2.1 allows us to conclude.A Proof of Lemma 2.2Since Y d is a compact metrizable space, there exists a subsequence (ν n k ) k∈N of (ν n ) n∈N which converges weakly * to some probability measure µ ∈ M p (Y d ), namely for anyf ∈ C 0 (Y d ), Y d f (y) dν n k (y) = 1 (X(s, x)) ds -→ k→∞ Y d f (y) dµ(y). (A.1)Let us prove that µ is invariant for the flow T t . For the sake of simplicity denote τ k := r n k andµ k := ν n k . Let t ∈ R and f ∈ C 0 (Y d ).By the semi-group property of the flow (1.12) we haveY d (T t f )(y) dµ k (y) = 1 (X(s + t, x)) ds.By the change of variable r = s + t, it follows thatY d (T t f )(y) dµ k (y(X(r, x)) dr + 1 τ k t+τ k τ k f (X(r, x)) dr -1 (X(r, x)) drSince f is bounded and t ∈ R is fixed, we deduce from (A.1) that lim k→∞ Y d (T t f )(y) dµ k (y) = Y d f (y) dµ(y). However, by the definition of µ we also have lim k→∞ Y d (T t f )(y) dµ k (y) = Y d (T t f )(y) dµ(y).

  .14) If k = 0 the solution is said to be periodic in R d . A measure µ in M p (Y d ) is said to be invariant for the flow T t (see, e.g., [5, Chap. 2]) if